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Electrocardiogram (ECG) contains the rhythmic features of continuous heartbeat and morphological features of ECG waveforms
and varies among different diseases. Based on ECG signal features, we propose a combination of multiple neural networks, the
multichannel parallel neural network (MLCNN-BiLSTM), to explore feature information contained in ECG. +e MLCNN
channel is used in extracting the morphological features of ECG waveforms. Compared with traditional convolutional neural
network (CNN), the MLCNN can accurately extract strong relevant information on multilead ECG while ignoring irrelevant
information. It is suitable for the special structures of multilead ECG. +e Bidirectional Long Short-Term Memory (BiLSTM)
channel is used in extracting the rhythmic features of ECG continuous heartbeat. Finally, by initializing the core threshold
parameters and using the backpropagation algorithm to update automatically, the weighted fusion of the temporal-spatial features
extracted from multiple channels in parallel is used in exploring the sensitivity of different cardiovascular diseases to mor-
phological and rhythmic features. Experimental results show that the accuracy rate of multiple cardiovascular diseases is 87.81%,
sensitivity is 86.00%, and specificity is 87.76%. We proposed the MLCNN-BiLSTM neural network that can be used as the first-
round screening tool for clinical diagnosis of ECG.

1. Introduction

ECG signal is a periodic and nonstationary time series bi-
ological signal. It is based on the principle that cardiac
electrical activity presents a complex nonlinear dynamic
system [1]. ECG contains the rhythmic features of contin-
uous heartbeat and morphological features of ECG wave-
forms [2]. +e nonlinearity and complexity of an abnormal
ECG make the waveform of a heart disease unique, and
differences are observed in time series [3].

Using prior knowledge and deep learning are the two
main technical routes of ECG automatic analysis for diagnosis
[4, 5]. An auxiliary diagnosis based on prior knowledge relies
on manually extracted ECG features. Differences among ECG
lead to the uncertainty of feature extraction and reduce the

classification accuracy of an algorithm. Auxiliary diagnosis
based on deep learning is data-oriented and can automatically
extract ECG features through a model, mine complex asso-
ciation patterns and rich information from data, effectively
prevent uncertainty in manual feature extraction, and provide
a feasible technical way for ECG big data analysis. For car-
diovascular disease diagnosis, differences among ECG are
usually addressed by using deep learning algorithms in
mining ECGmorphological and rhythmic features [5]. In Fan
et al.’s work [6], a multiscale fused convolutional neural
network (MS-CNN) is designed to solve the problem of short
single-lead ECG signal atrial fibrillation detection. +e net-
work extracts the features of ECG records from different times
by establishing two CNNs with different convolution kernel
sizes. Hannun et al. [7] used an original ECG time series as
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input with a 34-layer CNN and generated a prediction tag
once per second; their experimental results are better than
those of cardiologists in terms of sensitivity and accuracy. Tan
et al. [8] implemented a Long Short-Term Memory (LSTM)
neural network on ECG to diagnose coronary artery disease;
in this method, 5 s ECG signals were cut into short sequences
and convoluted for the reduction of data points; then, LSTM
was applied to a time feature extracted from the convolution
sequence; their model achieved a diagnostic accuracy of
99.85%. Singh et al. [9] used the recurrent neural network
(RNN), gating recursive unit (GRU), and LSTM to classify
heartbeats and concluded that LSTM was better than RNN
and GRU in detecting arrhythmia.

+us, most ECG classification models based on deep
learning focus on the classification of single-lead ECG beats.
Decreasing the amount of information may be computa-
tionally friendly and results in good performance in some
cases. However, from a clinical point of view, cardiologists
usually make diagnosis on the basis of 12-lead data [10],
which they use in evaluating as much information as pos-
sible before drawing a final diagnosis conclusion. +erefore,
studying 12-lead long-term data is extremely important. +e
above work has proven the application of many widely used
deep learning networks in ECG recognition, but studies of
the multilead ECG, which have the special structures of
physiological signal-customized deep learning modes, are
few. +e following points should be considered. First, CNN
was originally designed for image recognition. Multilead
ECG data have no correlation to one another at different
times and lead, and thus considering that these data are two-
dimensional digital images and classifying them through
CNN are inappropriate. Second, CNNs are suitable to
obtaining spatial features, whereas LSTM are effective in
learning temporal features. Different types of classifiers have
different modes of feature expression for the same data [11].
+e correct combination of different classifiers and the full
extraction of rhythmic and morphological features in ECG
enhances performance. +ird, the sensitivity of different
cardiovascular diseases to morphology and rhythm varies
[12]. For example, in the diagnosis of myocardial infarction,
changes in QRS complex, P wave morphology, and ST-T
segment are considered [13]. By contrast, change in rhythm
is essential to the diagnosis of tachycardia [14].+e challenge
of using the sensitivity of disease to a feature is considered as
well.

In this study, based on the above viewpoints, we propose
a combination of multiple neural networks, the multi-
channel parallel neural network model (MLCNN-BiLSTM),
and use it in the multiclass classification disease recognition
of multilead ECG. In summary, the main contributions can
be described as follows:

(1) According to the special structure of a multilead
ECG, a novel MLCNN structure is proposed. +is
structure can effectively extract the strong correla-
tion information of sample points in multilead ECG
while ignoring irrelevant information.

(2) +e multilead ECG is modeled on the basis of
multiple neural networks and multichannel parallel.

On the one hand, channel 1 uses aMLCNN to extract
the morphological features of multilead ECG data.
On the other hand, channel 2 uses a BiLSTM to
extract the rhythmic characteristics of lead II ECG
data.

(3) Core threshold parameters are initialized and the
backpropagation algorithm is used to update auto-
matically to control the weight ratio of high-di-
mensional time-space features extracted by
multichannel parallel extraction in weighted fusion.
+e sensitivity of different cardiovascular diseases to
morphology and rhythm is automatically learned,
and the multiclass classification auxiliary diagnosis
model is established.

+e experimental results show that the proposed com-
bination between multiple neural networks and multichannel
parallel neural network (MLCNN-BiLSTM) achieves good
results in multilead ECG classification. +e effectiveness of
disease screening is verified through visual analysis of the high-
dimensional features of the model after time-space fusion.

2. Methods

2.1.ProblemDescription. Cardiovascular disease recognition
can be transformed into a multiclass classification task, and
its ultimate goal is to synthesize a highly complex nonlinear
decision function. As shown in equation (1). +e input
sequence is a set of ECG signals, X � [x1, x2, x3, . . . , ]. +e
output is the corresponding label R � [r1, r2, r3, . . . , ]. Each
output label corresponds to the category of an input ECG. By
taking cross entropy as the loss function, a highly complex
nonlinear decision function is fitted by all the samples in the
training set and optimized for minimal loss value:

Loss(X, r) � −log
exp(p(X, r))

􏽐jexp(p(X, j))
􏼠 􏼡, (1)

where p(X, j) is the probability that the model predicts as
label j for input x and r is the real label.

2.2. MLCNN. Reference [15] points out that there is a
significant correlation between the data of different leads at
the same time in the standard 12-lead ECG signal. As shown
in Figure 1, by plotting the data of different leads in the same
coordinate system, the correlation between different leads of
the multilead ECG can be observed intuitively. For each
single-lead ECG signal, data at different times have a time
series correlation. We think that the data of different leads at
different times are irrelevant.

A 2D convolutional neural network (2D-CNN) uses
two-dimensional convolution operation, which is originally
designed for the recognition of two-dimensional digital
images [16]. However, owing to the particularity of multilead
ECG structures, considering that it is a two-dimensional
digital image and using CNN to classify it are inappropriate.
In a two-dimensional digital image, for each pixel p(x, y),
adjacent to (x − 1, y − 1), (x, y − 1), (x + 1, y − 1),
(x − 1, y), (x + 1, y), (x − 1, y + 1), (x, y + 1), and
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(x + 1, y + 1), eight pixels are connected. It is called the eight-
neighborhood structure [17], expressed by N8(p). Multilead
ECG can be considered a four-neighborhood structure,
expressed by N4(p). In each sampling point P(x, y), it is the
same as the sampling points (x, y − 1) and (x, y + 1) on
different leads at the same time, and the sampling points at
different times on the same lead (x − 1, y) and (x + 1, y)

have a strong correlation. +e sampling points in the
neighborhood of N8(p)-N4(p) have no correlation. As shown
in Figure 2, the relevant neighborhood information of image
pixels and multilead ECG sampling points is displayed.

In CNN, convolution is an effective way for extracting
local region features. As shown in equations (2) and (3), for
the calculation of the output feature map Yp, convolution
kernel Wp,1, Wp,2, . . . , Wp,D convolves the input feature
map. +en, the convolution results and a scalar bias are
added for the production of the net input ZP of the con-
volution layer. Finally, the output feature map Yp is obtained
by nonlinear activation function:

Z
p

� W
p ⊗X + b

p
� 􏽘

D

d�1
W

p,d ⊗X
d

+ b
p
, (2)

Y
p

� f Z
p

( 􏼁, (3)

where x is the three-dimensional convolution kernel
Wp ∈ Rm×n×D (for multilead ECG structure, D � 1), ⊗ is the
convolution operation, and f(·) is a nonlinear activation
function.

In the convolution operation of the 2D-CNN layer,
each convolution kernel extracts the eight-neighborhood
structure features of a digital image. When 2D-CNN is used
to convolute multilead ECG, the feature information of

sampling points in the neighborhood of N8(p)-N4(p) is
extracted in each convolution process. As algorithm
complexity increases, the high-dimensional feature ex-
pression of a feature map is combined with some irrelevant
features after convolution. +is effect introduces unnec-
essary feature information to deeper convolution opera-
tions. Given the special structure of multilead ECG and the
deficiency of traditional 2D-CNN in processing multilead
ECG, we design an MLCNN neural network for multilead
ECG data.

+eMLCNN, similar to traditional CNN, is composed of
convolution and pooling layers. In the convolution layer of
the MLCNN, we change the initialization state of each
square convolution kernel; that is, only the weights on the
N4(p) neighborhood of its central point are reserved, and the
weights of the other central points on the non-N4(p)
neighborhood are set to 0. +e convolution operation is
shown in Figure 3.

By setting the weight of the non-N4(p) neighborhood
of the center point of the convolution kernel to 0, each
convolution operation can accurately extract local fea-
tures from the receptive field on the same lead at different
times and different leads at the same time. +erefore, the
unnecessary data features of different leads at different
times are removed. +is setting can reduce the number of
times of convolution weighted summation by the con-
volution kernel, reduce the complexity of an algorithm,
and have a positive effect on the fast convergence of a
network.

2.3. Network Architecture. MLCNN can effectively extract
the spatial morphological features of ECG. To explore the
rhythmic features contained in ECG and improve the
accuracy of classification and recognition, we propose a
combination of multiple neural networks and multichannel
parallel network model (MLCNN-BiLSTM). +e structure
is shown in Figure 4. +e preprocessed 12-lead ECG data
with a duration of 10 seconds are inputted into the input
layer of MLCNN channel as a two-dimensional array (the
size of the input is 12 ∗1900; we removed data from the first
50 and last 50 samples of each lead separately to eliminate
data errors caused by manual manipulation during data
collection) for the extraction of the morphological features
of ECG waveforms. Only lead II data are selected from the
complete data and inputted into the input layer of BiLSTM
channel as a one-dimensional array (the size of the input is
1 ∗ 1900) for the extraction of the rhythmic characteristics
of ECG signals. Lead II data contains abundant ECG
features [18]. +e two channels are carried out in parallel
for the extraction of the high-dimensional and deep-level
features of ECG. By initializing the core threshold weight
parameters and using the backpropagation algorithm to
update automatically, the high-dimensional spatial-tem-
poral features extracted from the two channels are weighted
and fused. +e detection rate of disease classification is
improved by controlling the weight output proportion.
Finally, the softmax activation function is used for mul-
ticlass classification.
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Figure 1: Correlation of 12-lead ECG.
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2.3.1. MLCNN Channel. +e channel information-sharing
mechanism in the convolutional layer is conducive to the
spatial fusion of different pieces of lead information [19].
+e MLCNN channel is composed of three convolution
blocks and a full-connection layer in a series. +e con-
volution block is composed of an MLCNN convolution,
batch normalization (BN), ReLU, and maximum pooling
layers. For the arrangement of convolution blocks, we refer
to the practice in [20]. +is structure can extract features
and good interpretability. In the convolution layer, features
and their relative weights are extracted by a local con-
nection. A backpropagation error algorithm is used to train
the weight of each layer of each parameter in the convo-
lution kernel.

+e introduction of BN layer [21] solves the problem of
internal covariate migration. Its advantage is that it allows a
model to use a high learning rate in the training process and
further reduces the overfitting of the model. +en ReLU
linear rectification function is used to activate features
extracted by the convolution layer. +e calculation of
nonlinear activation function is shown in the following
equation:

y
k
i � σ w

k
xi + b

k
􏼐 􏼑, (4)

where Wk and bk are the weight and offset of the k-th
convolution feature map, respectively, xi is the input of the

k-th convolutional layer, and yk
i is the output of the k-th

convolutional layer.
In the proposed model, the maximum pooling layer is

used to reduce the dimension of the feature vector of the
convolution layer through subsampling, which reduces the
complexity of subsequent calculation and can introduce
translation invariance into a model. +e output of the
pooling layer with strides of two is half of the input length.
+e introduction of a full-connection layer ensures the
consistency of the MLCNN channel output dimension and
BiLSTM channel output dimension.

2.3.2. BiLSTM Channel. As the only lead of a single-lead
ECG device, the standard lead II data contains rich
heartbeat information. +e data in the lead is time related.
+e output of a moment is related not only to the in-
formation of the past moment but also to the information
of subsequent moments. +e BiLSTM network uses two
separate hidden layers to process data in two directions
and then feeds the data to the same output layer. Features
can be effectively extracted from time dimension [22]. As
shown in Figure 5 and equation (5), the output yn is a
function of forward passing s

f
n , backward passing sb

n, and
the hidden state of corresponding weights and deviations.

yn � σ wfs
f
n + wbs

b
n + bh􏼐 􏼑, (5)
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Figure 3: Convolution operation of MLCNN neural network.
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point in multilead ECG.
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where wf and wb are forward weight and backward weight,
bn is deviation, and σ is softmax function.

2.3.3. Channel Feature Fusion. For the exploration of the
sensitivity of different cardiovascular diseases to mor-
phology and rhythm, the core threshold weight parameter
α is initialized and automatically updated through neural
network learning. +e parameter α controls the weight
ratios of high-dimensional features from two channels for
time-space fusion. Parameter α is a variable parameter that
can be learned rather than a hyperparameter. We just
initialize the parameter α. Here, the feature fusion method
is not simple vector splicing but a pointwise addition. For
MLCNN channel output space feature vector v1 ∈ Rn,
BiLSTM channel output time series feature vector v2 ∈ Rn is
added to corresponding elements, as shown in the fol-
lowing equation:

v � α · v1 +(1 − α) · v2, (6)

where v � xi|xi � v1[i] + v2[i], i � 1, . . . , n􏼈 􏼉 and α is the
threshold weight.

3. Experiment

3.1.DataSet. Wewill use the data of Chinese Cardiovascular
Disease Database (CCDD) [23] to study our proposed al-
gorithm. All the data in the CCDD are from clinical practice.
+e standard 12-lead data with sampling rate of 500Hz are
used in actual collection. Data are manually annotated by
many authoritative cardiovascular experts. Compared with
other ECG experimental databases (such as MIT database),
the CCDD database is more in line with clinical cardio-
vascular disease recognition algorithm research.

In the deep learning experiment in this paper, we select
the standard 12-lead data of atrial arrhythmia, ventricular
arrhythmia, myocardial infarction, ventricular hypertro-
phy, atrial hypertrophy, and normal heart rhythm from the
CCDD, that is, leads I, II, III, AVL, AVF, AVR, and V1–V6,
respectively, as the deep learning training data set. Ten
seconds is the typical duration of ECG signal collection
[24].

+e total number of clinical ECG samples used in the
experiment is 143,092, of which 108,120 are normal heart
rate ECG samples and 34,972 are abnormal ECG samples.
After disordering the ECG samples in each category, the
training, verification, and test sets are divided at a ratio of 8 :
1 :1. +e training set has 114,472 ECG samples, the veri-
fication set has 14,310, and the test set has 14,310. +e
specific data distribution is shown in Table 1.

3.2. Preprocessing. +e overall frequency range of the ECG
waveform is 1–40Hz. According to Nyquist sampling law,
when the sampling frequency fs.max is greater than twice
the highest frequency fmax in a signal
(fs.max> 2fmax), a sampled digital signal completely
retains the information of an original signal. Mesin [25]

proposed an adaptive algorithm for the nonuniform
downsampling of data used to reduce the mean sampling
frequency of ECG data. It outperformed both uniform
downsampling and compressive sensing in terms of the
recovery of high amplitude or energetic components. +e
algorithm showed good accuracy in the identification of
the heartbeats from downsampled data. Notice, for ex-
ample, that the mean accuracy in identifying the heart-
beats was over 98%. To reduce the number of sampling
points and the complexity of subsequent calculations, we
refer to the practice in [25] and then downsample the 10 s
continuous ECG signal sampling rate from 500Hz to
200 Hz.

+e CCDD is a clinical ECG database, and its ECG data
is directly collected from clinical patients, collated, and
stored. +e integrity of ECG data collected in the clinic is
ensured. However, noises are present. Noise removal is
conducive to deep learning for feature extraction and
classification accuracy [26]. +ree kinds of noise are present
in an ECG signal, namely, baseline drift, power frequency
interference, and EMG interference. Median filter, digital
low-pass filter, and digital high-pass filter are often used to
remove high-frequency and low-frequency noise from sig-
nals such as baseline drift and power frequency interference
noise [27], and good results have been achieved. Conven-
tional filtering methods for suppressing EMG interference
cause R-peak clipping and the distortion of QRS complex
wave in an ECG signal [28].

We first preliminarily processed the original ECG signal
based on a median filter to remove baseline drift interference
and then based on an FIR low-pass filter to remove high-
frequency noise and power frequency interference and a FIR
high-pass filter to remove low-frequency noise interference.
Algorithm 1 shows the process of preliminary processing.

+rough the experiment, the median filter parameter
αmedian is 0.9, the FIR low-pass filter cut-off frequency fclp is
40, the high-pass filter cut-off frequency is fchp 2, and the
filter order Forder is 8.

In order to avoid the influence of the subsequent process
of removing EMG interference noise on the QRS complex,
we need to identify the QRS complex in the preliminarily
preprocessed ECG signal yf.+e signal of the corresponding
region is retained so that it will not be affected when the
EMG interference noise is removed. We adopt the R-peak

Table 1: Experimental data statistics.

Diseases Train set Validation
set Test set Total

Normal 86496 10812 10812 108120
Atrial arrhythmia 12329 1541 1541 15411
Ventricular
arrhythmia 4600 575 575 5750

Myocardial infarction 488 61 61 610
Ventricular
hypertrophy 10468 1309 1309 13086

Atrial hypertrophy 91 12 12 115
Total 114472 14310 14310 143092
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detection algorithm based on wavelet coefficients in [29].
+e Haar wavelet basis is used to decompose the ECG signal
into 5-layer discrete wavelet, and the fourth- and fifth-layer
wavelet detail coefficients are selected to reconstruct the R-
peak detection sequence; the amplitude threshold is set to
search the position of the R-peak. Algorithm 2 shows the R-
peak detection algorithm.

We centered on theR-peak and searched forward/backward
for the extreme point with the lowest amplitude, denoted asQloc
and Sloc, respectively. +e region of the ECG signal where the
sample point index values range between Qloc and Sloc is the
QRS complex wave region that should be preserved. Set the
signal amplitude of this area to 0, and then remove the EMG
interference signal in the ECG signal based on the Kalman
filtering method. Restore the QRS complex area set to 0, and
finally obtain the target ECG signal that removes myoelectric

interference and retains the QRS complex shape. +e complete
flow chart of the preprocessing algorithm is shown in Figure 6.

Figure 7 shows the results of each preprocessing step. It
can be found that, after preliminary processing, the noise in
the original ECG signal is suppressed to some extent, but
there is still obvious EMG interference. After Kalman fil-
tering, the ECG signal, especially the EMG noise between the
two QRS conforming waves, is effectively suppressed.

3.3. Training Setup. +e network parameters (weights and
deviations) for optimal performance in a given task are
considered nonconvex optimization problems [22]. In
the multichannel parallel network model mentioned
above, cross entropy is used as the cost function in this
study:

Symbol:
SR: sampling rate
yr: original ECG signal
yb: ECG signal after removing baseline drift
yf: filtered ECG signal
αmedian: median filter parameters
fchp/fclp and Forder: high-pass/low-pass filter cut-off frequency and filter order
round(): rounding function

Process:
A. Removing baseline drift in ECG signal
1 If round (αmedian

∗SR) is odd number
Pmedian � round (αmedian

∗SR)
else

Pmedian � round (αmedian
∗SR) + 1

end
2 Pmedian point median filtering of yr to obtain yb

B. �e ECG signal is filtered
1 construct FIR filters based on fchp, fclp and Forder
2 filter x using yb filter to obtain yf

ALGORITHM 1: Preliminary processing of ECG.

Symbol:
SR: sampling rate
y(i): original ECG signal, i is the index value
dj: detail coefficient of wavelet decomposition in j-layer
h(i): R-peak detection sequence
λ: amplitude threshold

Process:
A. Discrete wavelet decomposition of ECG signals and construction of the R-peak detection sequences

1 5-layer wavelet decomposition of y(i) based on Haar wavelet to get d4, d5
2 calculation of the R-peak detection sequence h � | 􏽑

5
j�4 dj|

B. Positioning the R-peak position
1 determination of amplitude threshold λ � 0.3∗ max(h)

2 if h(i) > λ, the corresponding position of index value i is R-peak position
3 two adjacent index values i, i’. if |i − i′|< 20, that is, the interval time is less than 100ms, then i and i′ indicate the same R-peak.

Otherwise, it is a different R-peak.

ALGORITHM 2: R-peak detection algorithm based on wavelet coefficients.
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J(θ) � −
1
m

􏽘

m

i�1
y

(i)log hθ x
(i)

􏼐 􏼑􏼐 􏼑 + 1 − y
(i)

􏼐 􏼑log 1 − hθ x
(i)

􏼐 􏼑􏼐 􏼑,

(7)

where x(i) is the input ECG signal, y(i) is the output category,
hθ(·) is the activation function of input x(i), and m is the
number of training samples.

Algorithm 3 shows the whole process of model training.
Table 2 shows the detailed parameters of each layer of the

proposed network model.

4. Result

We use three indicators, namely, accuracy (ACC), sensitivity
(SE), and specificity (SP), to evaluate the performance of the
proposed network. +e ACC is the ratio of the sum of true
positive and true negative to the total number of samples and
reflects consistency between test and actual results. +e SE (also
known as recall, RE) is the proportion of true positive data
correctly predicted to be positive. +e higher the SE is, the
greater the proportion of correct prediction is. SP, also known as
negative predictive rate, is the ratio between true negative data
correctly predicted to be negative and all actual negative samples.
+ree evaluation indicators can be calculated as follows:

ACC(accuracy) �
TPs + TNs

TPs + TNs + FPs + FNs
,

SE(sensitivity) �
TPs

TPs + FNs
,

SP(specificity) �
TNs

TNs + FPs
,

(8)

where TP (true positive) represents the number of samples
belonging to this class and classified into this class by the
classifier. FP (false positive) represents the number of
samples that do not belong to this class but are wrongly
assigned to this class by the classifier. FN (false negative)
represents the number of samples belonging to this class but
assigned to other classes by the classifier. TN (true negative)
represents the number of samples that do not belong to this
class and have not been classified into this class by the
classifier.

To make the deep learning model reach the optimal
structure, a quantitative research method is used in deter-
mining the influences of various structures and network
parameters on the experimental results. In many experi-
ments, the final classification accuracy of the test set is

ECG data

Downsampling
(sampling frequency from 500Hz to 200Hz

Preliminary processed
(cut baseline drift, power frequency 

interference, high-low-frequency noise )

Wavelet transform 
(cut-QRS)

QRS wave 
complex 

Kalman filter
(cut-EMG interference)

Completed ECG pretreatment

Figure 6: +e framework of the data preprocessing algorithm.
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obtained through trial and error for each parameter. Table 3
lists the optimal network parameters for the maximum
classification accuracy of the algorithm model.

+e experimental results show that, after 100 epochs of
iterative training, the model converges and classification
accuracy is stable. +e results are shown in Figure 8.

Table 4 shows the ECG classification performance of
different classes. In disease classification, the false negative
(FN) results are very crucial. In a multiclass classification
disease task, FNmeans that a patient has one disease, but the
model predicts that he is healthy or has another disease.
False negatives rate (FNR) can be shown by sensitivity

ECG data
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Figure 7: +e ECG signal with and without noise removal. ((a) and (b)) Original ECG signal and spectrum map. ((c) and (d)) ECG signal
and spectrum map after preliminary processing. ((e) and (f)) ECG signal and spectrum map without noise.

Input: Training set X� [x1, x2, x3. . .]; Base learning algorithm MLCNN-BiLSTM model
Output: +e parameters of the model and result
Process:

1 begin
2 Build the MLCNN-BiLSTM Model with a softmax output layer
3 while training do
4 begin
5 Calculate the loss on the training set according to (1)
6 Train the MLCNN-BiLSTM Model using the Adam back propagation method
7 Evaluate the training loss on training set
8 Record the prediction of classifier on training set
9 if training loss stop decreasing then
10 Store the model and break
11 end
12 end

ALGORITHM 3: Training of MLCNN-BiLSTM model based classifier.

Journal of Healthcare Engineering 9



(1� FNR+SE). It can be seen from the sensitivity that, due to
the imbalance in the number of samples of different disease,
the proposed model has a good ability to identify normal,
atrial arrhythmia, ventricular arrhythmia, and ventricular
hypertrophy but not myocardial infarction and atrial
hypertrophy.

In the experiment, we mainly study the influence of four
different network learning parameters, namely, optimizer,
batch size, convolution kernel size, and α, on the perfor-
mance of the proposed model. When a certain parameter is
changed, other parameters are consistent, as shown in
Table 3.
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Figure 8: Training of the MLCNN-BiLSTM. (a) Loss curve. (b) Accuracy curve.

Table 3: Related parameter settings for the model proposed in this study.
Parameter Value
Learning rate 0.001
Batch size 128
BiLSTM cell size 128
Convolution kernel size (5,5)
Epochs 100
Optimizer Adam
Cost function Softmax
α 0.7

Table 2: Detailed parameters used for all the layers of proposed model.
Channel Layer Layer name Kernel× unit Other layer parameters

MLCNN

1 Conv2D 5× 32 Strides� 1, padding� 2
2 Batch norm. — —
3 ReLU — —
4 Max pooling 2D 2 Strides� 2
5 Conv2D 5× 64 Strides� 1, padding� 2
6 Batch norm. — —
7 ReLU — —
8 Max pooling 2D 2 Strides� 2
9 Conv2D 5×128 Strides� 1, padding� 2
10 Batch norm. — —
11 ReLU — —
12 Max pooling 2D 2 Strides� 2
13 Linear 256 ReLU, dropout

BiLSTM 1 BiLSTM — Hidden size� 128

—

1 Channel fusion — α
2 Linear 512 ReLU, dropout
3 Linear 128 ReLU, dropout
4 Linear 64 ReLU, dropout
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First, the influences of different optimizers on the per-
formance of the proposed network model are evaluated. +e
comparative experimental results are shown in Table 5. In
terms of classification performance, the accuracy, sensitivity,
and specificity of Adam are higher than those of SGD by
1.79%, 2.13%, and 2.18%, respectively.

Batch size represents the amount of data sent to the
model for training each time, and its size affects degree of
optimization and training speed of the model. Limited by the
size of GPU memory used in this paper, we use the common
parameters of 32, 64, 128, and 256 to carry out comparative
experiments. +e experimental results are shown in Table 6.
+e highest accuracy (87.81%) is obtained at a batch size of
128.+e classification performance of our proposed network
model is not significantly improved by changing the value of
batch size.

Convolution kernel size is the smallest area where fea-
ture points are weighted and averaged in the convolution
operation. +e convolution kernel of the MLCNN proposed
in this paper is the weighted average of a time series before
and after any sampling point and related sampling points on
different leads at the same time. We select four common
convolution kernel sizes to explore their influence on model
performance. Limited by the 12-lead ECG data structure
adopted in this paper, the maximum convolution kernel is
9× 9. +e comparative experimental results are shown in
Table 7.+e convolution kernel with a size of 5× 5 obtains an
optimal result. +e accuracy, sensitivity, and specificity are
87.81%, 86.00%, and 87.76%, respectively.

We study the influence of initializing the value of the
threshold weight parameter ɑ on the performance of the
proposed network model. +e parameter ɑ controls the
weight of the weighted fusion of the high-dimensional
space-time features output by the two channels. +e pa-
rameter ɑ indicates the sensitivity of different diseases to
morphological and temporal features contained in ECG.
After the backpropagation algorithm update, the parameter
ɑ obtains the optimal value. +e experimental results are
shown in Table 8, and when the parameter ɑ is 0.7, the
performance of the model is optimal. +e experimental
results show that the network model tends to use the spatial
morphological features learned by the MLCNN channel as
the main features after feature fusion for classification tasks.

Finally, to verify the effectiveness of our proposed ECG
signal preprocessing method, the proposed network is also
analyzed without denoising and the results are listed in
Table 9. Average accuracy, sensitivity, and specificity of
85.53%, 84.71%, and 85.23% are achieved using raw ECG
data with noise. Furthermore, the highest average accuracy

of 87.81%, sensitivity of 86.00%, and specificity of 87.76% are
obtained for preprocessed ECG data without noise.

5. Discussion

In this section, we construct CNN, BiLSTM, andMLCNN to
carry out classification and recognition experiments on the
same multilead ECG data set used in verifying the perfor-
mance advantages of the proposed MLCNN in processing
multilead ECG data with special structures. We also carry
out experiments on the MLCNN-BiLSTM without the core
threshold weight parameter ɑ to verify the necessity of
introducing core threshold weight parameter ɑ for weighted

Table 4: Classification performance of different classes.
Diseases TP TN FP FN ACC (%) SE (%) SP (%)
Normal 9897 2707 305 1401 88.08 87.60 89.87
Atrial arrhythmia 1076 11481 1551 202 87.75 84.19 88.10
Ventricular arrhythmia 530 12021 1659 100 87.71 84.13 87.87
Myocardial infarction 48 12451 1786 25 87.34 65.75 87.46
Ventricular hypertrophy 1007 11435 1553 315 86.95 76.17 88.04
Atrial hypertrophy 7 12447 1854 2 87.03 77.78 87.04

Table 5: Classification performance of different optimizer.
Optimizer ACC (%) SE (%) SP (%)
Adam 87.81 86.00 87.76
SGD 86.02 83.87 85.48

Table 6: Classification performance of different batch size.
Batch Size ACC (%) SE (%) SP (%)
32 77.75 73.48 75.60
64 87.43 85.58 85.42
128 87.81 86.00 87.76
256 87.53 82.48 84.33

Table 7: Classification performance of different convolution kernel
size.
Convolution kernel size ACC (%) SE (%) SP (%)
(3,3) 84.76 82.59 84.86
(5,5) 87.81 86.60 87.63
(7,7) 87.81 86.00 87.76
(9,9) 87.23 86.56 86.09

Table 8: Classification performance of different ɑ.
α ACC (%) SE (%) SP (%)
0.4 81.30 77.64 73.36
0.5 85.71 80.77 82.95
0.6 87.07 86.25 86.96
0.7 87.81 86.00 87.76
0.8 86.94 85.15 85.54

Table 9: Classification performance of different convolution kernel
size.
ECG data ACC (%) SE (%) SP (%)
Raw ECG data 85.53 84.71 85.23
Preprocessed ECG data 87.81 86.00 87.76
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fusion after the multichannel extraction of time-space
features.

In the contrast experiment, the difference between CNN
and MLCNN lies in whether the convolution kernel takes
into account the four-neighborhood special structure of
multilead ECG. CNN takes multilead ECG as a two-di-
mensional image and extracts signal features by traditional
convolution. Our BiLSTM only uses standard II lead ECG as
training data.

It can be seen from Table 10 that the classification
performance of BiLSTM network is the worst, and ACC is
only 67.70%. +e possible reason is that the feature infor-
mation in the data cannot be well expressed by using only a
single two-layer LSTM network. Compared with the CNN,
the performance of the MLCNN is further improved, with
ACC, SE, and SP increased by 1.44%, 2.61%, and 3.93%,
respectively. MLCNN is more suitable for multilead ECG
data classification and recognition. +e experimental results
show that the MLCNN-BiLSTM proposed in this paper has

the best performance among several models, its ACC is
87.81%, and it is effective in dealing with ECG classification.

+rough feature visualization [6], the effectiveness of the
model can be displayed intuitively. We select two cases of
each different disease type from the test set to analyze the
features learned from theMLCNN-BiLSTMmodel. Without
using a softmax layer, we use the rest of the MLCNN-
BiLSTM model as feature extractors, and the generated
feature vector consists of 64 values. According to the learned
feature vector, a heat map is drawn.

As shown in Figure 9, through the color of features (10,
21, 31, 56), (4, 23, 42), (3, 47, 64), and (17, 51), we can clearly
distinguish the cases of normal, atrial arrhythmia, ventric-
ular arrhythmia, and ventricular hypertrophy from other
types of cases. We notice that the visualization results of
myocardial infarction and atrial hypertrophy are not ideal
possibly because of the imbalance of training set samples and
the failure of the MLCNN-BiLSTM model to learn key
features from these two types of samples.

Table 10: Comparison of experimental results with other models.
Model ACC (%) SE (%) SP (%)
BiLSTM 67.70 74.36 76.34
CNN 83.57 79.32 81.89
MLCNN 85.01 81.93 85.82
MLCNN-BiLSTM (without α) 85.37 82.67 87.42
MLCNN-BiLSTM 87.81 86.00 87.76
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Figure 9: Visualization of the learned feature vectors. N# corresponds to the normal cases; AA# corresponds to the atrial arrhythmia cases
patient; VA# corresponds to the ventricular arrhythmia cases patient; MI# corresponds to the myocardial infarction cases patient; VH#
corresponds to the ventricular hypertrophy cases patient; AH# corresponds to the atrial hypertrophy cases patient.
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To evaluate the performance of our proposed network,
we compare it with some of the latest methods in the lit-
erature. Table 11 shows the application of the CCDD in ECG
classification in the recent 5 years.

+e literature studies [30–32] are based on the Lead
Convolutional Neural Network (LCNN) [35]. +e study in
[30] proposed a novel supervised training method (i.e.,
implicit training method) and then combined it with a
traditional training method (i.e., explicit training method),
trained two different LCNN models, and finally used a
Bayesian method to fuse classification. +e study in [31]
proposed an ensemble learning method based on LCNN and
premature ventricular contraction diagnosis rules comple-
mentarily and achieved good classification results. +e study
in [32] adds LSTM on the basis of literature [31], and the
classification performance was further improved. +e study
in [33] combined convolutional neural network and bidi-
rectional recurrent neural network to establish a model for
classifying ECG diseases as positive abnormalities. +e study
in [34] proposed an ensemble method based on a deep
neural network, which integrated filtering view, local view,
distortion view, explicit training, implicit training, subview
prediction, and simple average, and verified the effectiveness
of the method.

As shown in Table 11, the majority of ECG recognition
and classification researches on the CCDD database had a
binary classification. +e study in [32] shows the perfor-
mance in identifying PVC diseases. +e results were better
than those of the other binary classification studies and the
accuracy rate reached 99.41%. For comparison with other
advanced methods in the paper, we also conducted a binary
classification study on the same data set using the proposed
model. +e accuracy, sensitivity, and specificity of the al-
gorithm are 98.77%, 95.69%, and 97.35%, respectively, on
the PVC disease data set with more than 140000 records,
which verifies the effectiveness of the algorithm. Little re-
search has been conducted on ECG multiclass classification
recognition in the CCDD. We set up an MLCNN-BiLSTM

parallel network. +rough MLCNN and BiLSTM, two
channels can fully extract the morphological features and
rhythm features of multilead ECG.+e results show that our
work has good performance on the data set of the CCDD for
classification and recognition of six diseases, and the ac-
curacy rate is 87.81%.

6. Conclusion

In this study, we propose a neural network model named
MLCNN-BiLSTM for cardiovascular disease recognition
based on the special data structure of multilead ECG. +e
model is divided into two channels for the extraction of
time-space feature information from ECG signal in parallel.
+e MLCNN channel sets the partial weights of the con-
volution kernel to 0, which can accurately extract the
strongly correlated morphological features of the sampling
points between different leads at the same time and the same
lead at different times while ignoring irrelevant information.
Compared with CNN, MLCNN decreases the tendency of
overfitting during network memory consumption. +e
BiLSTM channel is used to extract rhythmic features. +e
core threshold parameters are initialized and the back-
propagation algorithm is used to update automatically to
fuse the spatiotemporal features extracted by multiple
channels in parallel and for exploring the sensitivity of
different cardiovascular diseases to morphological and
rhythmic features. +ese networks are combined into a
unified neural network architecture to form an end-to-end
trainable model. +e experimental results show that the
accuracy of the MLCNN-BiLSTM is 87.81% in six cardio-
vascular disease classification tasks. It is 4.24% and 20.11%
higher than the reference single CNN and BiLSTM,
respectively.

+e future work will be carried out in these aspects. First,
we will further consider the impact of the imbalance on the
performance of the network model. Second, given that
multilead ECG data sets are few, we only carry out exper-
iments on a single data set, and its generalization ability
needs to be tested. In the next step, we will obtain a large
amount of unlabeled data from the remote ECG monitoring
system and continue to evaluate our proposed network
model through unsupervised learning.
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