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Network properties of salmonella 
epidemics
Oliver M. Cliff   1, Vitali Sintchenko2,3, Tania C. Sorrell   2,3, Kiranmayi Vadlamudi1, 
Natalia McLean1 & Mikhail Prokopenko   1,3

We examine non-typhoidal Salmonella (S. Typhimurium or STM) epidemics as complex systems, driven 
by evolution and interactions of diverse microbial strains, and focus on emergence of successful strains. 
Our findings challenge the established view that seasonal epidemics are associated with random 
sets of co-circulating STM genotypes. We use high-resolution molecular genotyping data comprising 
17,107 STM isolates representing nine consecutive seasonal epidemics in Australia, genotyped by 
multiple-locus variable-number tandem-repeats analysis (MLVA). From these data, we infer weighted 
undirected networks based on distances between the MLVA profiles, depicting epidemics as networks 
of individual bacterial strains. The network analysis demonstrated dichotomy in STM populations which 
split into two distinct genetic branches, with markedly different prevalences. This distinction revealed 
the emergence of dominant STM strains defined by their local network topological properties, such as 
centrality, while correlating the development of new epidemics with global network features, such as 
small-world propensity.

Non-typhoidal Salmonella causes an estimated 93.8 million human cases of salmonellosis and over 155,000 deaths 
globally each year1–3. Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium or STM) has 
been the dominant cause of non-typhoidal human salmonellosis worldwide3,4. It is evolving continuously, per-
sisting and undergoing adaptation within different ecological niches. STM has demonstrated remarkable diversity 
as a zoonotic ‘generalist’ serovar of public health importance, from which epidemics and ‘specialist’ high virulence 
strains emerge5–7. Whilst the impact of changes in STM diversity on disease incidence has been recognised4,7–9, 
the drivers of STM population dynamics during seasonal epidemics remain poorly understood4. Advances in 
high-resolution genotyping have highlighted limitations in traditional phylogenetic approaches to the analysis 
of non-hierarchical relationships between recombining strains within species, which could not be represented as 
bifurcating trees10,11. In this study, we examine STM epidemics as complex systems characterised by non-linear 
interactions of diverse microbial strains, and describe the process of emergence of successful strains. Our results 
challenge the established view that STM epidemics are caused by random sets of co-circulating STM genotypes 
preferentially occurring during the summer months12,13 and demonstrate that network properties of evolving 
STM strains can correlate with the development of new epidemics in unexpected ways.

Recent accumulation of representative sets of molecular subtyping data has provided an opportunity to exam-
ine the intricate connectivity of co-circulating STM strains. We used a collection of 17,107 STM isolates iden-
tified in the New South Wales (NSW) State Salmonella Reference Laboratory in Sydney, Australia between 1 
January 2008 and 31 December 2016. This set contained 99.3% of all STM isolated from human cases throughout 
NSW during this period. All isolates were genotyped by multiple-locus variable-number tandem-repeats analysis 
(MLVA). A “tandem-repeat” is defined as a pattern of several nucleotides which is repeated and the repetitions 
are directly adjacent to each other. The MLVA profile is defined as a string of integers representing the numbers of 
repeats in several fixed genetic locations (loci), e.g., 3-9-7-12-523. Thus, MLVA profiles consist of the total num-
bers of tandem repeats in each of five loci. Crucially, the differences between bacterial strains captured in MLVA 
profiles have proven sufficiently discriminatory for public health laboratory surveillance and outbreak investiga-
tions14,15. There are 1675 unique MLVA profiles obtained over 3,287 days in this dataset.
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By interrogating genotypes identified during nine consecutive seasonal epidemics, we have been able to quan-
tify heterogeneity, interconnectedness and temporal frequency of STM isolates associated with unique or com-
mon MLVA profiles. In particular, we observed a heavy-tail distribution in the prevalence of MLVA profiles (see 
Fig. S2 in Supplementary Information). Table S1 (Supplementary Information) details the commonest MLVA 
profiles, ordered by decreasing prevalence.

Empirical networks were constructed where each MLVA profile was represented as a node in a graph, and the 
edge weight between nodes was defined as the Manhattan distance between profiles. Using these networks, we 
then examined the global network topology and evolution and its relationship to the emergence of dominant or 
successful STM strains16,17. In addition to the global network, a different network was created for every date in 
the dataset. That is, for a given date, a separate network for all unique MLVA profiles was built within a moving 
window of 365 days (Supplementary Information), capturing annual periodicity and seasonal patterns of the 
consecutive epidemics. For each such network, the clustering, path length, and small world coefficient were com-
puted18,19, yielding a moving average of these network characteristics.

The topology of individual networks reflected evolving characteristics of STM populations. Figure 1 demon-
strates the connectivity and complexity of such networks, highlighting the high variability of individual close-
ness centrality values across the individual MLVA profiles (nodes). The clustering coefficient and small world 
coefficient of each node also vary across the entire set of characterised MLVA types, as shown in Fig. S3. The 
corresponding average network properties, such as path length, centrality and small-world coefficients, charac-
terize different dimensions of the diversity within STM populations, and correlated well with the prevalence of 
STM infections over time, with respect to their prevalence measured as a moving average with annual periodicity 
(Fig. 2). Specifically, correlations peak at ~300 days for the small world coefficient (and much earlier for the aver-
age clustering coefficient at ~50 days and the characteristic path length at ~100 days) (Fig. 2). This suggests that 
the STM activity might be heralded well in advance by small changes in the network topology.

Network nodes, i.e. MLVA profiles, were then clustered into groups within which the nodes were more similar 
to each other than to those in other groups. To examine the similarity of MLVA profiles, we employed overlapping 
and partitioning clustering methods (Fig. S1, see Supplementary Information). The overlapping approach clus-
tered all nodes within a certain threshold distance of a focus node as part of the same cluster thus allowing a node 
to participate in more than one cluster. Table S2 presents the commonest MLVA profiles, ordered by decreasing 
average prevalence of the overlapping cluster to which the MLVA belongs. The partitioning (or mutually exclu-
sive) approach allows for any case of STM disease with a specific MLVA profile to be part of only one cluster.

These clusters were used to evaluate the relationship between the position of STM genotypes within the net-
work and their potential to cause outbreaks. Specifically, the closeness centrality of MLVA profiles was com-
pared with the prevalence of their clusters (Fig. 3). The network centrality measures represented the relative 
impact of isolates with different MLVA profiles in the epidemic, and allowed us to trace the evolutionary drift 
of strains towards more prevalent cases in terms of their centrality. The graph clustering algorithms identify 

Figure 1.  The STM MLVA network, where the edge weight between nodes is represented by the L1-norm 
distance between them. The size of each node is set in proportion to the prevalence of the corresponding MLVA 
profile. The network layout is given by a simple spring algorithm; moreover, the edges in the graph are removed 
for readability and each node is coloured by its closeness centrality.
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potential clusters for every MLVA profile. In Fig. 3, for the overlapping approach we set the threshold distance as 
five, accounting for at least a detectable mutation in all loci before the MLVA profiles are considered distinct. The 
threshold distance to define a mutually exclusive cluster was chosen to maintain concordance between the average 
sizes of clusters identified by two different approaches, rather than similarity in the number of clusters. As a result, 
21 mutually exclusive clusters were identified, and the diversity of the STM population and the relative abundance 
of clustered isolates were quantified; the majority represented community-acquired outbreaks with or without an 
epidemiologically-confirmed source.

Crucially, we observed a non-linear relationship between the centrality of nodes and their prevalence, i.e., 
their success as a food-borne human pathogen. The most prevalent clusters were of medium centrality, where 
branching occurred at the highest centrality nodes. The shift in direction of association between centrality and 
cluster prevalence appeared for clusters with an average prevalence of 10 (Fig. 3, left). This shift suggested a signif-
icant change in STM virulence or transmissibility. The gradient of colouring indicated an evolution from the high 
centrality nodes towards this upper branch. There were two distinct genetic branches, one of lower prevalence/
severity, and one of higher. There was the transition from sporadic STM strains represented by MLVA profiles 
with a low cluster density and node centrality into highly ‘successful’ strains causing outbreaks and represented by 
MLVA profiles with high cluster density and medium node centrality. The most ‘successful’ STM strains seemed 
to emerge from MLVA profiles with the highest centrality in the network, via a reduction of their centrality, 
towards less central but more prevalent profiles.

Figure 2.  The relationships between networks characteristics and S. Typhimurium prevalence. The yearly 
prevalence of cases is represented as black lines, i.e. the number of cases within 365 days of the date on the x-axis 
(a new network is computed based on all instances within 365 days of the date on the x-axis, in order to capture 
annual periodicity and seasonal yearly patterns of the consecutive epidemics). For each row, relation of different 
MLVA network characteristics (for that year) to the yearly prevalence is shown. The characteristic path length 
(top row, A), the average clustering coefficient (middle row, B), and the small world coefficient (bottom row, 
C) are plotted in solid green. The right-hand figures illustrate the sample correlation coefficients between each 
network measure and the yearly prevalence for lags of the time series (of up to 365 days, within the time series 
over 3,287 days). The time lag that produces the maximum correlation for each measure is recorded, and the 
corresponding lagged time series is then overlaid in light green, in order to compare with the actual time series 
(shown in black).
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To investigate the temporal evolution of epidemics and the role of individual strains, the entropy of the MLVA 
frequency distribution within 30-day time intervals was assessed. It appeared that the STM population diver-
sity was gradually increasing and oscillating, suggesting the expansion to different niches in the process of nine 
seasonal epidemics (Fig. S4). MLVA clusters also evolved over time with the replacement of one successful STM 
strain by another at the end of the epidemic. This is shown in Fig. 4 where the partitioning algorithm was used to 
create 450 mutually exclusive clusters. This analysis revealed a major shift in the population of epidemic strains 
in 2014 with the replacement of previously endemic STM strains by new ones occupying different positions in 
the network. These findings are concordant with the observation of gradual replacement of STM phage type 
135 with STM phage types 170 and 9 in New South Wales over the study period9. Figure S5 illustrates the time 
series of different MLVA clusters over time. Time series were obtained by taking a (30 day) moving average of the 
number of instances of each MLVA profile (i.e., their prevalence), and suggested that different clusters were more 
prevalent at different times, possibly due to variations in their prevalence in relevant zoonotic reservoirs, and herd 
immunity in human hosts.

In this study, we inferred undirected STM networks from surveillance and molecular genotyping data repre-
senting nine consecutive seasonal epidemics of salmonellosis in Australia, quantified the diversity and variability 
of these evolving genetic networks, correlated their small-world network properties with the severity of STM 
epidemics in Australia; and identified distinct evolutionary branches in terms of the network nodes’ centrality. 
These findings enhance and broaden our view of epidemics of salmonellosis and support the feasibility and added 
value of network analysis of relationships between diverse bacterial strains within the same species. This approach 
is aligned to the niche theory as it treats the impact of individual variants (STM MLVA profiles in this case) on 
the population as proportional to their frequency in the population20. Our results also provide a new platform for 
public health surveillance. In contrast to existing mechanistic approaches based on the search for pathogens with 
matching genotypes, it highlights the added value of monitoring of ongoing STM population diversity and the 
identification of new genotypes as reservoirs from which future epidemics might emerge.

Figure 3.  The closeness centrality of MLVA profiles is compared to the prevalence of their clusters. The clusters 
are obtained by either the overlapping (top row) or the partitioning (bottom row) algorithms. For overlapping 
clusters (threshold distance five), the individual centrality of each node is plotted against the logarithm of 
average prevalence of their cluster. For partitioning clustering (with 21 mutually exclusive clusters), the average 
centrality of each cluster is plotted against the logarithm of average prevalence of that cluster. The size of each 
circle (left subfigures) is set in proportion to the size of the corresponding cluster. Solid lines trace binned 
averages, using: 50 equal size bins in the range between 0.0233 and 0.0831 for the top sub-figure (i.e., individual 
node centrality); and 10 equal size bins in the range between 0.0233 and 0.0710 for the bottom sub-figure (i.e., 
average cluster centrality). Dashed lines trace the corresponding standard deviations above the means. The 
scattergrams are coloured by the pairwise L1-norm between nodes (top left) or clusters (bottom left). That is, for 
the overlapping approach (top left), each node is coloured according to distance to other focal MLVAs, whereas 
in the partitioning approach (bottom left), the average pairwise distance between all nodes in two clusters is 
used. The left subfigures show how far these clusters are, in terms of these distances, from the most prevalent 
cluster, with a clear colour gradient. The right subfigures visualise the nodes within the most prevalent cluster as 
opaque in each network, with all other nodes semi-transparent. The size of each node (right subfigures) is set in 
proportion to the prevalence of the corresponding MLVA profile.

https://doi.org/10.1038/s41598-019-42582-3


5Scientific Reports |          (2019) 9:6159  | https://doi.org/10.1038/s41598-019-42582-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

With increasing evidence of diversification in pathogen genomes in response to evolutionary pressure and 
human interventions6,7,13 it is essential to improve the quality and resolution of public health surveillance. The 
network analysis targets microbial genotypes as operational units of biological and surveillance function. The 
increasing uptake of whole genome sequencing for public health surveillance and availability of microbial genome 
data in public repositories strengthen the utility of network analyses. The emergence of successful STM strains 
leading to a summer epidemic can be signified as a reduction in newly identified MLVA types in the preceding 
winter and spring9. Representation of epidemics as networks of individual strains adapting in order to maximize 
their chances of propagation in a hostile environment offers an alternative and powerful approach to monitor the 
dynamics of seasonal epidemic. It reveals fundamental architectural features of pathogen networks and ascertains 
empirical indicators of the proximity to tipping points in bacterial populations21,22. Even small changes over time 
in small-world coefficients, path length and clustering of the networks can be instructive for the prediction of the 
temporal increases in disease prevalence. They quantify the fitness of invading populations and pave the way for 
a more systematic assessment of the structural and dynamic properties of epidemics and anticipation of critical 
transitions in disease incidence23–26, providing early warning signs through disease surveillance and thus enabling 
improvements in emergency preparedness and response27,28.

Data Availability
The dataset describes the entire collection of 17,107 STM isolates identified in the New South Wales (NSW) 
State Salmonella Reference Laboratory in Sydney, Australia between 1 January 2008 and 31 December 2016. This 
dataset contains data on several outbreaks which are still under investigation with legal proceedings pending 
which involve food producers and groups of patients, and so it will become available once these proceedings are 
finalized.
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