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Abstract: The emerging connected and automated vehicle (CAV) has the potential to improve traffic
efficiency and safety. With the cooperation between vehicles and intersection, CAVs can adjust speed
and form platoons to pass the intersection faster. However, perceptual errors may occur due to
external conditions of vehicle sensors. Meanwhile, CAVs and conventional vehicles will coexist in
the near future and imprecise perception needs to be tolerated in exchange for mobility. In this paper,
we present a simulation model to capture the effect of vehicle perceptual error and time headway
to the traffic performance at cooperative intersection, where the intelligent driver model (IDM) is
extended by the Ornstein–Uhlenbeck process to describe the perceptual error dynamically. Then, we
introduce the longitudinal control model to determine vehicle dynamics and role switching to form
platoons and reduce frequent deceleration. Furthermore, to realize accurate perception and improve
safety, we propose a data fusion scheme in which the Differential Global Positioning system (DGPS)
data interpolates sensor data by the Kalman filter. Finally, a comprehensive study is presented on
how the perceptual error and time headway affect crash, energy consumption as well as congestion
at cooperative intersections in partially connected and automated traffic. The simulation results
show the trade-off between the traffic efficiency and safety for which the number of accidents is
reduced with larger vehicle intervals, but excessive time headway may result in low traffic efficiency
and energy conversion. In addition, compared with an on-board sensor independently perception
scheme, our proposed data fusion scheme improves the overall traffic flow, congestion time, and
passenger comfort as well as energy efficiency under various CAV penetration rates.

Keywords: connected and automated vehicles; signalized intersection; perceptual error

1. Introduction

The increasing vehicle volume has profoundly affected our social life in terms of
mobility, safety, and environmental pollution. Studies show that about 99 h a year are
wasted on the road due to congestion, costing them nearly $88 billion in 2019, an average of
$1377 per person per year in the USA [1]. Meanwhile, an estimated 38,800 people lost their
lives in 2019 due to car crashes [2], where more than 90% of accidents are caused by human
errors [3]. On the other hand, the emission of automobile exhaust is the biggest direct
source of USA greenhouse gas [4]. Fortunately, the emerging of connected and automated
vehicles are recognized as one of the promising solutions to improve road traffic safety and
efficiency [5].

Currently, with the rapid development of on-board sensors devices (e.g., LiDAR,
Radar, and camera) and wireless communication technologies (e.g., Dedicated short range
communication and 5G), the vehicle has the potential to sense the surrounding environment
and cooperate with other vehicles to extend the sensing range [6]. Specifically, through
reliable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I), information can be
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shared among vehicles and infrastructures, which allows vehicles to coordinate their
maneuvers for platooning and achieve efficiency goals.

Related works have already been conducted on getting through the intersection
quickly and safely for CAVs. In [7], a cooperative autonomous traffic organization method
for CAVs in multi-intersection road networks is proposed, where a multi-objective trajec-
tory optimization is used to resolve conflicts and ensure efficient and comfortable trips.
The author in [8] proposed a virtual platoon based distributed control framework to en-
able the vehicles to stagger through the intersection, where the conflict-free topology was
presented according to the relationship of traffic order of vehicles. In [9], a decentralized
optimal control is presented to investigate the associated trade-off between minimizing
fuel consumption and passenger discomfort while the vehicle turns at the intersection. Tal-
lapragada et al. introduced a hierarchical distributed coordination structure in [10] which
use a central intersection manager to communicate with vehicles heading towards the
intersection and group them into clusters to optimize their individual trajectories. Zhang et
al. proposed a decentralized framework to implement trajectory planning for the vehicles
at a signal-free intersection, where the trade-off between energy and travel time is quanti-
fied and safety constraints are incorporated [11]. In [12], a distributed linear controller is
designed to organize vehicles’ movements with the proposed conflict-free geometric topol-
ogy, where the vehicles are projected into virtual platoons. In these studies, CAVs control
their trajectory according to the movement information of neighboring vehicles, where the
frequent interaction of information between vehicles and the ability of online computation
are required. Vehicle platoon is mentioned in many works to improve traffic efficiency and
the traffic performance can be further improved by vehicle–infrastructure cooperation.

Indeed, CAVs can receive the Signal Phase and Timing (SPaT) information from the
signalized intersection in advance to control their maneuvers, which can avoid congestion
and reduce the number of stops. Green Light Optimized Speed Advisory or eco-driving
was proposed to implement a collaboration between vehicles and intersections [13–16].
Nunzio et al. proposed the eco-driving algorithm which assists the vehicle in passing
through multiple intersections in succession with green lights [17]. Yang et al. proposed
a cooperative adaptive cruise control system to ensure that the vehicle arrives at the
stop bar as the last vehicle has just passed through the intersection, which can reduce
congestion and emissions [18]. The authors in [19] developed a platoon-based trajectory
optimization method which controls the leading vehicle in each platoon to minimize the
fuel consumption and ease traffic congestion. In [20], a cooperative eco-driving system for
signalized intersections was presented and the effect of CAV penetration rate on the traffic
efficiency was analyzed. In [21], a distributed and cooperative eco-driving method was
proposed to improve the traffic efficiency under mixed traffic flow.

However, the cooperation between vehicles requires accurate sensing data, and the
error free perception is assumed in the above works. Errors may occur in the sensing
process of vehicle on-board sensors due to the weather, obstacles, the driving style of the
operator, or vehicle control algorithm [22]. In addition, CAVs and conventional vehicles
will coexist in the near future and imprecise perception needs to be tolerated in exchange
for mobility. In [23], random Gaussian white noise is added to the intelligent driver
model, and the results show that the speed flow instability from the noise causes far more
fluctuations in the fleet than the introduced noise. The author in [24] also introduced
perceptual errors to the vehicle following model and found that the errors were more likely
to introduce instability in the ride during vehicle acceleration. In [25], the authors propose
that adding random offsets to the ideal velocity values calculated by the model can help the
control system better cope with the real environment. Furthermore, the interaction between
perceptual error and time headway on vehicles driving freely was studied in [26], and
the results show that a smaller headway time distance exacerbates the effect of perceptual
errors. The effect of vehicle perception error under multiple intersections was studied
in [27], and the model captures the real world trade-off between safety and efficiency
for potential future traffic systems. On the other hand, related works have already been
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studied on improving the accurate perception of the vehicle. The authors in [28] proposed
a single road side unit (RSU) based vehicle localization algorithm which uses linear least
squares type methods in a close-form manner. The RSU-based localization information
was integrated with the vehicle kinematics information to improve the accuracy of vehicle
localization in [29]. In [30], a vehicle positioning scheme was developed on the basis of a
beacon message broadcast periodically by multi-RSUs. Notably, due to the limitation of
the RSU communication range, multiple RSUs need to be deployed to locate the vehicle
continuously, which require additional resources, especially when the road is long. On
the other hand, the vehicle can receive its real-time position via a Differential Global
Positioning system without additional road equipment, which is more accurate but slower
to update than vehicle sensors [31]. The vehicle positioning algorithm was introduced
in [32,33] based on low-cost GPS and sensors. In [34–36], the DGPS data were fused with
vehicle perception data by the Kalman filter to obtain the precise vehicle motion state
estimation. However, the update frequency of DGPS data is slow, and the perception data
may be outdated, which cannot meet traffic demands at urban intersections. Finally, due
to the low penetration of CAV on the roads, there is no actual empirical data to show the
performance of cooperative signalized intersection in error environments.

The main contributions of this paper are as follows:

• We introduce a simulation model to study the effect of vehicle perceptual error and
time headway at cooperative signalized intersection, where the OU random process is
used to extend the IDM model and describe perceptual error, which can lead to acci-
dents due to inaccuracy perception data and make the car follow model more realistic.

• We present the vehicle longitudinal control model to describe their dynamics and
determine their roles based on their distance to intersection, where vehicles can switch
between leader and follower to reduce frequent deceleration.

• We propose a data fusion scheme in which the DGPS data interpolate on-board sensor
data by the Kalman filter to mitigate the effect of perceptual error and achieve timely
data updates.

According to the simulation, the trade-off between the traffic efficiency and safety
at intersection is found that lower time headway and serious perceptual error will lead
to congestion and traffic accidents due to the inaccurate speed control and strong speed
fluctuation. On the other hand, excessive time headway will result in low traffic efficiency
and energy conversion. The results also show that our proposed data fusion scheme
significantly improves the traffic performance in terms of safety, efficiency, as well as
passenger comfort under various CAV penetration rates.

The remainder of this paper is organized as follows: Section 2 illustrates the overall
scenario and longitudinal control model. Section 3 describes the vehicle perception data
processing system. Section 4 introduces the evaluation indicators of traffic performance.
A simulation of the proposed scheme has been conducted, and its result are evaluated and
analyzed in Section 5. Section 6 concludes this paper.

2. System Model

As shown in Figure 1, we consider a typical intersection with a one-lane road where
the lane length is L meters. For simplicity, we introduce a time variable ti,0 to indicate
the initial time that the i-th vehicle enters the road. Let xi(t) represent the position of
the i-th vehicle’s midpoint at time t. To reduce the number of stops in the intersection,
the vehicles are expected to pass through the intersection within its available green window.
The available green window is determined by the current signal phase and the time when
the vehicle receives the SPaT information. For example, if the current signal phase is green,
the available green window is defined as Tg_available = [ti, tcurr_e) ∪ [tnext_s, tnext_e), where
ti and tcurr_e denote the current time when the vehicle i receives information from RSU
and the end time of the current green window, respectively. tnext_s and tnext_e denote the
start time and the end time of the next green window, respectively. On the other hand, if
the current signal phase is red, the available green window is Tg_available = [tnext_s, tnext_e).
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Note that the signals are fixed-timing controlled, where the switching time of green light
and red light is set as Tswitch.

Figure 1. Illustration of the traffic intersection system.

The traffic at the intersection may contain conventional vehicles (e.g., manual vehicle)
and automated vehicles (e.g., CAV). In particular, the conventional vehicle is assumed to be
driven by human drivers without any ability to access to information in advance, and the
driver’s visual range is limited to H meters. However, due to the on-board sensors (e.g.,
radar, controller) and dedicated short range wireless communication devices, CAVs have
the ability to calculate the distance from neighbor vehicles and obtain its own driving data
including speed and acceleration [6]. Additionally, CAVs can obtain the current and next
period’s signal timing scheme from the road side infrastructure by V2I communication.
The information can be shared with each other by V2V communication to develop platoons.
The automated vehicle platoon consists of CAV leader and followers, which adopt different
longitudinal control model for motion. In this part, we mainly focus on the longitudinal
control model for leaders and followers, respectively.

2.1. Leaders’ Longitudinal Control Model

When the leader vehicle obtains the SPaT information from the intersection, the vehicle
could adjust its speed to pass through intersections within the available green window
accordingly. Based on the green phase information, there are three scenarios including the
cruise scenario and the acceleration or deceleration scenario, as well as the stop scenario.

2.1.1. Cruise Scenario

Once vehicles can travel through the intersection during the green phase without any
speed change, then the scenario is a cruise scenario. Therefore, the vehicle maintains its
velocity, and the longitudinal acceleration is zero.

2.1.2. Acceleration or Deceleration Scenario

When the green light is short, the vehicle needs to accelerate and decelerate to pass
through the intersection within the current or the next green light, respectively. Based on the
SPaT information, we can derive the time that the vehicle arrives the intersection, denoted
by tarr. Then, we need to choose an acceleration or deceleration profile for which the
vehicles are expected to reach the intersection at a specific time tarr. To this end, a piecewise
trigonometric-linear [37] algorithm is used to control the longitudinal movements of the
vehicle, which can bring a smoother change in acceleration with low jerk and reduce the
fuel consumption. The vehicle’s trigonometric acceleration/deceleration process is divided
into two periods. Let ti,s be the time that vehicle i starts the acceleration/deceleration
process. Then, the acceleration/deceleration can be defined by
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atri(t) =



vd · j · sin[j · (t− ti,s)], t ∈ [ti,s,
π

2j
+ ti,s)

vd · j · sin[k · (t + π

k
− (

π

2j
+

π

2k
+ ti,s))],

t ∈ [
π

2j
+ ti,s,

π

2j
+

π

2k
+ ti,s)

(1)

where vh = d
tarr−ti,s

, denoting the desired average speed to reach the intersection at given tar-
get arrival time tarr, and d is the current distance of vehicle to the intersection; vd represents
the difference between current speed and desired average speed, given by vd = vh− vi(ti,s),
where vi(ti,s) is the instantaneous speed at current time instant ti,s.

For Equation (1), k and j are the parameters to control the changing rate of acceler-
ation or deceleration. Since the vehicle dynamics should be constrained by the vehicle
powertrain’s ability and the comfort requirements of passengers, then k is chosen as the
maximum that satisfies: 

|k · vd| 6 amax

|k · vd| 6 −amin

|k2 · vd| 6 jerkmax

k > (
π

2
− 1) · vh

d

(2)

and

j =
−π

2 k−
√
(π

2 k)2 − 4k2 · [(π
2 − 1)− d

vh
· k]

2[(π
2 − 1)− d

vh
· k]

(3)

where amax and amin are maximal acceleration and deceleration, respectively. jerkmax is the
maximum jerk a passenger can stand.

2.1.3. Stop Scenario

When the vehicle cannot avoid the red phase by either accelerating or decelerating,
the vehicle should drive to the intersection by moderate deceleration to full stop while ap-
proaching the intersection. The reference deceleration is calculated by Equations (1)–(3), with

vh =
vi(ti,s)

2
(4)

k = j =
vh
d
· π (5)

2.2. Followers’ Longitudinal Control Model

In a cooperative manner, a group of vehicles form a platoon where a leader guides
the platoon on the road and the followers follow their preceding vehicles with a minimum
safety distance to avoid crashes. To this end, a mathematical model called an intelligent
driver model [38] was proposed to capture the dynamics of the follower vehicle in the
platoon. However, the IDM model assumes that the maximal deceleration is unbounded.
Consequently, the vehicle dynamics described by the model may execute unrealistic emer-
gency braking maneuvers and stop immediately when they encounter dangerous situations,
which is impossible in the real world due to the limitation of vehicle engines.

In addition, the IDM model considers vehicle motion in an error free environment.
In practice, errors may occur when the information about positions and velocities is
obtained. The reason is that the sensor is significantly influenced by the weather or driving
environment. To model vehicle behavior under these random perceptual errors, the IDM
extension model was presented by bounding the maximal deceleration and introducing
the random misperception, which can be given by [26]
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d
dt

xi(t) = max{vi(t), 0}

d
dt

vi(t) = max
{

amax ·
(

1−
(

vi,error(t)
vcoast

)σ

−

 s0 + vi,error(t)T +
vi,error(t)∆vi,error(t)

2
√

amax
2

∆xi,error(t)


2
, amin


(6)

The first equation of Equation (6) limits the speed to be positive or zero, which ensures the
authenticity of the extension IDM model. The second equation of Equation (6) gives the con-
straint of the minimal acceleration by amin, which avoids the unrealistic braking maneuvers
to be executed by the vehicle. s0 is the allowed minimum inter-vehicle distance, and T is
the desired time headway which indicates the time taken for the following vehicle to cover
the distance to its leader, where a shorter time headway signifies closer spacing between
vehicles. σ is the free acceleration exponent which determines the changing rate of the ego
vehicle’s acceleration based on speed (e.g., σ = 1 indicates a linear decrease, and σ→ ∞
corresponds to a constant acceleration). vcoast is a preset constant which represents the
desired speed of the vehicle when it is outside the V2I range and driving independently.

In the case of perceptual errors caused by vehicle controllers and sensors, the in-
formation sensed by the vehicle may randomly fluctuate around the real data. Thus,
the mean-reverting process called the Ornstein–Uhlenbeck (OU) process εt is used to de-
scribe the deviation of perception data from real data. The velocities (vi(t), vi−1(t)) and
inter-vehicle distance ∆xi(t) are represented by the error value (εti,1 vi(t), εti,2 vi−1(t)) and
εti,3 ∆xi(t), where the OU processes εti,1 , εti,2 and εti,3 are independent from each other to
characterize the error of speed and distance. Specifically, when the value of εti,1 , εti,2 and
εti,3 are fixed to 1, the perception is completely accurate. On the other hand, as the value of
OU process deviates more from 1, the CAV suffers more serious perception error due to
the large difference between perception value and real value.

An OU process εt in continuous time can be described as

dεt

dt
= ϕ · (µ− εt) + δ · dWt

dt
(7)

where µ is a constant which determines the desired long-term mean value of the process.
ϕ controls the degree of mean regression, where the larger ϕ is, the closer the real mean
value of OU process is to µ. Wt denotes a one-dimension standard Brownian motion, and δ
is the weight parameter that controls the fluctuation of εt.

Based on [39], an OU process can be obtained by an iterative equation in discrete time
tk(k = 0, 1, 2, . . . ) for simulation, which can be given by

εtk+1 = h · εtk + µ · (1− h) + δ ·

√
1− h2

2ϕ
· Zk+1 (8)

where h = e−ϕ∆t and ∆t is the minimum time step for data update. Parameters ϕ, µ, and δ
have the same effect as illustrated in Equation (7). Zk+1 is a sequence of standard normal
random variables to introduce stochastic into the OU process. In this study, the ϕ, µ, and
initial value εt0 are set to 1. Parameter δ is defined as the perception error size because it
controls the fluctuation of the OU process and the deviation of the perception value from
the real value.

3. Vehicle Perception Data Processing

Based on the vehicle perception data, the vehicle controller can make the action
decisions accordingly. In this section, the time that the vehicle arrives at the intersection
is estimated, and then the vehicle role transition scheme is presented. Notably, a vehicle
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perception data fusion scheme is proposed to obtain the accurate velocity and inter-vehicle
distance which reduce the accident rate due to the perceptual error and enhance the
efficiency of passing through the intersection.

3.1. Calculation of Time-to-Arrival
3.1.1. Leader Vehicle’s Time-to-Arrival

Let tc, te and tl denote cruising time-to-arrival, earliest time-to-arrival, and latest
time-to-arrival, respectively. Assume that vmax is the road speed limit, and ti,s is the time
that vehicle i receives the information from the intersection. Based on the vehicle dynamics,
tc, te, and tl can be calculated by [37]

tc = ti,s +
d

vi(ti,s)
(9)

te = ti,s +
d− vi(ti,s) · π

2n
vmax

+
π

2n
(10)

tl = ti,s +
d− vi(ti,s) · π

2m
vcoast

+
π

2m
(11)

where n = min
{

2·amax
vmax−vi(ti,s)

,
√

2·jerkmax
vmax−vi(ti,s)

}
and m = min

{
2·amax

vi(ti,s)−vcoast
,
√

2·jerkmax
vi(ti,s)−vcoast

}
,

which are constraints due to the vehicle engine.
Given the current available green window Tg_available, time-to-arrival tarr is divided

into four categories. If tc ∈ Tg_available, then the scenario should be cruise scenario and the
time-to-arrival tarr = tc; if [te, tc] ∩ Tg_available 6= φ, it means that the vehicle arrives at the
intersection within the available green window by accelerating. Then, tarr = min[te, tc] ∩
Tg_available. On the other hand, if [tc, tl ] ∩ Tg_available 6= φ, it means that the vehicle can reach
the intersection at the start time of the next green window by decelerating to avoid the
current red window, and tarr = min[tc, tl ] ∩ Tg_available. Finally, if the vehicle could not pass
the intersection in a green window by accelerating or decelerating, the vehicle will stop
at the intersection and tarr = tnext_s, where tnext_s is the time to the start of the next green
window.

3.1.2. Follower Vehicle’s Time-to-Arrival

Followed by [20], since the vehicles in the platoon have the same time headway, we can
estimate the arrival time of followers based on its order in the platoon. Firstly, a tarr_temp
will be calculated by tarr_temp = (p − 1) · T + tarr_l , where p (p = 2, 3, . . . ) denotes the
follower’s sequence in the platoon, and tarr_l is the leader’s arrival time to the intersection
obtained by V2V.

Given the current green window Tg_current and the next green window Tg_next, there
are four cases as follows. If tarr_temp ∈ Tg_current, it means that the follower can pass
the intersection in the current green phase and tarr = tarr_temp. If tarr_pre ∈ Tg_current and
tarr_temp /∈ Tg_current, the follower will be stuck due to red light. To prevent congestion at the
intersection, the vehicles are expected to reach the intersection in the next green window,
which can be achieved via controlling the velocity of the vehicle. Consequently, the vehicle
becomes the leader of platoon and tarr = tnext_s. On the other hand, if tarr_pre ∈ Tg_next and
tarr_temp ∈ Tg_next, the both vehicles are still in a platoon, and tarr = tarr_pre + T.

3.2. Vehicle Role Transition
3.2.1. CAV Role Transition

Since the CAV vehicle can transform from a leader to a follower in a platoon, or vice
versa, then we define some criterion to determine the CAV’s role. When the CAV enters the
road, it continuously checks whether there is a preceding vehicle on the same lane. If no,
then it becomes a leader of a new platoon and keeps a desired coasting speed vcoast before
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entering the V2I range. If yes, then it has different behavior according to the type of the
preceding vehicle.

For example, if the preceding vehicle is a conventional vehicle, the longitudinal
behaviors are captured by the extension IDM model, where the CAV will always follow the
preceding vehicle. On the other hand, when the leader is a CAV and the ego vehicle is out
of the V2I range, the ego vehicle should follow the leader. Then, when they run into the V2I
range, the ego vehicle will compare the time-to-arrival tarr and tarr_pre to the intersection
with the time of green window, where tarr and tarr_pre correspond to the arrival time of the
ego vehicle and the preceding vehicle, respectively. If the time difference between these
two consecutive CAV vehicles is larger than the total length of a red phase, the ego vehicle
will be considered as the ’string breaker’ and becomes a leader. Otherwise, the ego vehicle
should always follow the preceding CAV vehicle.

3.2.2. Conventional Vehicle Role Transition

For a conventional vehicle, if the distance to the intersection is longer than the visual
range H, the vehicle will follow the pre-vehicle while there is one, or keep a desired coasting
speed vcoast while not. On the contrary, if the distance to the intersection is less than the
visual range H, the driver can recognize the signal light and estimate the time-to-arrival
tarr. Then, the vehicle will perform the role transition, which is similar to the CAV.

3.3. Vehicle State Estimation Scheme

As described in Figure 2, vehicle i enters the road at ti,0, and it first initializes state vec-
tor Xti,0 as

[
xi,kal(ti,0) vi,kal(ti,0)

]T , where xi,kal(ti,0) and vi,kal(ti,0) denote the position
and the velocity which are set to 0 and vi(ti,0), respectively. Then, the initial acceleration
is denoted by ati,0 . To the best of our knowledge, the CAV vehicle can obtain the position
and distance information via on-board sensor and DGPS, for which data update frequency
is 20 HZ and 5 HZ, respectively [35]. For on-board sensors, the vehicle can obtain the
data quickly and update the longitudinal control in real time, but the accuracy of sensor
depends on the external conditions (e.g., weather), and errors may exist. On the other
hand, the vehicle can receive the more accurate data via DGPS, but the data update fre-
quency is slow and perception data may be outdated. To solve this challenge, a data fusion
scheme for which the DGPS data interpolate on-board sensor data by the Kalman filter
is presented, which enhances the accuracy of the received vehicle state and updates the
vehicle information quickly.

Figure 2. Vehicle state update process.

The data fusion scheme can be implemented in two parts: prediction stage based on
historical data and update stage by the currently acquired data.

3.3.1. Prediction Stage

The vehicle can obtain the vehicle’s speed and acceleration value via on-board sensors.
Based on the vehicle kinematic model, the vehicle state vector can be expressed by

X− = F · X0 + U (12)



Sensors 2021, 21, 5003 9 of 22

where X− and X0 represent the predicted state vector and initial state vector, respectively.

F is the state transition matrix derived from the kinematic formula, which is
[

1 ∆t
0 1

]
.

U indicates the external input value, which is related with the vehicle acceleration.
Note that Equation (12) may iterate multiple times according to the number of recorded

acceleration values during the prediction period. For instance, to predict the state at
ti,0 + 3 · ∆t in the scenario showed in Figure 2, a vehicle can first calculate X−ti,0+∆t using
ati,0 and Xti,0 , which can be given by

X−ti,0+∆t = F · Xti,0 + Uti,0

=

[
1 ∆t
0 1

]
·
[

xi,kal(ti,0)
vi,kal(ti,0)

]
+

[ 1
2 ∆t2

∆t

]
·ati,0

=

[
xi,kal(ti,0)+vi,kal(ti,0)·∆t+ 1

2 · ati,0 · ∆t2

vi,kal(ti,0) + ati,0 ·∆t

] (13)

Then, X−ti,0+2·∆t can be estimated by Equation (12) with the initial state matrix X−ti,0+∆t.

In this manner, X−ti,0+3·∆t can also be obtained by further iterations based on the previous

value X−ti,0+2·∆t. The ati,0 , ati,0+∆t, and ati,0+2∆t can be recorded by the vehicle controller,
and cleared after a prediction process.

However, the prediction model based on on-board sensor data may not be completely
accurate due to the existing perceptual error. To describe the prediction error, a covariance
matrix P is used to measure the offset of the predicted value from the true value. An incred-
ible matrix Q0 is introduced to describe the credibility of the prediction model, which is set

to
[

0.1 0
0 0.1

]
. Note that the smaller the value of Q0, the more reliable the model. Since

the perceptual error is random variance, P0 cannot be known in advance. Based on [40],
the predicted P− can be obtained via the iterative process to continuously approximate the
true offset value, which can be given by

P− = FP0F′ + Q0 (14)

where F′ is the transposition matrix of F.

3.3.2. Update Stage

Based on the on-board sensor’s data, we can predict the vehicle position information.
However, the predicted data may have large errors. In this subsection, the DGPS data are
utilized to fuse with on-board sensors to measure the vehicle’s real-time position. Based on
the Kalman filter, the updated vehicle state can be described by

X = X− + K(Z− HX−) (15)

where K is the Kalman gain, and H is the observation matrix that is used to extract the
value of the predicted vehicle position from the state matrix X− to compare with the actual
measured position Z. Then, the value of H is set to

[
1 0

]
. Note that the difference

(Z − HX−) is the measurement residual, which reflects the discrepancy between the
predicted vehicle position HX− and the actual measured position Z.

Similar to the X−, the predicted covariance matrix P− is also updated for the next
filtering process by

P = (I − KH)P− (16)

where I is an identity matrix.
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Based on [40], the Kalman gain K is calculated by the error of prediction and measure-
ment, which can be expressed as

K = P−H′/(HP−H′ + R) (17)

where H′ indicates the transposition matrix of H, and R is the DGPS measurement error.
For instance, when R approaches zero, lim

R→0
K = H−1 by Equation (17), which means

that the predicted value is heavily dependent on the residual and the measurement is

more reliable. Based on Equation (15), we can obtain X
K→H−1
= H−1Z. Due to the accurate

measurement, the difference between X and vehicle real state is very small, and the value of
P tends to zero. However, if the estimated error P− approaches zero, then lim

P−→0
K = 0, and

P
K→0
= P−. Because the measurement value is trustless, the value of X is largely determined

by the X−.

4. Performance Evaluation Model

In this section, we define the evaluation model to measure the performance of trans-
portation in mobility, safety, and sustainability based on simulation data.

4.1. The Traffic Flow per Time

For a traffic system, the traffic flow per time defines the number of vehicles that ap-
proached the intersection in a fixed period of time, which indicates the urban transportation
efficiency. Based on [26], the traffic flow per time Q can be given by

Q =
card{i ∈ M, ∃t 6 Tsim : xi(t) = L}

Tsim
(18)

where card denotes cardinality, M is the collection of vehicles, L is the length of the road,
and Tsim is the simulation time, which allow all vehicles to pass the traffic intersection
within the simulation time. The numerator is the total number of vehicles that successfully
passed the intersection within the simulation time. The number of vehicles effectively
passing the intersection is closely related to the time headway T and perceptual error size
δ. A small T results in a more compact platoon structure, which requires a high level of
timely vehicle speed changes and increases the risk of collisions due to perceptual errors,
thus reducing the number of successful vehicles.

4.2. The Number of Crashed Vehicles per Time

The traffic safety is reflected by the proportion of vehicles damaged by traffic accidents.
For i ∈ M, let Pi(t) = [xi(t)− l

2 , xi(t) + l
2 ] denote the area of the road which is occupied

by the vehicle i at time t > 0. The accident occurs under the condition that B = {i, j, t|i, j ∈
M, i 6= j, t > 0, Pi(t) ∩ Pj(t) 6= ∅} 6= ∅. Then, the number of crashed vehicles per time A
can be given by

A =
card{i∈ M, ∃t6Tsim, j∈M,i 6= j : Pi(t) ∩ Pj(t) 6= ∅}

Tsim
(19)

Based on the extended IDM model, the vehicle driving under perceptual errors can be
described dynamically. When the perception error is large and the distance between
vehicles is small, the followers may show aggressive following behavior and lead to too
many crashes.

4.3. Metrics of the Traffic Congestion

When a vehicle is stuck due to a red light or an accident, it can be described as a
congestion scenario. Under the influence of perception errors, vehicles that could have
followed the previous platoon to pass the intersection are forced to split the platoon due to
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inaccurate speed control, which leads to more stops at traffic intersections and increases
overall congestion times. In addition, too many accidents can also lead to traffic congestion
on the road. The sum of the congestion times for all vehicles is expressed by E. To better
describe the average congestion time of a single vehicle, a congestion function is developed
to measure the severity of traffic congestion, which can be given by [41]

C =
1

nveh

nveh

∑
i=1

η

[
1−

(
ti,wait

ttolerant

)ω]
(20)

where nveh is the number of the vehicles, η and ω are constants which are 0.15 and 2,
respectively. ttolerant is the tolerable waiting time of passenger, and ti,wait is the waiting
time of vehicle i, i ∈ M.

4.4. Measurement of Vehicle Acceleration Fluctuation

The fluctuation of vehicle acceleration reflects the stability of the platoon and the com-
fort of passengers, which can be measured by the standard deviation of vehicle accelerations

f =

sum

i ∈ M, ∑
ni,acc
k=1

(ai,k−
∑

ni,acc
s=1 ai,s
ni,acc

)

2

ni,acc


Q · Tsim

(21)

where ni,acc represents the number of all acceleration values recorded by the vehicle i ∈ M.
ai,k or ai,s is the acceleration value of vehicle i recorded at the k-th or s-th time gap. In fact,
larger time headway T allows for looser platoon spacing, which in turn avoids frequent
speed changes and improves the error tolerance, which enhances passenger comfort and
traffic safety.

4.5. Energy Efficiency

The energy efficiency can be reflected by the ratio of the total fuel consumption of the
road over the total number of vehicles passing the intersection. Note that higher conversion
efficiency corresponds to lower average fuel consumption, which can be calculated by [42]

F =
f uelsum

Q · Tsim
(22)

where f uelsum is the total fuel consumption of the road after the simulation ends. In
addition, it can be given by

f uelsum =
∫ te

ts
c(v(t), a(t))dt (23)

where

c(v(t), a(t)) =



α, a(t)6 −Ra(t)+Rr(t)
Mv

α+β1RT(t)v(t), a(t)∈ (−Ra(t)+Rr(t)
Mv

,0)

α+β1RT(t)v(t) +
β2Mva(t)2v(t)

1000
, a(t)>0

(24)

and RT(t) = Mva(t) + Ra(t) + Rr(t) + Rg(t) is the total energy consumption. Ra(t) =
ρ
2 CD A f v(t)2 and Rr(t) = 0.01 1+v(t)

44.73 Mvg represent the air resistance and frictional resis-
tance, respectively. α is a fuel consumption constant, and β is the conversion factor between
energy and fuel consumption. g is the gravitational acceleration which means the accel-
eration of an object in free fall within a vacuum. ρ is the air density which is the mass
per unit volume of Earth’s atmosphere. CD represents an air resistance coefficient which



Sensors 2021, 21, 5003 12 of 22

is a dimensionless quantity that is used to quantify the drag or resistance of an object in
a fluid environment, such as air. It is worth mentioning that speed fluctuations due to
perception errors and engine idling due to stopping at intersections can add additional
energy consumption and reduce energy conversion efficiency.

5. Simulation Results

In this section, an intersection of one-lane road is considered for studying the relation-
ship between T and δ, and the proposed vehicle state estimation algorithm is evaluating
via Matlab. The length of the road is set to L = 500 m. The traffic flow obeys Poisson
distribution with mean traffic flow of 1500 veh/h. Meanwhile, a safety constraint is set to
7.2 m which limits the interval distance between two generated vehicles to avoid artificial
accidents. As an accident occurs, the collided vehicle’s velocity is immediately set to 0 and
the duration that the collided vehicles are removed from the road follows an exponential
distribution, denoted by tremoval ∼ Exp(γ), γ > 0 [26]. Note that other accidents may
occur on this road at the same time and the removal time for different accident points are
independent from each other. The parameters used for our simulation are given in Table 1.

Table 1. Simulation parameters.

Notation Definition Value

L Length of road 500 m
l Length of vehicle 6 m

nveh Number of vehicles 200
RV2V Range of V2V communication 100 m
RV2I Range of V2I communication 300 m

Tswitch Signal switch time 60 s
α Fuel consumption constant 0.375
β1 Resistance conversion factor 0.09
β2 Vehicle power conversion factor 0.03
∆t Minimum time for data update 0.05 s

amax Maximal acceleration 2 m/s2

amin Maximal deceleration −3.5 m/s2

s0 Allowed minimum inter-vehicle distance 1.2 m
jerkmax Maximal acceleration changing rate 10 m/s3

Vmax Road speed limit 20 m/s
Vcoast Vehicle coasting speed 15 m/s

g Gravitational acceleration 9.8 m/s2

Mv The weight of vehicle 1400 kg
ρ Air density 1.2256 kg/m3

Cd Air resistance coefficient 0.54
A f Vehicle front area 2.1 m2

R Measurement error of DGPS 1 m
ttolerant Tolerable waiting time of passenger 30 s

γ Parameters of the exponential distribution 1
30

5.1. The Effect of Vehicle Time Headway and Perceptual Error Size

Since the vehicle time headway T affects the safety distance of the vehicle platoon and
the traffic dense on the road, we study the effect of vehicle time headway and perceptual
error rate on the traffic accidents. The simulation time Tsim is set to 700 s.

Figure 3 illustrates the comparisons between the traffic flow (solid line) and the
number of crashed vehicles (dotted line) for varying T. It is obvious that the perceptual
error will lead to more traffic accidents and less effective traffic flow when T is fixed, which
will reduce the traffic efficiency and safety. This is because the perceptual error may lead to
inaccurate speed control and the strong fluctuation of speed will be transmitted in a closed
system of vehicle platoons [43], which result in more accidents. As δ is fixed, it is shown
that the number of traffic flow increases firstly and then decreases. The reason for the first
increase is that the looser platoon structure brings higher perceptual error tolerance, which
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reduce the number of accidents and increase the effective traffic flow. However, excessive
T will lead to a larger interval between vehicles, which makes the traffic flow on the road
sparser and reduces the number of vehicle passing through the intersection in limited
simulation time. Therefore, in order to achieve the trade-off between vehicle safety and
traffic efficiency, it is necessary to set a reasonable T value.

0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0 0 . 2 5� =0 . 2� =0 . 1 5� =0 . 1� =�������������������

T ( s )

Nu
mb

er 
of 

cra
she

d v
ehi

cle
s A

(ve
h/h

)

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

 Tr
aff

ic f
low

 Q(
veh

/h)

Figure 3. Traffic flow and crashed vehicles for varying T and perceptual error size δ in a completely
CAV scenario with an independent on-board sensor perception scheme.

It is described in Figure 4 that the looser platoon structure leads to more stable
acceleration fluctuation. With the smoother speed wobble, the average vehicle effective
fuel consumption is gradually reduced. In particular, the optimization of energy efficiency
is more significant when T is less than 1.4 s, and the efficiency curve tends to be stable
when T continues to increase. The reason for the previous performance improvement
can be attributed to the reduction of accidents in the first part, which leads to the rapid
increase of traffic flow and brings notable improvement of energy efficiency. Then, when
T is greater than 1.5 s, the number of effective vehicles begins to decrease from Figure 3,
which makes the efficiency curve change slowly. Therefore, setting T to about 1.4 s can
realize the balance between energy efficiency and effective vehicle flow.

Figure 5 shows the total congestion time E in the simulation. Traffic may be blocked
by a traffic accident or a red light ahead. With the increase of δ, the more serious perceptual
error is not only caused more accidents, but also brings wobbly speed control, which
interferes with CAV arriving at the intersection at an accurate speed and results in more
stops at the intersection. Particularly, the larger perceptual error leads to more a serious
decrease of the number of effective traffic flows when T < 0.7 s, which makes the total
congestion time decrease with the δ increasing. In addition, the congestion time increases
firstly as δ is fixed and T grows. It is noted that worse congestion performance is not caused
by more accidents, but the sharp increasing base number of vehicles that pass through the
intersection successfully. Then, when the number of accidents is less than 500 veh/h, which
is 1/3 of the total traffic flow from Figure 3 at each δ. The road traffic will be smoother due
to less accidents, and it will be easier for vehicles to form a long platoon to pass through
signal intersections cooperatively. It shows that the performance of cooperative intersection
is directly affected by the proportion of traffic accidents on the road, no matter how much
perceptual error is.
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(a)

(b)

Figure 4. The fluctuation of vehicle acceleration (a) and the energy conversion efficiency (b) for
varying T and perceptual error size δ in a completely CAV scenario with an independent on-board
sensor perception scheme.
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Figure 5. Congestion time E for varying T and perceptual error size δ in a completely CAV scenario
with an independent on-board sensor perception scheme.
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5.2. Traffic Performance under Different Perception Schemes
5.2.1. Completely CAV Scenario

In this section, we focus on the impact of different perception schemes on traffic perfor-
mance in dense traffic. As shown in Figures 3 and 4, when δ is fixed, the traffic performance
deteriorates with the decrease of T, which illustrates that the effect of perceptual error
becomes more serious with lower time headway and more compact distance between
vehicles. Therefore, we decide to study the performance of the proposed scheme under
the condition that the perceptual error is the most serious to ensure the effectiveness and
robustness of the scheme. The time headway T is set to 0.5 s and the simulation time Tsim
is set to 700 s.

In Figure 6, comparisons between the traffic flow and the number of crashed vehicles
with vehicle state estimate schemes and without schemes are presented under different
perceptual errors. We can see that the number of crashed vehicles increases as the perceptual
error δ increases. When the perceptual error is large, such as δ = 0.25, the number of
accident vehicles is nearly twice the number of vehicles that successfully pass through the
intersection. Fortunately, based on the Kalman filter, the CAV can sense more accurate
information by fusing sensor data and DGPS data, and execute more precise dynamics
safely and quickly. The proposed data fusion scheme can greatly reduce the number
of accidents, especially in the case of a large perceptual error. From Figure 6, we can
obtain that the number of accidents and traffic flow are improved by 26% and 54.66%,
respectively, as the δ = 0.25, which can significantly improve the safety and efficiency of a
transportation system.
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Figure 6. Traffic flow and crashed vehicles for varying perceptual error size δ with an independent
on-board sensor perception scheme and on-board sensor interpolated DGPS perception scheme in a
completely CAV scenario.

Figure 7 illustrates the performance in terms of acceleration fluctuation and energy
conversion efficiency of all the vehicles in simulation. Due to the error data of distance
and velocity, the vehicle acceleration derived from extension IDM is inaccurate, and we
can see that the speed wobble is more serious as the perceptual error δ increases. It can
easily be noticed that the decrease of acceleration fluctuation is up to 5.4% under the
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proposed scheme, which makes the platoons more stable and improve the comfort of
passengers. The reason is that accurate sensing data can be obtained by the data fusion
based Kalman filter, and the cooperation between vehicles is improved. It is found that the
reduction in accidents, congestion, and acceleration fluctuation by the scheme results in
a significant improvement on the energy efficiency. In particular, the improvements are
greatly enhanced as the perceptual error increases, which illustrate the effectiveness of the
proposed scheme under high perceptual errors.

(a)

(b)

Figure 7. The fluctuation of vehicle acceleration (a) and the energy conversion efficiency (b) for
varying perceptual error size δ with an independent on-board sensor perception scheme and an
on-board sensor interpolated DGPS perception scheme in a completely CAV scenario.

Figure 8 presents the effect of perceptual error on the traffic congestion. The results
show that the value of C decreases as the perceptual error δ increases, which means that
the traffic congestion is becoming serious. From Figure 8, the proposed vehicle data
fusion scheme improves the congestion function C by an average of 61.14%, and the traffic
congestion time is reduced by 9.24% based on Equation (20). Indeed, the reduction of
congestion time can bring more traffic flow and truly improve the throughput at the
intersection, which is essential for urban traffic during rush hours.

5.2.2. Partial CAV Scenario

The effectiveness of the proposed scheme to improve the accuracy of CAV perception
has been proved in the previous section. In the Partial CAV scenario, we consider hetero-
geneous traffic participants and study the impact of improved CAV perception accuracy
on traffic under different CAV penetration rates, where the penetration rates of CAVs are
set to 80%, 60%, 40%, and 20%, respectively. The time headway T is set to 0.5 s, and the
simulation time Tsim is set to 2000 s.
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Figure 9 describes the number of crashed vehicles A and traffic flow Q for varying
δ and different CAV penetration rates. Actually, with increasing δ, A increases and Q
decreases. When δ is fixed at 0.15 and the CAV penetration drops off, the number of
accidents increases by 8.84%, 13.84%, 17.83%, and 21.13% on average compared with the
completely CAV environment, respectively. The data clearly show that the CAV vehicle
has positive impacts on traffic flow and accidents. The reason for the worsening accident
rate can be attributed to the limitation of the conventional vehicle’s visual range, which
makes the vehicle be able to only adjust the speed control near the stop bar according to the
signal timing instead of the overall road. Consequently, the vehicle speed starts fluctuating,
and more vehicles are gathering at the intersection, which leads to more accidents. In
particular, compared with the traditional scheme, our proposed data fusion scheme shows
a significant improvement on safety at different CAV penetration rates, which is up to
14.6%, 11.8%, 10.22%, and 9.62%, respectively.
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Figure 8. The metric of congestion for varying perceptual error size δ with an independent on-
board sensor perception scheme and an on-board sensor interpolated DGPS perception scheme in a
completely CAV scenario.

In Figure 10, the congestion becomes serious as the CAV penetration rate decreases.
Compared with the independent on-board sensor perception scheme, the proposed data
fusion scheme can greatly reduce congestion, especially in a partial CAV scenario. The rea-
son can be attributed to the advantage of vehicle platoon, although conventional vehicles
can not obtain SPaT information in advance, the CAV can become the leader to adjust
the speed of CAV and traditional vehicles in the platoon to pass through the intersection
quickly and avoid stops based on accurate sensing data. Under the CAV penetration rate,
80%, 60%, 40%, and 20%, the value of C can be optimized by 61.14%, 45.64%, 49.97%, and
30.62%. Based on Equation (20), the average congestion time can be decreased by 5.9%,
5.82%, 3.54%, and 5%.
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Figure 9. Traffic flow and Accidents for varying perceptual error size δ with an independent on-board
sensor perception scheme and an on-board sensor interpolated DGPS perception scheme in a partial
CAV scenario. The data correspond to 80%, 60%, 40%, and 20% CAV penetration from left to right at
each δ.
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Figure 10. The metric of congestion function for varying perceptual error size δ with an independent
on-board sensor perception scheme and an on-board sensor interpolated DGPS perception scheme in
a partial CAV scenario. The data correspond to 80%, 60%, 40%, and 20% CAV penetration from left to
right at each δ.

Figure 11 illustrates the effect of CAV penetration rates on the vehicle acceleration
fluctuation. We can see that the values of f are increased by 1.18%, 2%, 2.56%, and 3.03%
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as the CAV penetration rate decreases, which means more instability of the platoon and
less comfort of the passenger. Compared with the independent sensor perception scheme,
the proposed data fusion scheme decreases f up to 3.43% under 80% CAV penetration
because accurate data perception enables CAV to better control the speed of the platoon,
so as to avoid the frequent speed change of traditional vehicles at the intersection.

Figure 12 presents the performance of energy conversion efficiency under different
CAV penetration rates. Apparently, the more CAV vehicles that participate in working on
the road, the more fuel can be saved due to the ability of CAV to obtain signal information
and adjust speed beforehand. From Figure 12, the energy conversion efficiency is improved
by 17% when the CAV penetrate rate is 80%. Remarkably, the scheme optimized the energy
efficiency by 14.6% on average when the CAV penetrate rate is only 20%, which indicates
the effectiveness of the scheme in a low CAV penetration environment.
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Figure 11. The fluctuation of vehicle acceleration for varying perceptual error size δ with an inde-
pendent on-board sensor perception scheme and an on-board sensor interpolated DGPS perception
scheme in a partial CAV scenario. The data correspond to 80%, 60%, 40%, and 20% CAV penetration
from left to right at each δ.
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Figure 12. The energy conversion efficiency for varying perceptual error size δ with an independent
on-board sensor perception scheme and an on-board sensor interpolated DGPS perception scheme in
a partial CAV scenario. The data correspond to 80%, 60%, 40%, and 20% CAV penetration from left to
right at each δ.

6. Conclusions

In this paper, we introduced a simulation model to study the effect of perceptual
error and time headway on traffic performance in terms of safety, efficiency, and passenger
comfort as well as energy conversion at cooperative intersection. Firstly, the IDM model
is extended by the OU process to describe perceptual error dynamically and make the
car follow mode more realistic. Secondly, the longitudinal control model is presented to
capture the vehicle dynamics where vehicles can coordinate their maneuvers efficiently by
switching between leader and follower and planning the optimal vehicle trajectory using
a moderate acceleration to avoid red windows and reduce the number of stops. Then,
we proposed a Kalman filter based data fusion scheme where the DGPS data interpolate
on-board sensor data to realize accurate perception and achieve timely data updates.

Simulations have been implemented to evaluate the effect of perceptual error and
time headway on the performance in traffic safety, congestion, as well as energy efficiency.
The trade-off between traffic efficiency and safety are studied so that the congestion and
accidents may be more serious with lower time headway and larger perceptual error size.
However, excessive time headway can also reduce traffic efficiency and energy conversion
due to the overly long distance between vehicles. In addition, it is found that the congestion
can better be relieved when the number of crashed vehicles account for less than 1/3 of the
number of total vehicles. Particularly, our proposed data fusion scheme can significantly
improve the perception accuracy, and the results show that improving the perception
accuracy of partial CAVs under mixed traffic flow not only optimizes the traffic flow
and traffic accidents, but also ensures the passenger comfort and energy efficiency. The
results facilitate an understanding of the relationship between perceptual error and traffic
performance of cooperative signalized intersection in partially connected and automated
traffic. In addition, the proposed model can be applied to more complex cooperative
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intersection scenes by introducing vehicle lateral dynamics (e.g., cooperative lane changing
at intersection), which will be studied in the future.
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