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Abstract: Nonresolving inflammation, a hallmark of underlying severe inflammatory pro-

cesses such as sepsis, acute respiratory distress syndrome and multiple organ failure is

a major cause of admission to the intensive care unit and high mortality rates. Many

survivors develop new functional limitations and health problems, and in cases of sepsis,

approximately 40% of patients are rehospitalized within three months. Over the last few

decades, better treatment approaches have been adopted. Nevertheless, the lack of knowledge

underlying the complex pathophysiology of the inflammatory response organized by numer-

ous mediators and the induction of complex networks impede curative therapy. Thus,

increasing evidence indicates that resolution of an acute inflammatory response, considered

an active process, is the ideal outcome that leads to tissue restoration and organ function.

Many mediators have been identified as immunoresolvents, but only a few have been shown

to contribute to both the initial and resolution phases of severe systemic inflammation, and

these agents might finally substantially impact the therapeutic approach to severe inflamma-

tory processes. In this review, we depict different resolution mediators/immunoresolvents

contributing to resolution programmes specifically related to life-threatening severe inflam-

matory processes.

Keywords: inflammation, resolution, specialized lipid mediators, neuronal guidance protein,

sepsis, immunoresolvents

Inflammation and the Immune Response
Systemic responses to severe injury or major trauma may lead to activation of

the immune, endocrine and nervous systems.1 Additional factors triggering

these systems involve blood products and the imbalance between perfusion

and coagulation.2 The dysfunction of vascular permeability induced by the loss

of endothelial integrity facilitates the entrance of proinflammatory mediators

and immune cells.3 However, the unsuccessful restoration of homeostasis may

ultimately lead to the development of multiorgan failure accompanied by

sepsis.4–6

Initial Phase of Sterile Inflammation
Among the first responders, neutrophils (polymorphonuclear leukocytes (PMNs))

are one of the first immune cells to respond to infection or tissue damage.7,8 The

first signals responsible for the inflammatory processes underlying sterile inflam-

mation are initially activated by damage-associated molecular patterns (DAMPs) at

the tissue injury site. DAMP molecules such as DNA, high mobility group protein

B1 (HMGB1), N-formyl peptide, extracellular components, ATP and uric acid9 are
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released from damaged and necrotic cells to induce the

recruitment of neutrophils via their cell-surface DAMP

receptors— the so-called pattern recognition receptors

(PRRs). Known PRRs are categorized into the main

classes: Toll-like receptors, C-type lectin receptors, and

retinoic acid-inducible gene 1-like receptors.10 Moreover,

DAMPs induce the exposure of hydrogen peroxide (H2O2)

to activate the early recruitment of neutrophils through the

SRC family kinase LYN.7 For further neutrophil recruit-

ment, DAMPs activate the production of proinflammatory

mediators such as CXC-chemokine ligand 8 (CXCL8)

family chemokines and lipid mediators, e.g. leukotriene

B4 (LTB4), within the surrounding immune cells.11,12 In

turn, the activated neutrophils induce the release of

CXCL8 family chemokines and LTB4 to mediate neutro-

phil migration to the site of injury. Further components of

the inflammatory response involve the rapid activation of

the complement system, particularly with the increased

generation of C3a and C5a.13,14 These factors lead to the

extended participation of immune competent cells, includ-

ing macrophages (MΦ), dendritic cells, mast cells and

T-cells.15–18

Onset of Nonsterile Inflammation

In addition to the concept of DAMPs, pathogen-associated

molecular patterns (PAMPs) expressed by pathogens and

PRRs characterize a major variable in the control of the

initial immune response to nonsterile inflammation.19

From a molecular viewpoint, the initial inflammatory

response to infection is largely similar to that of sterile

inflammation caused by trauma, ischaemic reperfusion

injury or burns.20 This point may explain the difficulties

in making precise diagnoses and finally elucidating

a better targeted therapy based on only clinical signs.

Resolution and the Main Players
The ideal outcomes of an acute inflammatory response are

the termination of inflammation, prevention of excessive
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Figure 1 Complete resolution versus failed resolution of acute inflammation.

Notes: The endogenous specialized proresolving mediators (SPMs) control key actions of resolution, including leukocyte trafficking, MΦ reprogramming and MΦ
phagocytosis/efferocytosis (see text).

Abbreviations: MΦ, macrophage; PGD2, prostaglandin D2; PGE2, prostaglandin E2; PMN, polymorphonuclear leukocytes; SPM, specialized proresolving mediator.
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tissue injury and, ultimately, the restoration of tissue

homeostasis (Figure 1). Various molecules belonging to

a continually growing superfamily of proresolving mole-

cules actively mediate key factors of resolution, including

the limitation of PMN tissue infiltration, promotion of

macrophage (MΦ) reprogramming and MΦ phagocytosis

of apoptotic PMNs and cell debris, relief of pain, and

counterregulation of inflammatory mediators. Central

members of these immunoresolvents are specialized pro-

resolving mediators (SPMs), which are derived from poly-

unsaturated fatty acids, such as arachidonic acid (AA),

docosahexaenoic acid (DHA) and eicosapentaenoic acid

(EPA), and comprise the lipoxin, resolvin, protectin and

maresin families. During the onset of an acute inflamma-

tory response, the basis for SPM generation in the resolu-

tion phase is established by a lipid mediator class switch.

Here, AA-derived mediator synthesis switches from proin-

flammatory leukotrienes (LTs) and prostaglandins (PGs) to

proresolving lipoxins, resolvins and protectins.

Interestingly, PGs can exhibit diverse functions: they are

essential inducers of inflammation during the onset phase,

can indirectly function as proresolvers by inducing the

expression of enzymes necessary for the biosynthesis of

SPMs, and can evoke anti–inflammatory and immunosup-

pressive responses. PGE2 not only stimulates LTB4-

mediated PMN recruitment to sites of inflammation21 but

also promotes the translation of the enzyme 15-

lipoxygenase (LOX) type I to enhance the generation of

SPMs.22,30 Importantly, immunoresolvents such as lipox-

ins promote the resolution of inflammation without sup-

pressing the immune system of the host and thus represent

an attractive new therapeutic approach for inflammatory

conditions.

Immune Cell Function During Resolution
At the cellular level, resolution depends on clearance of

the inflammatory infiltrate, which is achieved by several

central processes. First, SPMs such as lipoxin A4

(LXA4)
23 and Resolvin E1 (RvE1)24 inhibit further PMN

recruitment. Second, to remove the already infiltrated neu-

trophils from the tissue, PMNs become apoptotic and are

ingested by MΦ (so-called efferocytosis). Efferocytosis is

essential since apoptotic cells can become secondarily

necrotic and trigger non-resolving, pathological inflamma-

tory responses.25 Briefly, efferocytosis is defined as

a carefully orchestrated process by which professional or

non-professional phagocytes are designed to act in the

characterized four phases: (1) apoptotic cell finding, (2)

apoptotic cell binding, (3) apoptotic cell internalization

and (4) apoptotic cell degeneration.25,26 During this pro-

cess apoptotic cells have an active role in their own clear-

ance. First, they release distinct molecules such as

chemokines, nucleotides ATP and UTP, sphingosine-

1-phosphate (S1P), lysophophatidylcholine (LPC) or frac-

talkine to activate the mobilization of phagocytic cells.

Phagocytotic cells sense these signals through their corre-

spondent receptors (P2Y purinoceptor 2 (P2Y2), S1PRs,

G-protein-coupled receptor G2A, and CXCR3). Second,

apoptotic cells express further signals that engage phago-

cytic receptors and bridging molecules to facilitate engulf-

ment. During this process phosphatidylserine (PtdSer or

PS), interacts with the PtdSer-specific receptors, T cell

immunoglobulin mucin receptors (TIM1, TIM3, TIM4),

brain-specific angiogenesis inhibitor 1 (BAI1), stabilin-2,

and RAGE, as well as the PS-specific bridging molecules

milk fat globule-EGF factor 8 (MFG-E8), growth arrest-

specific protein 6 (Gas6), and protein S. These bridging

molecules activate other surface engulfment receptors

(integrin αvβ3 or Tryo3-Axl-Mer (TAM)) to accelerate

uptake and then finally to induce the process of internali-

zation and degeneration of apoptotic cells.25,26 This apop-

tosis of neutrophils is crucial for an efficient resolution27

because it prevents exuberant PMN activation and,

together with the engulfment by MΦ, promotes an MΦ
phenotypic switch from the classical inflammatory pheno-

type towards a proresolving, alternatively activated MΦ
phenotype. This phenotypic switch is possible due to the

plasticity of MΦ and represents another fundamental pro-

cess during the resolution of inflammation. Classical MΦs
shut down their generation of proinflammatory mediators

and activate a transcriptional programme resulting in the

release of anti–inflammatory cytokines (eg IL-10 and

transforming growth factor β (TGFβ)) and various growth

factors (such as amphiregulin and vascular endothelial

growth factor α (VEGFα)). Thus, these alternatively acti-

vated MΦs dampen the acute inflammatory response and

are crucial regulators of tissue repair by stimulating cellu-

lar proliferation and angiogenesis. Third, nonapoptotic

leucocytes exit the site of inflammation via lymphatics or

reverse migration.28–32

Post-Resolution Phase
To ultimately restore tissue function, repair and regenera-

tion mechanisms must be activated. Various cell types are

involved in their regulation; however, MΦs play a central

role. In particular, alternatively activated MΦs exhibit
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a crucial regulatory activity to promote the proliferation of

parenchymal and stromal cells, angiogenesis to restore the

oxygen supply, fibroblast differentiation into myofibro-

blasts to stimulate wound closure and the generation of

extracellular matrix components.31,32 Interestingly, the

MΦ-derived immunoresolvent Maresin 1 (MaR1) not only

promotes the resolution of acute inflammation but also

enhances tissue regeneration.30,33 Other exogenous SPMs,

such as Resolvin D1, accelerate the healing of diabetic

wounds in a mouse model.34

Role of the Vagus Nerve in
Resolution
Increasing evidence suggests that the nervous system and

immune system interact and communicate to regulate the

host immune response. These inflammatory reflex circuits

comprise afferent nerves that sense peripheral inflamma-

tion, injury and infection and transmit the signal to the

brain stem, which in turn activates efferent nerves to relay

signals to modulate immune responses.

Cholinergic Anti-Inflammatory Pathway
A prominent inflammatory reflex involves the vagus nerve,

which is termed the cholinergic anti–inflammatory pathway.35

Here, sensory vagus nerves can be activated by inflammatory

mediators such as cytokines via their PRR and transmit the

signal to the brain stem, resulting in stimulation of efferent

vagus nerve fibres. These signals from the vagus nerves are

delivered to splenic nerve fibres, which induce the release of

acetylcholine (ACh) fromT-cells. Subsequent activation of the

α7 nicotinic ACh receptor (α7nAChR) on MΦs inhibits the
synthesis of proinflammatory mediators and thus suppresses

the inflammatory response.35–37 Hence, vagotomy intensifies

inflammatory responses and increases tissue damage in con-

ditions such as colitis38 and pancreatitis.39

Vagus Nerve During Resolution of Sterile

and Infectious Peritonitis
Recently, the vagal regulation of the resolution phase and

SPM generation was revealed.40,41 In one study,40 unilateral

vagotomy resulted in intensified sterile murine peritonitis

(increased leucocyte numbers, PMNs and enhanced levels

of myeloperoxidase (MPO), cytokines and chemokines) and

delayed resolution with a longer resolution interval Ri
30 of 37

h compared to 24 h in sham-operated mice. Furthermore,

vagotomy shifted the lipid mediator profile in exudates dur-

ing sterile peritonitis by stimulating the synthesis of

proinflammatory lipid mediators such as leukotriene B4

(LTB4) while inhibiting the generation of immunoresolvents

such as Resolvin D1 (RvD1).40 Interestingly, the administra-

tion of RvD1 rescues this hyperinflammatory response in

vagotomized mice by limiting excessive PMN infiltration

and regulating monocyte recruitment and cytokine produc-

tion. In addition, the vagus nerve controls the expression of

the neuronal guidance protein (NGP) Netrin-1,40 which reg-

ulates not only neuronal development but also inflammatory

responses.42–45 After vagotomy and peritonitis, the expres-

sion of Netrin-1 was substantially decreased, indicating an

involvement of Netrin-1 in this neuroimmune interaction.40

During peritonitis, Netrin-1 shortens the time required for

resolution and promotes the synthesis of endogenous prore-

solving mediators. Notably, deficient Netrin-1 expression in

Netrin-1 heterozygousmice delayed the resolution time com-

pared to that in wild-type animals, and acceleration with an

additional injection of RvD1 was not observed in Netrin+/-

mice like it was in wild-type mice, suggesting a bidirectional

interaction between Netrin-1 and resolvins. In human MΦs,

Netrin-1 upregulated the biosynthesis of SPMs, the effero-

cytosis of apoptotic PMNs and, synergistically with RvD1,

the phagocytosis rate of zymosan A particles. Overall, this

study illustrated a novel collaboration of Netrin-1 and RvD1,

which are both regulated by the vagus nerve, during the

resolution of acute sterile inflammation.

In another report, vagotomy decreased peritoneal immu-

noresolvent levels and delayed the resolution of inflamma-

tion during infectious E. coli peritonitis.41 In this work, Dalli

and colleagues demonstrated that vagotomy delayed resolu-

tion processes through the dysregulation of tissue retinoic

acid-related orphan receptor γ t (RORγt) CD335+ group 3

innate lymphoid cells (ILC3) and changes in the lipid med-

iator profile of resident peritoneal MΦs. Vagotomy decreases

PCTR1 levels before exposure to E. coli infection.

Treatment of vagotomized mice with PCTR1 recovered the

macrophage phenotypes and partly protected them from

infectious phenomena. The authors also showed that acet-

ylcholine, a crucial transmitter in the vagal response, con-

trols the PCTR biosynthetic pathway in ILC3s, which in turn

impacts the resident phenotype of peritoneal MΦs.

Role of the Sympathetic Nerve in
Resolution
Efforts to better understand inflammatory reflex circuits

and the neural regulation of immunity revealed that the

classic neuronal terminology of sympathetic and
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parasympathetic neurons is inaccurate and limited.

Cooperation among somatosensory, sensory autonomic

and efferent neurons via neurotransmitters such as acetyl-

choline and catecholamines was demonstrated in some

circuits.46

Sympathetic Nerve in Resolution and

Tissue Regeneration
Thus, a recent report highlighted a novel facet of inflammatory

reflexes in that adrenergic nerve fibres of the sympathetic

nervous system together with the NGP Repulsive Guidance

Molecule A (RGM-A) regulate the resolution of acute inflam-

mation and promote tissue regeneration (Figure 2).47 The

protein RGM-A was shown to substantially influence the

initial phase of acute inflammation and the pathobiology of

autoimmune encephalomyelitis.43,48,49 In a study by Körner

and colleagues,47 RGM-Awas shown to induce a phenotypic

switch from monocyte-derived human MΦs towards alterna-

tively activated (M2) MΦs, affect PMN and MΦ chemotaxis

and stimulate the efferocytosis of apoptotic PMNs. Moreover,

RGM-A alone promotes the resolution of acute murine peri-

tonitis by inhibiting PMN recruitment, thus accelerating the

resolution interval from 30 h in vehicle controls to 9 h while

stimulating the phagocytosis rate and the biosynthesis of exu-

date SPMs such as LXA4, Mar1 and Protectin DX (PDX).

Interestingly, RGM-A increases the expression of the sympa-

thetic β2 adrenergic receptor (β2AR) on humanMΦs, while α-

adrenergic receptors are not affected or suppressed. The β2AR

agonist formoterol, in turn, stimulates the expression of RGM-

A on MΦs and in murine peritoneal tissue, thus indicating an

interaction between β2 adrenergic receptors and RGM-A sig-

nalling. Furthermore, the β2AR agonist alone stimulates key

aspects of resolution, but not as substantially as that achieved

with RGM-A alone. Notably, the synergistic effect of RGM-A
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and the β2AR agonist induces an even stronger promotion of

the resolution as that achieved with one substance alone, as

demonstrated by the biosynthesis of immunoresolvents.

Chemical sympathectomy, however, inhibits the resolution

during acute peritonitis, as reflected by the enhanced infiltra-

tion of PMNs and classical monocytes, decreased clearance of

PMNs and generation of SPMs. Additional administration of

RGM-A, however, rescues this hyperinflammatory response

to chemical sympathectomy by inhibiting the elevated PMN

influx and controlling monocyte extravasation as well as the

biosynthesis of immunoresolvents. Additionally, RGM-A and/

or the β2AR agonist inhibit NF-κB signalling and activate

RICTOR as well as PI3K/AKT signalling pathways in perito-

neal monocytes.

Role of Neuronal Guidance Proteins
in Resolution
The superfamily of neuronal guidance proteins (NGPs)

was originally discovered in the developing nervous sys-

tem and shown to guide growing axons by chemoattraction

and chemorepulsion. Over the last few years, NGPs have

been identified in peripheral tissues and shown to

modulate immune reactions, especially leucocyte migra-

tion, through their chemoattractive and chemorepulsive

properties. However, recent studies have highlighted var-

ious additional immune functions of NGPs in acute and

chronic inflammation conditions as well as during the

resolution (Figure 3).43

Function of Netrin-1 During Resolution

and Regeneration of Sterile Liver

Inflammation
The NGP Netrin-1 promotes the resolution of acute

inflammation not only during peritonitis40 but also during

acute liver inflammation in ischaemia/reperfusion injury

(IR).42 The disruption of blood flow (ischaemia) followed

by its restoration (reperfusion) results in an intense inflam-

matory response and represents a major adverse complica-

tion in the liver during surgery, transplantation and

haemorrhagic shock.50 Interestingly, in Netrin-1-deficient

mice, the infiltration of PMNs is enhanced, while nonclas-

sical monocytes and thus efferocytosis are inhibited in the

late phase of liver IR compared to that in wild-type (WT)

animals, indicating a delayed resolution.42 Treatment of
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Figure 3 Actions of neuronal guidance proteins RGM-A and Netrin-1 during the resolution of inflammation.

Notes: In the initial phase of inflammation, RGM-A and Netrin-1 dampen PMN infiltration through their chemorepulsive attributes. In the resolution phase, they induce

a reduction in proinflammatory Ly6Chi numbers, an increase in anti–inflammatory Ly6Clo monocyte numbers and a subsequent switch from the M1 to M2 phenotype. RGM-

A and Netrin-1 activate the generation of proresolving lipid mediators and, ultimately, tissue clearance through the macrophage efferocytosis/phagocytosis of neutrophils and

inflammatory particles, finally leading to organ regeneration.

Abbreviations: Ly6Chi, classical (proinflammatory) monocytes; Ly6Clo, non-classical (anti–inflammatory) monocytes; M1, classically activated/type 1 proinflammatory

macrophages; M2, alternatively activated/type 2 anti–inflammatory macrophages PMN, polymorphonuclear leukocytes; RGM-A, repulsive guidance molecule A.
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WT mice with Netrin-1 during the ischaemic phase, how-

ever, promotes the resolution of liver inflammation by

limiting the PMN and classical monocyte numbers,

increasing nonclassical monocytes and consequently

increasing the MΦ uptake of apoptotic PMNs. Notably,

Netrin-1 induces resident MΦs of the liver, Kupffer cells,

and their efferocytosis rate. When Netrin-1 is administered

in the resolution phase, its stimulating effects on resolution

and regeneration during hepatic injury are even stronger

than those exhibited at other phases of administration.

Furthermore, Netrin-1 is expressed on human MΦs and

robustly stimulates the phagocytosis rate of apoptotic

PMNs. Netrin-1 not only promotes the biosynthesis of

immunoresolvents such as LXA4 during liver inflamma-

tion but also stimulates the expression of key growth

factors of liver regeneration, such as hepatocyte growth

factor (HGF), heparin-binding epidermal growth factor

(HB-EGF) and its receptor EGFR. Additionally, the

expression of angiogenic vascular endothelial growth fac-

tor A (VEGF-A) and its receptors VEGF-R1 and VEGF-

R2 as well as the proliferation rate of hepatocytes are

robustly increased by Netrin-1 treatment compared to

those in controls.42 Together, the results of this study

reveal a novel role of the NGP Netrin-1 during the onset,

resolution and regeneration phases of acute liver

inflammation.42

Impact of Neogenin on Inflammation

Resolution and Tissue Regeneration
The receptor of Netrin-1 and RGM-A, Neogenin 1 (Neo1),

plays an important role during the onset of acute

inflammation.51–53 A recent report identified a previously

unknown role of Neo1 during the resolution of inflamma-

tion and during regeneration.54 Functional inhibition of

Neo1 stimulated the apoptosis of human PMNs and acti-

vated find-me signals on apoptotic PMNs as well as find-

me and eat-me receptors on human MΦs. Together with

the increased phagocytosis rate of MΦs and the stimulated

expression of G-protein coupled receptors (GPCRs) for

SPMs on human MΦs, the inhibition of Neo1 promotes

resolution. Consistently, the lack of Neo1 inhibits the

recruitment of PMNs while stimulating their apoptosis as

well as the efferocytosis rate of MΦs and the biosynthesis

of immunoresolvents such as LXA4 and Mar1 in a murine

peritonitis model compared to those in WT controls.

Notably, the expression of Neo1 is restricted to classical

Ly6Chi monocytes in the peritoneal cavity during acute

inflammation, while Neo1 deficiency elicits a phenotype

switch towards nonclassical Ly6Clo monocytes by stimu-

lating PI3K/AKT and inhibiting the TGFβ signalling path-

way. Endogenous Neo1 repression stimulates tissue repair

and regeneration by enhancing IL-10 and TGFβ levels and

promoting the proliferative response in the peritoneum

during acute inflammation. Functional exogenous block-

ade of Neo1 with an antibody mitigates the onset phase of

acute peritonitis and accelerates the resolution.

Additionally, in a cohort of critically ill paediatric ICU

(PICU) patients, the plasma levels of Neo1 were shown to

correlate with abdominal compartment syndrome (ACS),

the intraabdominal hypertension (IAH) grade, the Pediatric

Risk of Mortality III (PRISM-III) score, the length of stay

in the ICU and survival. This report identified Neo1 as

a regulator of the resolution of inflammation and tissue

regeneration as well as a predictor of the severity and

survival of critically ill paediatric patients.54

Role of Nutrition in Resolution
Ω-3-Enriched Lipid Emulsions for

Critically Ill Patients
Ideally, the onset phase of acute inflammation is followed

by the resolution phase, which is actively mediated by

immunoresolvents derived from AA as well as the two

Omega-3 (Ω-3) fatty acids DHA and EPA. Hence, the

administration of lipid emulsions (LEs) with Ω-3 supple-

mentation was evaluated in critically ill patients to identify

a possible reduction of inflammation and improvement of

clinical outcomes.55–57 The results, however, were contro-

versial, and due to the lack of data, no recommendation for

the nutritional treatment of critically ill patients was

made.58 Additional debates remain about the composition

and amount as well as the time point of administration and

indication for parenteral LEs.58 The shortage of data about

the effects of nutritional support extends to the possible

impact of LEs during the initial and resolution phases as

well as during tissue regeneration.

Ω-3-Enriched Lipid Emulsions in Sterile

Peritonitis and Sepsis
However, a recent report highlights the role of Ω-3-enriched
LEs (Ω-3+ LEs) containing long- and medium-chain fatty

acids and fish oil (50:40:10) during the resolution of acute

murine peritonitis and murine sepsis.59 In a self-limited

model of peritonitis, WT mice were treated with Ω-3+ LEs

24 h prior to zymosan A injection, resulting in robust
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decreases in infiltrating leucocytes such as PMNs, classical

monocytes and MΦs, enhanced nonclassical monocyte num-

bers and phagocytosis rates, and reduced cytokine levels of

IL-6 and keratinocyte chemoattractant (murine IL-8 homo-

logue) compared to those in vehicle controls. Furthermore,

Ω-3+ LEs decrease leucocyte adherence to the endothelium

as well as their migration, whereas they stimulate the rolling

velocity of leucocytes during murine peritonitis compared to

that in controls as evaluated by intravital microscopy.

Consequently, Ω-3+ LE treatment accelerates resolution, as

a strong reduction in the resolution interval Ri was observed

in Ω-3+ LE-treated mice. Moreover, Ω-3+ LEs stimulate the

generation of immunoresolvents such as LXA4, PDX and

Mar1 and their precursors and induce a mediator class switch

from prostaglandins to SPMs during murine peritonitis in

comparison to these features in control animals. Ω-3+ LEs

attenuate not only the initial phase of acute inflammation but

also stimulate the resolution phase as well as peritoneal

regeneration, as demonstrated by a robust enhancement of

exudate IL-10 and TGFβ amounts as well as an increased

proliferation rate of peritoneal cells in a mouse model of

zymosan A peritonitis.59

In human MΦs, Ω-3+ LEs significantly enhance the pha-
gocytosis rates of apoptotic PMNs, zymosan A particles and

Escherichia coli compared to those in cells treated with

nonenriched Ω-3 (Ω-3−) LEs composed of long- and med-

ium-chain fatty acids (50:50). Additionally, the expression of

receptors for SPMs, such as ALX/FRP2, DRV1/GPR32 and

ERV/ChemR23, on human MΦs is enhanced by stimulation

with Ω-3+ LEs and tumour necrosis factor (TNF) α, whereas
treatment with Ω-3− LEs and TNF α fails to induce these

proresolving effects.59

Severe conditions such as sepsis due to infection or

sterile injury, ischaemia/reperfusion injury and cancer are

associated with metabolic and immune alterations, which

can cause dysregulated inflammatory responses leading to

organ dysfunction and a high morbidity and mortality.58,60

The treatment options for sepsis, however, are unspecific

and concentrate on symptomatic therapy.60 Körner and

colleagues demonstrated that only dietary Ω-3+ LEs

improved survival and protected against weight loss and

hypothermia in a murine polymicrobial sepsis model com-

pared to that in vehicle and Ω-3− LEs controls.59 In addi-

tion, Ω-3+ LEs decrease leucocyte infiltration, especially

PMNs, and enhance the generation of immunoresolvents

such as LXA4, Mar1 and PDX compared to those in

vehicle- and Ω-3− LE-treated animals. Together, the results

of this study highlight the beneficial effects of dietary Ω-3+

LE treatment on murine sepsis as well as the regulation of

Ω-3+ LEs during the initial and resolution phases and

during tissue regeneration and repair.

Concluding Remarks
In translational terms, new evidence points to that exces-

sive, uncontrolled inflammatory response can lead to tissue

dysfunction and in extreme cases to tissue damage with loss

of organ function. It is proven that the inflammatory

response can be subdivided in three main phases: (1) the

onset, (2) resolution and (3) post-resolution phase.30,61 Up

to the present, we consider the acute inflammation as

a temporal crescendo of the resolution mediators and

decrescendo of the initiating inflammatory chemical med-

iators. As described above, upon initiation of an inflamma-

tory event the innate immune system induces the tissue-

resident cells to perceive the inflammatory stimulus and to

express inflammatory mediators such as chemokines, cyto-

kines, classic eicosanoids, free radicals and vasoactive

amins.3,61 This response is associated with the recruitment

and accumulation of leukocytes in the affected tissues. In

the course of this, the key characteristic programs of inflam-

mation resolution become activated to achieve a state of

tissue homeostasis. Firstly, the release of “stop signals”

such as transcription factors, anti–inflammatory cytokines,

miRNA genes and NGP3,43,61 etc. is crucial to dampen the

leukocyte accumulation. Inflammation-initiating molecules

such as cyclooxygenase derived prostaglandin E2 (PGE2) or

PGD2 within the neutrophils convert through lipid-mediator

class switching to anti–inflammatory and pro-resolving

molecules, such as lipoxins, resolvins and protectins.30

This PMN phenotype switch implies the strong connection

between the initiation and resolution phase, because SPMs

also induces MΦ phenotype reprograming toward a pro-

resolving phenotype.30,61 The clearance or elimination of

inflammatory cells can be further initiated by: reverse neu-

trophil migration, leukocyte apoptosis in the inflamed tis-

sue, efferocytosis and phagocytosis. Thus, these processes

indicate that the acute inflammatory response is a highly

coordinated process in which the initiation and resolution

phases are closely linked.

The biological actions of immunoresolvents are impor-

tant in the treatment of severe systemic disease, as the

approach is altered from “combating inflammation” to

“focusing and promoting inflammation resolution”.30

A deeper understanding of the complex pathophysiology

of severe systemic diseases is elementary for generating

curative approaches. Of substantial importance are
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mediators that have proven to exert potent proresolving

effects on severe systemic models (Table 1). Recently,

specialized proresolving mediators, such as RvE1, RvD1-

D5 and PD1, were identified as potent proresolving targets

in lung injury, sterile and infectious peritonitis, colitis and

sepsis.30 The fact that some of these targets are currently

being investigated in the clinic holds promise for new

therapeutic approaches even in cases of severe systemic

inflammation. However, the mechanisms, particularly the

downstream pathways captured by these lipid mediators,

have not been clearly elucidated, and additional investiga-

tions are needed to learn more about their specific effects

and interactions with each other.

An additional mediator class, NGPs, is becoming

increasingly important in the therapeutic concepts under-

lying severe systemic inflammation. The peculiarity of

NPGs lies in their influence of different and specific

pathophysiological cornerstones. These events include

the following: (1) alterations during the initial, resolution

and regeneration phases of inflammation; (2) changes in

the coagulation system, which can be associated with

vessel barrier disorder and local cellular/tissue hypoxia;

(3) dysregulation of the neuroendocrine system; and (4)

changes in the function of immune cells that can manifest

in immune paralysis.5,43,47,54,62 In particular, the intersec-

tion of the neuronal system (vagus nerve and sympathetic

nerve) with the NGP Netrin-1 or RGM-A in association

with SPMs substantiates the broader impact on the inflam-

matory networks of severe inflammation.40,47

Data from basic science, preclinical and clinical/trans-

lational studies corroborate the variety of mediators influ-

encing the network of resolution programmes. Therefore,

it is of great importance to more closely investigate the

mechanisms and effects of these and newly detected med-

iators on the pathophysiology of severe systemic inflam-

mation to generate potential new treatment concepts.
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