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Abstract

Here we present a Joint-Tissue Imputation (JTI) approach and a Mendelian Randomization (MR) 

framework for causal inference, MR-JTI. JTI borrows information across transcriptomes of 

different tissues, leveraging shared genetic regulation, to improve prediction performance in a 

tissue-dependent manner. Notably, JTI includes single-tissue imputation PrediXcan as a special 

case and outperforms other single-tissue approaches (BSLMM and Dirichlet Process Regression). 

MR-JTI models variant-level heterogeneity (primarily due to horizontal pleiotropy, addressing a 

major challenge of TWAS interpretation) and performs causal inference with type-I error control. 

We make explicit the connection between the genetic architecture of gene expression and of 

complex traits, and the suitability of MR as a causal inference strategy for TWAS. We provide a 

resource of imputation models generated from GTEx and PsychENCODE panels. Analysis of 

biobanks and meta-analysis data and extensive simulations show substantially improved statistical 

power, replication, and causal mapping rate for JTI relative to existing approaches.
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The Genome-wide Association Studies (GWAS) methodology has substantially increased 

our understanding of the genetic basis of complex diseases. The reported enrichment of trait-

associated loci in noncoding regions has promoted eQTL analyses and transcriptome-wide 

association studies (TWAS)1–3, which explicitly exploit the fact that gene expression may be 

a molecular mediator between genotype and phenotype.

The power of TWAS / PrediXcan, a two-stage procedure, may be attributed to two factors. 

The first comes from the accuracy of the prediction model of gene expression. The second 

comes from the association between gene expression and phenotype. As GWAS meta-

analyses continue to increase in sample size, the prediction quality remains a rate-limiting 

step. Improvement in the prediction quality should substantially increase the power of 

TWAS / PrediXcan. However, current approaches do not fully leverage the multi-tissue 

nature of transcriptome resources (Genotype-Tissue Expression [GTEx] project) and the 

comprehensive atlases of regulatory elements (ENCODE project or Roadmap Epigenomics). 

Conventional TWAS / PrediXcan generates the prediction model for a gene in each target 

tissue separately1–3, ignoring the presence of tissue-shared genetic regulation. MultiXcan 

integrates information across multiple tissue studies to improve statistical power for 

association analysis by regressing the principal components of the predicted expression data 

across the tissues on the trait4. However, MultiXcan is a multi-tissue association analysis 

approach and does not aim to improve prediction of gene expression in each tissue; 

furthermore, the effect size and direction of each PC are not easily interpretable. UTMOST 

is a cross-tissue TWAS approach that aims to improve the prediction performance (through 

variable selection using a group penalty term)5. However, it does not leverage the similarity 

among tissues. Recent studies have shown that eQTL sharing among tissues is abundant6–8, 

with stronger sharing among biologically-related tissues (e.g., the various brain regions)9. 

We hypothesize that, for any given tissue, we can improve prediction by leveraging other 

tissues with similar genetic regulation profile.

Here, we develop JTI, an extension of PrediXcan1 that exploits the power of multi-tissue 

transcriptomes (the GTEx v8 panel10) and atlases of regulatory elements, to elucidate the 

genetic architecture of gene expression and to identify gene-level associations with complex 

traits. The method leverages the shared regulatory architecture of gene expression to 

substantially improve prediction. Prediction accuracy is evaluated in two external 

transcriptome datasets, demonstrating that JTI outperforms conventional PrediXcan and 

another multi-tissue imputation methodology UTMOST5. Application of JTI models to 

GWAS data and a biobank leads to replication of well-known gene-level associations and 

identifies novel associations that are specific to JTI.

Mendelian Randomization leverages genetic variation to make inferences about causality 

using observational data. Using multiple genetic variants, PrediXcan can be viewed as (two-

sample) allele-score-based Mendelian Randomization11,12 but without pleiotropy control 

(Extended Data Fig. 1). In Instrumental Variable (IV) analysis, three conditions13 are 

required for a model Z to be a valid instrument for estimating the causal effect of a gene G 
on the trait Y (Fig. 1): marginal relevance (i.e., Z is associated with G), confounder 
independence (i.e., Z is independent of a confounder U), and exclusion restriction (i.e., there 

is no direct effect of Z on Y which is not completely mediated by G). The causal inference 
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of interest to us is G → Y. The presence of Z → Y other than through G would indicate the 

existence of a pleiotropic effect, violating exclusion restriction (Extended Data Fig. 1). The 

inverse-variance weighted (IVW) method provides a consistent estimate of causal effect 

when all the genetic variants used are valid IVs14,15. Subsequently, MR-Egger16, weighted 

median17, MR-PRESSO18, and related approaches were developed to address (the 

pervasive) horizontal pleiotropy, which can lead to biased causal effect estimates, false-

positive causal relationships, and loss of power. Under PrediXcan, the weighted allele score 

(i.e., the imputed genetically-determined expression), as an instrumental variable, may 

contain genetic variants with horizontal pleiotropic effects and thus result in a biased 

estimate of the causal effect of G on Y even if most of the variants are valid instruments. To 

address this major limitation, we provide an approach for jointly estimating the causal effect 

and the heterogeneity using summary statistics, thus incorporating Mendelian 

Randomization into JTI.

RESULTS

Framework

Extending conventional PrediXcan1, we developed a multi-tissue expression prediction 

framework (Fig. 1). PrediXcan generates prediction models using only the samples in the 

target tissue by solving a family of minimization problems (equation [1] in Methods). In 

contrast, JTI integrates all tissues through a loss function parameterized by a set of weights 

(i.e., weighted square error loss; equation [2] in Methods) in order to improve prediction 

performance in a target tissue, assigning higher weights to tissues with a greater degree of 

similarity and lower weights to tissues with a lower degree of similarity. A reference multi-

tissue transcriptome panel (GTEx) was used to train models. For each target tissue, an 

optimization problem is solved (Methods) via cross-validation. Besides the within-reference-

panel (GTEx) performance evaluation, we tested the models in external datasets 

(PsychENCODE for brain prefrontal cortex and GEUVADIS for lymphoblastoid cell lines 

[LCLs]). Methodological and performance comparisons were performed among PrediXcan, 

JTI, and UTMOST. We applied the models to GWAS data to identify gene-level associations 

and sought independent replication of results. We developed a causal inference engine MR-

JTI, as an extension of JTI, that provides a unified framework for TWAS and (two-sample) 

Mendelian Randomization. MR-JTI estimates the overall heterogeneity, providing a way to 

address a major challenge of TWAS interpretation.

Similarity matrix

JTI exploits the shared genetic regulation of gene expression across tissues. The similarity 

matrix for expression profile was generated from the tissue-level expression Pearson 

correlation (Extended Data Fig. 2) and, for proof-of-principle, gene-level DNase I 

hypersensitive sites (DHS) similarity for each tissue-tissue pair (Methods). Weights used in 

the loss function were calculated as the product of power laws, one for the expression-based 

similarity and another for the DHS-profile-based similarity (data source: ENCODE and 

Roadmap; Methods). One feature of a power law, π(r) = rm, that makes it attractive as a 

functional form for quantifying similarity is scale invariance; power laws with a predefined 

exponent are equivalent up to constant factors: π(cr) = cmπ(r) ∝ π(r). The powers are 
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considered hyper-parameters (with PrediXcan a special instance), and hyper-parameter 

tuning is performed for each gene by cross-validation (Methods).

Performance of JTI and single-tissue models

We compared the performance of JTI and PrediXcan as imputation methodologies using 

GTEx v8. On average, PrediXcan resulted in 6,842 imputable genes (“iGenes,” defined as 

genes with r > 0.1 and P < 0.05 from the correlation between predicted and observed 

expression) across the 49 tissues (Fig. 2a). The criterion r > 0.1, rather than r2 > 0.01, was 

used to filter genes with a negative correlation between predicted and observed expression. 

The average number of iGenes, 10,527, was substantially higher with the application of JTI 

(Fig. 2a, Supplementary Table 1). On average, 92.9% of the PrediXcan-derived iGenes 

remained imputable under JTI (Fig. 2b). For tissues with more than 200 samples, 96.5% of 

the iGenes were captured by JTI. To further quantify the performance gain, we calculated 

the increase in the proportion of iGenes and the increase in r2 (expression variance explained 

by local genetic variation), denoted by ΔpiG and Δr2, respectively. The ΔpiG (mean = 

60.3%) and Δr2 (mean = 0.036) varied from tissue to tissue (Fig. 2c and Supplementary 

Table 1).

Tissues with small sample sizes tended to have greater gains in the proportion of imputable 

genes (Fig. 2c). Among the 49 tissues (Extended Data Fig. 3), the vagina tissue showed the 

highest performance gain (N = 141, ΔpiG =111.2%, Δr2 = 0.050). Tissues with large sample 

sizes (e.g., whole blood, N = 670, ΔpiG = 27.7%, Δr2 = 0.015) and tissues with highly 

specific genetic regulation or expression profile (e.g., testis, N = 322, ΔpiG = 32.8%, Δr2 = 

0.021), showed more limited gains. Thus, tissues with more modest sample sizes or those 

with some similarity with the other tissues are the ones likely to see greater gains from a 

multi-tissue model. Nevertheless, the performance gain from this model in all tissues was 

substantial.

We compared JTI with other single-tissue imputation approaches: the top eQTL; Bayesian 

Sparse Linear Mixed Model (BSLMM), and Dirichlet Process Regression (DPR)19 

(Methods and Extended Data Fig. 4). JTI outperformed these single-tissue approaches, 

highlighting the performance gain from leveraging the cross-tissue information.

Prediction performance as a function of sample size

To assess the impact of sample size on imputation performance, we conducted a comparison 

of GTEx v6p and v8 models. Among the 44 overlapping tissues (average sample size Nv6p = 

160, Nv8 = 332), the average number of iGenes increased from 4,570 (v6p) to 7,213 (v8) for 

PrediXcan and from 6,340 (v6p) to 10,969 (v8) for JTI, showing the substantial influence of 

sample size (Supplementary Table 1, Extended Data Fig. 5).

Comparison with existing joint-tissue methodologies

In addition to the multi-tissue feature, a distinctive feature of JTI is its integration of data on 

regulatory elements (extensible to functional genomic data [Methods]) from an epigenomic 

reference panel. We, therefore, evaluated JTI more fully through comparison with UTMOST 

(i.e., the Cross-Tissue gene Expression IMPutation [CTIMP] of the framework)5, which 
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lacks the feature. We modified the UTMOST script after detecting artificially-inflated 

prediction performance in external datasets (Supplementary Note, Extended Data Fig. 6 and 

Extended Data Fig. 7). Throughout, “UTMOST” denotes the “modified UTMOST” unless 

explicitly noted (as “original UTMOST”).

We first evaluated the performance, in PsychENCODE data (brain prefrontal cortex, N = 

415), of PrediXcan, UTMOST, and JTI models trained in GTEx v8 brain frontal cortex BA9 

tissue. In comparison with the single-tissue PrediXcan (NiGenes = 3,193), UTMOST (NiGenes 

= 4,486) and JTI (NiGenes = 5,417) identified more iGenes (r > 0.1 and P < 0.05) (Fig. 3a). 

Of the 3,193 PrediXcan-derived iGenes, 2,920 were captured by both UTMOST and JTI 

(Fig. 3b). In addition to the 2,920 iGenes, UTMOST and JTI identified 1,219 additional 

shared iGenes, showing the consistent improvement from a multi-tissue approach. KEGG 

pathway and Gene Ontology analysis showed that the 1,219 genes were significantly 

enriched in metabolic pathways (P = 2.80e-06) and membrane (P = 5.10e-05) 

(Supplementary Table 2). Notably, 1,110 JTI-specific iGenes were replicated in 

PsychENCODE, compared to 311 UTMOST-specific iGenes, underscoring the substantial 

gain in replication rate (measured in an external dataset) that can be attained through JTI. 

Fig. 3c and 3d show the shared and method-specific iGenes from all pairwise comparisons 

between the methodologies.

Next, we conducted comparisons using GTEx v8 EBV-transformed lymphocytes as the 

training set and GEUVADIS LCLs data (N = 421) as the test set. In comparison with 

PrediXcan1 (NiGenes = 2,066), UTMOST (NiGenes = 2,926) and JTI (NiGenes = 3,352) 

identified more iGenes (Fig. 3e). UTMOST and JTI captured 87.5% and 93.2%, respectively 

(Fig. 3f, 3g, 3h), of the 2,066 PrediXcan-derived iGenes.

Type-I error and power analysis

Given the possibility of inflated type I error (e.g., due to shared samples across tissues), we 

conducted extensive simulations (see Supplementary Note) and found that JTI controls the 

type I error rate. Indeed, JTI, PrediXcan, and UTMOST displayed equivalent type I error 

rates (Extended Data Fig. 8 and Supplementary Table 3).

We also estimated their statistical power (see Supplementary Note). The predicted 

expression (i.e., genetically determined) levels were generated using actual empirical 

prediction performance (R2) values in the two external datasets (PsychENCODE [brain 

prefrontal cortex] and GEUVADIS [LCLs]) from the PrediXcan, UTMOST, and JTI models. 

Notably, the statistical power of JTI was substantially higher than that of UTMOST and 

PrediXcan across all sample sizes ranging from 5k to 500k (Extended Data Fig. 9) based on 

the PsychENCODE dataset. By comparison, based on the GEUVADIS dataset, JTI and 

UTMOST outperformed PrediXcan, with JTI showing a modest improvement in statistical 

power over UTMOST. Due to the availability of several brain regions in the GTEx resource, 

JTI benefits from leveraging tissue-similarity information across the relevant (brain) tissues, 

which may explain JTI’s substantial performance improvement. However, the reduced gain 

in power for JTI over UTMOST in LCLs may be due to the fact that gene expression in 

LCLs is more highly tissue-specific and, thus, JTI applied to this tissue has less to gain from 

leveraging tissue-similarity information.
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Application to GWAS data

We applied PrediXcan and JTI models to a continuous trait, low-density lipoprotein 

cholesterol (LDL-C, quantile-transformed), from a GWAS (UK biobank LDL-C; N = 

343,621) dataset (Methods, Fig. 4a). In general (Supplementary Fig. 1), the proportion of 

true positives π1 was higher for JTI (0.251) than PrediXcan (0.232). PrediXcan and JTI 

identified 411 and 680 associations in liver, respectively (PFDR < 0.05). Among the 411 

PrediXcan significant genes (PFDR < 0.05), 353 (85.9%) also showed nominal association 

under JTI (P < 0.05). Of the 411, nine were well-known lipid metabolism genes 

(Supplementary Table 4); JTI extended this number to seventeen (Fig. 4b). The SORT1-
PSRC1-CELSR2 cluster, LPA, FADS1, KPNB1, and additional genes were found to be 

associated with LDL-C level using either PrediXcan or JTI (Supplementary Table 5). Within 

the well-known SORT1-PSRC1-CELSR2 cluster, JTI and PrediXcan showed similar 

association signals for the putatively causal gene SORT1. For KPNB1, JTI showed a boosted 

signal (P = 4.80e-14) relative to PrediXcan (P = 3.95e-09). One possible interpretation is the 

greater imputation quality (Fig. 5a and 5e) for JTI (r2 = 5.16%) than for PrediXcan (r2 = 

1.91%). Similar levels of improvement were observed for ANGPTL3, PPARG, and LPA 
(Fig. 5b–5d and 5f–5h).

JTI identified 328 additional associations (JTI PFDR < 0.05, PrediXcan P > 0.05, 

Supplementary Table 5). The improved imputation quality for CETP (JTI: r2 = 5.30%; 

PrediXcan: not imputable) and FADS1 (JTI: 10.06%; PrediXcan: not imputable), which 

were among the 328, likely contributed to the significant associations from JTI (P = 

5.71e-32 and P = 9.19e-34 for CETP and FADS1, respectively). JTI identified some novel 

associations with LDL-C. A signal on CCDC92 (P = 7.14e-06) was amplified by JTI (P = 

6.52e-08) via higher r2 (JTI: 8.86%; PrediXcan: 2.46%). A genome-wide significant signal 

for POLK was identified only by JTI (P =3.49e-75). The association of POLK in liver was 

successfully replicated in both GLGC and BioVU (P = 5.70e-21 and P = 5.24e-03, 

Supplementary Table 6), with concordant direction of effect. The higher prediction quality 

of TIRAP resulted in a stronger association signal from JTI (r2 = 5.33%, P = 7.10e-06) than 

PrediXcan (r2 = 2.35%, P = 3.68e-03). The association between TIRAP and LDL-C was 

replicated in BioVU (P = 1.17e-02, Supplementary Table 6).

Performance comparison of PrediXcan and JTI was performed in additional GWAS datasets 

(Supplementary Table 7), including bipolar disorder, schizophrenia, blood glucose, HDL-C, 

Vitamin C, C-reactive protein, and creatinine, in relevant tissues. On average, PrediXcan and 

JTI identified 377.9 (range: 64 – 973) and 576.3 (range: 130 – 1192) significant genes (PFDR 

< 0.05), respectively.

Causal effect inference and heterogeneity estimation

We observed that the Mendelian Randomization “model” (θ = αβ, where θ is the trait effect 

vector and β is the expression effect vector for the instruments, and α is the gene-level 

causal effect on the trait) describes the summary data (i.e., the genetic effects in GWAS and 

gene expression data) reasonably well. That is, the causal effect (of the gene on a complex 

trait) has a consistent magnitude across gene expression based genetic instruments for highly 

polygenic traits based on theoretical (Methods) and empirical grounds20.
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Our primary aim is gene prioritization and determination of gene causal effect on a trait. We 

provide a novel approach to causal inference (Methods) and highlight possible sources of 

bias (PSB), including unmeasured confounding, weak instrument bias (Supplementary 

Note), and invalid instruments due to horizontal pleiotropy. Extending JTI, the MR-JTI 

framework implements causal effect inference (Fig. 1, Extended Data Fig. 1). By modeling 

the heterogeneity (mainly involving horizontal pleiotropy), MR-JTI further helps prioritize 

genes (Methods).

We performed causal inference on the 680 genes in liver with a significant JTI association 

with LDL-C (JTI PFDR < 0.05). Because of the generally modest sample size of 

transcriptome studies (e.g., compared to GWAS meta-analyses of complex traits), the 

genetic instruments may suffer from weak instrument bias (Supplementary Note); however, 

the F-statistic for JTI tended to be higher than for PrediXcan, driven by the higher variance 

in gene expression explained by the JTI models (Extended Data Fig. 3).

For each gene, we compared the MR-JTI estimate of the gene effect with the median 

estimator, i.e., the median of the Wald ratio estimates (a consistent estimator when less than 

half of IVs are invalid; Supplementary Note) across the cis-eQTLs (PFDR < 0.05) (Extended 

Data Fig. 10). A significant positive correlation was observed (Spearman r = 0.65, P < 

2.2e-16) in the actual data but no correlation from shuffled GWAS summary statistics 

(Extended Data Fig. 10). The LD-pruning at r2 = 0.2 may still leave some underlying 

correlation. We therefore conducted MR-JTI based on LD pruning at r2 = 0.01. The Pearson 

correlation (r) between the effect size (gene-level) using r2 = 0.2 and using r2 = 0.01 is 

0.909.

MR-JTI identified 138 significant genes (based on Bonferroni adjustment) compared to 30 

(4.41%) genes based on shuffled GWAS summary statistics. The well-studied gene SORT1 
(Supplementary Fig. 2) and nearby co-expressed genes PSRC1 and CELSR2 showed 

significant association with LDL-C level after heterogeneity control. Furthermore, LPA, 
TNKS, FASD3, PLTP, and LPIN3 are additional well-known genes showing significant 

associations (Fig. 6; Supplementary Table 8). The expression of POLK, the replicated LDL-

C-associated gene, attained positive correlation via MR-JTI, which indicates a putative 

causal role for POLK in lipid metabolism. The POLK protein (DNA polymerase kappa) 

performs DNA synthesis across damaged genomic DNA21. Copy loss or mutation of the 

gene has, in fact, been associated with impaired genome integrity and replication-

independent repair22. DNA-damage-induced accumulation of senescent cells in tissues leads 

to chronic inflammation and impairment of glucose and lipid metabolism23. Notably, 

significantly increased mutation frequencies have been observed globally in the liver tissue, 

an important site of cholesterol metabolism, in Polk −/− mice24. Consistent with this 

connection between POLK’s role in DNA repair and lipid metabolism, other DNA-repair 

related genes (SIRT1, SIRT6, PARP1) have also been found to play a role in lipid and 

glucose metabolism23.

To further investigate the performance of MR-JTI, we conducted MR analysis using MR-

Egger, MR-PRESSO, SMR-HEIDI, and weighed median. MR-JTI outperformed the other 

methods, identifying more significant results (138) than the second best-approach, the 
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weighted median (115). In addition, MR-JTI identified six genes from the literature-based 

silver standard (Methods), which is greater than the other approaches (Supplementary Table 

9). Notably, we found that the 138 genes were significantly enriched for genes in the silver 

standard gene list (P < 0.001, the overlap [6] is 13.3 times as much as the expected count 

[0.45]) and, separately, in a conserved “cholesterol biosynthetic process” module in mice (P 
= 0.013, the overlap [16] is 1.68 times as much as the expected count [9.53])25 

(Supplementary Note). This analysis provides additional support for 16 of the MR-JTI 

significant genes (including PLTP, FASD3, and POLK, labeled in Supplementary Table 8 

and 9).

DISCUSSION

By leveraging tissue similarity of gene expression and of epigenomic regulatory elements, 

our methodology significantly improved prediction accuracy especially in brain (which saw 

twice as many imputable genes) and other tissues with limited sample size. The improved 

imputation quality, in turn, increased the power for transcriptome-wide association.

We integrated DHS similarity across tissues in the weights used in the JTI loss function, 

exploiting the wide availability of DHS data. Further improvement can be expected from 

integrating other epigenomic datasets, including ATAC-seq, Hi-C, and histone modification 

ChIP-seq.

To evaluate the prediction performance, we applied the models to external data. Leveraging 

PsychENCODE, JTI resulted in almost double the number of iGenes, substantially 

outperforming UTMOST; leveraging GEUVADIS, JTI did not see as much improvement 

likely due to the smaller sample size of the reference panel and the high tissue-specificity of 

gene expression and DHS profile in LCLs. JTI identified more than 90% of the PrediXcan-

derived iGenes, showing the flexibility of our framework, i.e. for tissues that have a highly 

tissue-specific profile, JTI automatically reduces to PrediXcan via hyper-parameter tuning.

The substantial performance gain for JTI relative to UTMOST may be attributable to several 

factors. Firstly, tissue similarity based on shared regulatory elements contains relevant 

information. Secondly, in contrast to UTMOST, JTI estimates only one effect size (not a 

different effect size) for each SNP across similar tissues. Thirdly, the flexible input window 

size for JTI captures much of the causal cis-regulatory information with reduced noise. Most 

multi-tissue eQTLs are closer to the gene body26,27. Fourthly, in general, the genetic 

architecture of gene expression may have a better fit with JTI’s model (i.e., a middle ground 

between a sparse and polygenic architecture).

Applied to the LDL-C GWAS data, JTI showed consistent effect with PrediXcan for the top 

hits and detects additional associations for genes that were not well-imputed by PrediXcan. 

Indeed, a considerable number of gene-level associations were identified only by JTI. 

Among these genes, some were expected (including PPARG, KPNB1, PCSK9) while some 

were novel (e.g., POLK, TIRAP).

Horizontal pleiotropy is a primary challenge for MR-based studies, especially for a gene-

based MR. LD contamination – the scenario in which (certain) SNP predictors for the gene 
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under test are in LD with variants with an effect on the trait through a different causal gene 

in a GWAS locus – is an instance of horizontal pleiotropy (Extended Data Fig. 1). In our 

study, we developed a unified framework for TWAS and MR, with MR-JTI providing not 

only an imputation and association methodology (as PrediXcan has done), but also a causal 

inference framework (which was absent from PrediXcan). Due to widespread pleiotropy28, 

we built a flexible framework to model the heterogeneity, with an approximately unbiased 

causal effect estimate. Aside from population stratification, which should have reduced 

effect in our ancestrally-homogeneous samples, the instruments should be independent (due 

to random assortment of genetic variation at gamete formation) of unmeasured confounders 

typically present in observational epidemiological studies which arise after conception. Any 

inflation may reflect the residual influence of weak instrument bias or horizontal pleiotropy 

due to invalid instruments. The enrichment of MR-JTI significant genes in the literature-

based silver standard and, separately, in the conserved cholesterol modules in mice is further 

evidence that using MR-JTI for prioritization considerably increases the likelihood of 

capturing true causal genes.

MR-JTI differs fundamentally from FOCUS29 and other approaches to causal inference. 

Both MR-JTI and FOCUS seek to prioritize genes based on the evidence for causality. 

FOCUS extends probabilistic SNP fine-mapping approaches, modeling the correlation 

among TWAS signals, to obtain credible gene sets containing the causal gene at a given 

confidence level. In contrast, MR-JTI aims to test for nonzero direct effect of the gene on the 

trait and to model instrumental-variable-level heterogeneity (mainly involving horizontal 

pleiotropy). Furthermore, MR-JTI differs from colocalization approaches30, which aim to 

show that the same genetic instruments are causal for expression and for the trait. For a gene 

expression phenotype to be causal for a trait, having shared causal variants is necessary, but 

not sufficient.

JTI’s current implementation has some limitations. For some GTEx tissues, there is not a 

matched cell type with ENCODE or Roadmap DHS dataset. We could expect further 

improvement with more suitable cell types that capture the shared regulatory elements. 

Furthermore, shared samples across tissues were used to perform the training. Nevertheless, 

performance evaluation of JTI prediction in external datasets showed reliable prediction 

quality estimates, and extensive simulations demonstrated the type I error from the 

association was well-controlled. Finally, JTI had a higher replication rate than PrediXcan, 

indicating robust associations among the discovered genes.

In conclusion, we have developed a methodology with substantially improved statistical 

power for post-GWAS analysis. In principle, the approach offers an integrative framework 

for incorporating the vast functional genomic datasets that are being generated by genomic 

consortia to functionally annotate the genome. Finally, we implemented a broadly useful 

causal inference engine, leveraging the MR framework, to help prioritize the discovered 

genes for functional follow-up studies.
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METHODS

Tissue-specific gene expression model building

PrediXcan performs gene expression imputation within a tissue using Elastic Net 

regularization, as previously described1. Let y1, y2, …, yn be the gene expression level in a 

given tissue for the n samples. A PrediXcan gene model solves the following minimization 

problem:

β = argminβ 1/2 ∑i = 1
n yi − xiTβ

2
+ λ 1 − α

2 β 2
2 + α β 1 (1)

The L1 penalty for the effect-size vector β induces sparsity while the L2 penalty promotes 

grouping effect. The parameter α gives the relative weight of the two penalties; here we used 

α = 0.50. Equation (1) has a Bayesian formulation; solving the minimization problem is 

equivalent to determining the marginal posterior mode of β | y,λ1,λ2 assuming the following 

choice of prior distribution for β:

P β αexp −λ2 β 2
2 − λ1 β 1

which is a “combination” of Gaussian and Laplacian priors.

In this study, gene models were trained in the GTEx7,8,20 v8 data in 49 tissues. The gene 

expression level used for training and testing was the residual of the normalized expression 

level after adjusting for covariates: gender, platform, first five principal components, and 

PEER factors for each tissue20. Biallelic SNPs within 1 Mb of the gene were used as 

features. We included SNPs with minor allele frequency (MAF) > 0.05 and in Hardy-

Weinberg equilibrium (P > 0.05). LD pruning was performed for SNPs at the r2 = 0.9 level. 

(No significant difference in prediction quality was observed31.)

Building multi-tissue gene expression prediction models

We developed an alternative imputation approach, JTI, which borrows information across 

tissue transcriptomes. The approach leverages information from the other tissues in a tissue-

dependent manner. Furthermore, JTI implements a novel approach to integrating high-

throughput functional genomic data (such as from reference epigenomes generated by 

ENCODE32 and Roadmap33) to improve prediction.

Let y = (y1, y2, …, yn) be n observations. In our case, each observation is a tissue-sample 

pair. Let X = (x1, x2, … xn)T be the n × p feature matrix, where p is the number of features 

(genetic variants) for a gene expression model. Let βtrue = (β1 true, β2 true, … βp true)T be the 

effect-size vector for the p features. We estimate the effect-size vector βtrue by solving the 

following optimization problem over all β:

β = argminβ 1/2 ∑i = 1
n wi yi − xiTβ 2 + λ 1 − α

2 β 2
2 + α β 1 (2)
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Here ‖β‖2 and ‖β‖1 are the L2 and L1 norm for β, respectively. The weight wi on the i-th 

observation comes from the similarity matrix generated from the tuned hyper-parameters 

(see below). The weights are normalized to add up to the number of observations n through a 

scaling factor: wi = wi, old
n

∑j = 1
n wj, old

.

This model differs from the tissue-specific model (PrediXcan; equation [1]) in applying 

weights on tissue-sample pairs. Note the form of the penalty term, a combination of LASSO 

and ridge penalties, remains the same as in equation (1): R β = 1 − α
2 β 2

2 + α β 1, as we 

want the gene expression model under JTI to continue to maintain the balance between 

sparsity and grouping effect for the features. The loss function L(y, f(x,β)) now incorporates 

the weight (see below for definition). Equation (2) has a natural Bayesian formulation that is 

equivalent to the log of the following likelihood:

P y X, β α∏i = 1
n e−L yi, f xi, β

and the following choice of prior for β:

P β αexp −λR β

The estimated model β  (from equation [2]) is therefore equivalent to maximizing the 

conditional probability P(β | y), i.e., finding the posterior mode. In our current 

implementation, the penalty hyper-parameter λ was obtained from cross-validation and 

fixed. We performed external validation and extensive simulations to evaluate the 

performance of the model (Supplementary Note) in prediction and association analysis given 

the potential influence of non-linear effects and the shared samples across tissues.

As in the single-tissue PrediXcan models, JTI models were trained using the same data from 

the GTEx7,8,20 v8 release. JTI used a flexible cis window size for model training. Since (1) 

most eQTLs (especially cross-tissue) tend to be close to the transcription start site (TSS)8,26 

and (2) a smaller window size will have less LD contamination (one of the major challenges 

of traditional TWAS with its lack of control for horizontal pleiotropy)34, for each gene, the 

cis window size was determined based on cross-validation performance.

Incorporating regulatory elements

Cell-type specific DNase I hypersensitive sites (DHS), representing chromatin accessibility 

and potential trans-acting factor occupancy, were used as markers of regulatory regions. 

Some of the tissues in GTEx were mapped to the same cell type in ENCODE/Roadmap 

because of the lack of cell-type-specific data (Supplementary Table 10). Wig format DHS 

peaks were downloaded for each tissue/cell type, and quantile normalization was performed 

across each cell type. For each gene, the cis DHS similarity (in the region 10kb upstream 

and downstream of TSS) between the focal tissue and the other tissues was estimated by a 

monotonic function-based Spearman correlation (using “similaRpeak”35).
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Similarity matrix

One approach to defining the weights (wi) in equation (2) is to set them to a constant, 

thereby weighing all tissue-sample pairs equally in the loss function. However, borrowing 

information across tissues may substantially improve prediction performance relative to the 

tissue-specific models.

For each tissue and gene pair, we considered the quantile-normalized gene-level DHS profile 

D (for a cell type that maps to the tissue) across the local region and the median gene 

expression level E (in the tissue) across the individuals. For a pair of tissues s and t, we 

calculated the correlation rD in DHS profile D (gene-level similarity) and the correlation rE 

in median gene expression E across the genes in the genome (tissue-level similarity) 

between the tissues. We assumed that the similarity between the two tissues is a 

(sufficiently) smooth function S(s, t) = f(rD, rE) of the correlations rD and rE. (More 

generally, this function can be generalized to be defined on an n-dimensional vector of 

correlations, such as from additional epigenome data.) One can therefore define S(s, t) as the 

Taylor expansion in (rD, rE) around (0, 0):

S s,t = ∑i, jaijrDirEj .

If the DHS profile and gene expression level are perfectly correlated between the two tissues 

(i.e., rD = rE = 1), we would define the two tissues to be perfectly correlated, which would 

impose the constraint ∑i,jaij = 1. For computational tractability, we assumed that this 

similarity is driven by the leading monomial rD
mrE

n. Note that in the simple case of the 

similarity matrix being equal to the identity matrix:

S s,t = 1, s = t
0, s ≠ t

i.e., where observations or tissue-sample pairs from a different tissue are given weight zero 

while observations in the test tissue are given weight one, then the loss function in equation 

(2) is the squared error for standard EN and consequently, JTI reduces to single-tissue 

PrediXcan as a special case.

In contrast to other methodologies5, our approach assigns a weight (wi) to each observation i 
using relevant information on transcriptional regulation. For a given target tissue s, 

observations, i.e., tissue-sample pairs, from a tissue t with similar profiles on transcriptional 

regulation to the target tissue s are given higher weights.

Tuning hyper-parameters using grid search

We conducted hyper-parameter optimization on the similarity matrix using grid search. The 

choice of values for the hyper-parameter pair (m,n) may vary with tissue and gene, allowing 

borrowing of information from the other tissues in a gene- and tissue- dependent manner. 

The values for m and n were from the fixed space:
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Ω = m, n ∈ ℤ × ℤ m, n ∈ 40, 41, 42…, 4L

(In our analysis, L = 3.) In general, one can use any compact subset Ω of ℤ × ℤ; however, the 

diameter of the lattice Ω determines the computational demands of the grid search. For each 

gene, five-fold cross-validation was performed for each pair (m,n). The pair with the 

minimal tuning error was chosen as the optimal pair.

S(s, t) in log-scale is a weighted sum of the correlations, where the weights are given by the 

hyper-parameters. Thus, the grid search attempts to find the nearly optimal combination of 

weights for the concordance measures from the input data (in this case, expression and 

DHS). Furthermore, single-tissue PrediXcan is a special instance of JTI, with the similarity 

matrix given by the identity matrix. This similarity matrix is equivalent to a specific choice 

of hyper-parameters (“at infinity”), i.e., PrediXcan and JTI are equivalent at m= n= ∞. This 

choice would be expected to perform well for genes with highly tissue-specific genetic 

regulation or expression profile (and which requires no leveraging of the similarity with any 

of the remaining tissues). As the hyper-parameter pair values – obtained from cross-

validation – move away from infinity, JTI incorporates the similarity information in order to 

improve the prediction performance for the tissue under test.

Prediction performance

For each gene, we performed five-fold cross-validation for each tissue. The model 

performance was estimated using the correlation between the prediction ytest = Xtestβ  and 

the actual data y. A gene with r = corr y, ytest > 0.1 and P < 0.05 was considered an 

imputable gene (iGene). The threshold r > 0.1 was justified based on simulations 

(Supplementary Fig. 3) and the testing performance in an external dataset (Supplementary 

Fig. 4). Genes that satisfied the loose threshold P < 0.05 from the imputation performance 

were kept so as not to severely limit the number of genes for the downstream association 

analysis.

Compared to the single-tissue prediction model, the gain in imputation performance (Δr2) 

and the increased proportion of imputable genes (ΔpiG) were plotted as functions of tissue 

sample size (N). To assess the impact of tissue sample size on model performance, we also 

built PrediXcan and JTI models using GTEx v6p data.

Comparison with existing methodologies

For comparison with other methodologies, we utilized 415 brain prefrontal cortex samples 

from PsychENCODE and 421 LCL samples from GEUVADIS37 as external test data. To 

quantify the gain in prediction performance from leveraging the cross-tissue information, we 

ran several single-tissue approaches: the single-SNP “top eQTL” method and two multi-

variant Bayesian approaches (performing 5-fold cross validation), namely, Bayesian Sparse 

Linear Mixed Model (BSLMM) using FUSION with default parameters3 and Dirichlet 

Process Regression (DPR)19, a nonparametric method with a Dirichlet process prior on 

effect-size variance, using ‘TIGAR’19.
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We compared the prediction performance of JTI and UTMOST in the external datasets. 

However, the original UTMOST code may artificially inflate the prediction quality 

(Supplementary Note). We modified UTMOST by using uniform hyper-parameter pairs, 

which resolved the inflation (Supplementary Note). Compared to the performance in the 

external data, the cross-validation performance of the original UTMOST showed substantial 

inflation (Extended Data Fig. 6c). Our modification facilitated comparison of UTMOST 

with PrediXcan and JTI (Extended Data Fig. 6 and Extended Data Fig. 7).

Application to GWAS: discovery and replication

We developed JTI and PrediXcan27 models using the GTEx v8 transcriptome data in 49 

tissues and applied the models to GWAS data (Supplementary Table 1 and Supplementary 

Table 8 for sample sizes). For each GWAS sample, we estimated the genetically determined 

component yGWAS using XGWAS,g, the genotype matrix of the contributing variants to the 

imputation model for the gene g:

yGWAS = XGWAS, gβ (3)

The posterior predictive distribution of yGWAS given the observations yreference from the 

reference panel allows one to estimate the uncertainty:

P ynew yreference = ∫ P ynew β, yreference P β yreference dβ

For primary illustration, we focus on the quantile-transformed LDL-C GWAS summary 

statistic data from UK biobank (released by Ben Neale Lab on 08/08/2019, http://

www.nealelab.is/uk-biobank/). PrediXcan and JTI models for liver tissue were applied to 

summary-statistics. The SNP-SNP covariance matrices were estimated in the GTEx v8 

samples. Replication was conducted in both the Global Lipids Genetics Consortium (GLGC) 

GWAS summary statistics (95,454 samples)37 and the BioVU repository (18,394 European 

ancestry samples)38.

In addition, we compared the association results of JTI and PrediXcan for additional traits, 

including HDL-C, glucose, schizophrenia (SCZ), bipolar disorder (BIP), Vitamin D, C-

reactive protein, and rheumatoid factor (Supplementary Table 7).

Causal effect inference and the calculus of MR-JTI

MR-JTI performs multiple-instrumental-variable causal effect inference (Fig. 1) using 

summary data. The primary aim is to identify genes with causal effects on the trait of 

interest. However, the estimate of the causal effect of a gene on the trait, using the imputed 

expression – a weighted allele score – as a single instrumental variable, may be biased given 

invalid instruments in the allele score. If all instrumental variables are valid, then the 

estimated causal effect (α) from JTI is unbiased, and JTI (without heterogeneity control) and 

Mendelian Randomization coincide. In our model-based approach, we estimate the 

contribution of each genetic instrument to the overall heterogeneity given the possibility of 
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invalid instruments16. Under the Instrument Strength Independent of Direct Effect (InSIDE) 

assumption, this approach yields a consistent estimate of the causal effect.

For causal inference of the gene-level effect on a trait, we must obtain an unbiased estimate 

in the presence of invalid instruments. PrediXcan provided an association test but did not 

attempt to control heterogeneity. Consider J independent genetic instrumental variables x1, 

x2, …, xJ to test for the effect of the gene g on the phenotype y. For the j-th variant, let βj 

and θj be its effect size on gene expression and on the phenotype, respectively, from 

summary statistics on genetic associations. For a causal gene on the phenotype, the 

relationship between the instrumental variable xj and g and the relationship between xj and 

y, for all J valid instrumental variables, are given by the following model:

E g xj = x = aj + βjx

E y xj = x = bj + θjx

The relationship between the gene expression trait g and y is given by:

E y g = c + αg

Here α encodes the (nonzero) direct effect of the gene on the trait; aj and bj are scalars that 

may vary with the instrumental variable; and c is an intercept term (i.e., the value of the trait 

when gene expression is zero) for the gene-phenotype relationship. Assuming that these 

linear relationships hold and that each xj is a valid instrumental variable, then a direct causal 

effect of g on y (i.e., ∂y
∂g ≠ 0) is equivalent to the “chain rule” (with a nonzero instrumental-

variable effect on y, i.e., θ ≠ 0 , only through g):

θi = ∂y
∂xi

= ∂y
∂g

∂g
∂xi

= αβi

or

θ = ∇y = ∂y
∂g ∇g = αβ

where ∇ is the gradient operator. We note that the middle equality does not require ∇y and 

∇g to be constant (that is, y and g to be linear in the instrumental variables), and causal 

inference can be performed in a more general context. Here, the partial-derivative operator 
∂

∂xi
 applied to a function f (e.g., y or g) is defined as follows:

∂f
∂xi

x : = lim
ϑ 0

E f xi = x + ϑ − E f xi = x
ϑ
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Marginal relevance (∇g ≠ 0), confounder independence ( ∂U
∂xi

= 0, for each confounder U and 

each instrumental variable xi), and exclusion restriction (i.e., ∂y
∂g*

 exists only for g* = g) are 

encoded in the relationship. Let us suppose that there are additional causal pathways g*,k by 

which the instrumental variables influence the phenotype y, resulting in a violation of 

exclusion restriction; that is, ∂y
∂g * , k

≠ 0 for each k. Then, the generalized chain rule yields:

θ = αβ + ∑
k

∂y
∂g * , k

∇g * , k

In this case, a nonzero β (from the assumption of marginal relevance) and a nonzero θ (from 

the association of the same instruments with the trait) do not necessarily imply a causal 

effect of the test gene g on the trait (i.e., α ≠ 0).

Here, we model the heterogeneity

h: = θ − αβ = ∑
k

∂y
∂g * , k

∇g * , k

as a linear sum of the contribution of independent instrumental variables since (a) horizontal 

pleiotropy (i.e., the existence of a causal pathway due to g*,k distinct from the test gene g) 

can be widespread, (b) whether an instrumental variable is valid is not a priori known in 

most cases (so that ruling out horizontal pleiotropy g*,k is not easily verifiable and the 

corresponding effect, i.e., ∂y
∂g * , k

 with ∇g*,k ≠ 0, must be inferred), and (c) weak instrument 

bias (a form of finite sample bias in the estimate of ∇g or β) may cause departure from 

asymptotics. The heterogeneity h is the aggregate effect of all PSB. We then perform 

parameter estimation:

ℎ = θ − αβ = ∑k = 1
J δkek + ωl (4)

where θ =def θj  and β =def βj  are J-dimensional vectors with entries given by the estimated 

effects on trait and gene expression, respectively, of the instrumental variables (from GWAS 

and the eQTL data, respectively), ek is the unit vector with 1 in the k-th position and 0 

elsewhere, and l =def lj  is the vector of LD-score for all the variants with its estimated effect 

ω. Note that in this model, when all instrumental variables are valid, then δj = 0, for all j and 

ω = 0.

An alternative approach is to model h, with each component a random effect. In particular,

θ N αβ, σθ
2I
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β N β, σβ
2I

h = θ − αβ N 0 , φ2I

where φ2 = σθ
2 + α2σβ

2 and σθ
2 is upward-biased by horizontal pleiotropy. We obtained an 

expression for the log likelihood of the GWAS and eQTL effect size data (assuming the 

independence of the datasets):

logL = − 1
2 ∑

i = 1

J βi − βi
2

σβ
2 + ∑

i = 1

J θi − αβi
2

σθ
2 − J

2 log 4π2σβ
2σθ

2

We define an estimator for α as follows:

α* = argmax
α

sup
β

logL β, α = argmax
α

logL β*, α

Where β* is a vector with i-th component given by:

β * , i =
σθ

2βi + αθiσβ
2

σθ
2 + α2σβ

2

However, the estimator α* is statistically inconsistent.

To detect heterogeneity (equation (4)), we are looking for deviation from this Wald ratio 

estimate.

α = θj
βj

(5)

The length of the vector ∑k = 1
J δkek + ωl, which is the difference-vector between the GWAS-

defined vector θ and the expression-defined vector αβ, provides an estimate of the overall 

heterogeneity. One can perform the following LASSO optimization problem to estimate the 

gene causal effect (α), the contribution (δj) of the j-th instrument to the heterogeneity, and 

the effect (ω) of LD confounding:

α, δ, ω = argmin
u, vj, w

∑
j = 1

J
θj − uβj − vj − wlj

2 + λ vj 1 + u + w
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The optimization problem aims to minimize the objective function (the error in predicting 

the GWAS effect at a variant from the regulatory effect on expression, the causal effect of 

the gene on the trait, and the heterogeneity) while enforcing sparsity; that is, we estimate the 

heterogeneity through optimization in the search space, preferring a model with fewer 

predictors and about the same explanatory power. However, LASSO provides a weakly 

consistent estimator with a complicated asymptotic distribution39. We sought to estimate the 

standard error for each of these estimates using the bootstrap. However, the bootstrap is 

inconsistent40,41 in case one or more of the regression parameters is zero (e.g., in the 

presence of one more valid instrumental variable)47,48. We define a modified LASSO 

estimator S =def α*, δ*, ω*  of the true value S.

S =def α*, δ*, ω* =
α*, δj, * , ω*if α* , δj, * , ω* ≥ 1

J + 2respectively

0if α* , δj, * , ω* < 1
J + 2respectively

We utilized a modified (threshold) residual bootstrap LASSO approach40,41. This approach 

provides an estimator Tm, * *  that has the property of being consistent, i.e.,

plim
m ∞

Tm, * * = S

That is, the estimator Tm, * *  converges in probability to S, i.e., for any fixed τ > 0,

lim
m ∞

Pr( |Tm, * * − S | > τ) = 0

MR-JTI analysis of GWAS data

The genetic associations with exposure (eQTLs in the cis-region) and with the GWAS trait 

(QTLs) were analyzed in European-ancestry samples (thus reducing the possibility of 

confounding) in a two-sample Mendelian Randomization framework using summary 

statistics data. There is no sample overlap between the eQTL and GWAS datasets. Our 

approach leverages multiple genetic instruments, consistent with the observed allelic 

heterogeneity20 in gene expression, and estimates the heterogeneity.

We harmonized genetic variants across the eQTL and GWAS datasets to ensure that the per 

additive copy of the same allele was used in the MR-JTI analysis, following the guidelines 

for MR investigations42,43. In our study, the genotype resource for both the eQTL and the 

GWAS datasets were coded on the positive genomic strand. Only biallelic variants were 

included in the MR-JTI analysis. Allele and strand information were used to detect potential 

strand mismatch. In addition, palindromic variants with a MAF greater than 0.45 were 

removed since it would be nearly impossible to verify that the alleles had been correctly 

orientated42. LD pruning was performed using PLINK (--indep-pairwise 50 5 0.2) to 

decorrelate the SNPs in the cis-window.
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A characteristic feature of our approach is the testing of genes in the human transcriptome as 

exposures, resulting in a large number of hypotheses. We defined Bonferroni-adjusted P < 

0.05 as significant. Although this approach is conservative (and Mendelian Randomization 

may suffer from low power), we aim to identify potentially causal genes with the strongest 

support from an integrative GWAS-eQTL analysis.

Furthermore, although the estimated causal effect of the gene on the trait, as derived from 

Mendelian Randomization, must be interpreted with caution (as the MR guidelines have 

pointed out42), our approach ultimately seeks to prioritize genes based on the presence of 

causal effect on the trait, providing a resource for further functional studies (e.g., CRISPR). 

We conducted analyses on a GWAS of LDL-C, using a literature-based silver standard 

(Supplementary Table 4), to compare MR-JTI and other MR approaches (see Supplementary 

Note).

Correlation among effect size estimates and Mendelian Randomization analysis

We evaluated the impact of the correlation among the GWAS effect size estimates θj′s and, 

similarly, the correlation among the regulatory effect size estimates βj′s on the analysis. 

Given effect size estimates θj and θk on the trait for the j-th and k-th instrument, respectively, 

the following relationship holds:

corr θj, θk = 2 ℎj2ℎk
2

1 − ℎj2 1 − ℎk
2

where ℎj
2 and ℎk

2 are the per-SNP contribution to trait variance (heritability) of the j-th and k-

th instrument, respectively. For a highly polygenic trait, this quantity is small owing to the 

modest per-SNP contribution to the trait variance. For gene expression with allelic 

heterogeneity, the corresponding quantity corr βj, βk  is small for a large proportion of genes 

(using the imputation quality from the training as an estimate of gene expression 

heritability). Thus, the pairwise correlations between these effect sizes are small, and the 

simple model θ = αβ (i.e., without the higher-order terms from the pairwise terms) is a good 

fit, as was also shown empirically by the recent study20.

Statistical tests

All statistical tests are two-sided unless otherwise stated.

CODE AVAILABILITY

The code for JTI and MR-JTI and for reproducing the figures in this paper is available on 

github (https://github.com/gamazonlab/MR-JTI).

DATA AVAILABILITY

The protected data for the GTEx project (for example, genotype and RNA-sequence data) 

are available via access request to dbGaP accession number phs000424.v8.p2. Processed 

GTEx data (for example, gene expression and eQTLs) are available on the GTEx portal: 
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https://gtexportal.org. The URLs of the summary statistics datasets of all the GWAS meta-

analyses analyzed in the paper can be found in Supplementary Table 7. All summary results 

from the gene-based analyses are in Supplementary Tables. The JTI GTEx models (as well 

as the PrediXcan and [modified] UTMOST models we generated) are available for 

download on Zenodo (http://doi.org/10.5281/zenodo.3842289). The PsychENCODE (http://

doi.org/10.5281/zenodo.3859065) and GEUVADIS (https://doi.org/10.5281/

zenodo.3859075) models have also been deposited.

Extended Data

Extended Data Fig. 1. TWAS could be biased by possible sources of bias (PSB), including invalid 
instrumental variables (IVs) due to horizontal pleiotropy and weak instruments.
Conventional TWAS, such as PrediXcan, can be viewed as Mendelian Randomization with 

multiple IVs, but without horizontal pleiotropy control. a, A major source of false positives 

from TWAS is the use of invalid IVs due to horizontal pleiotropy. b, Horizontal pleiotropy 

can arise in multiple ways. For example, it can come from LD-induced invalid IVs, i.e., LD 

contamination. If we are testing the significance of Gene A, but one of the SNPs (yellow) in 

the prediction model tags another coding (red) or regulatory (blue) variant that is causal for 

the trait through another Gene B, causal effect estimation will be biased. c, Even without LD 

contamination, the estimation may also be biased by the inclusion of weak or false positive 

eQTLs in the prediction model for Gene A. In this case, the effect of the weak or false 

positive eQTL for Gene A on the trait is actually mediated by another Gene B (by affecting 

coding or regulation). More generally, weak instrument bias is a type of finite sample bias; it 

arises in finite samples where the gene expression (“exposure”) is only weakly correlated 

with the instrument set. Both b, and c, result in d, a biased estimate of gene causal effect on 

trait. We estimate the heterogeneity due to PSB using threshold-based residual bootstrap 
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LASSO (see Methods). Our approach estimates the heterogeneity due to invalid IVs and 

gives an adjusted estimate of the gene causal effect on trait.

Extended Data Fig. 2. The gene expression similarity matrix.
The median expression level (log2-transformed TPM) across all the samples of a given tissue 

was used to evaluate the correlation (Pearson) of tissue-tissue pairs across the transcriptome. 

The similarity map was generated by performing hierarchical clustering.
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Extended Data Fig. 3. Comparison of prediction performance between PrediXcan and JTI in all 
GTEx v8 tissues.
We compared the performance of PrediXcan and JTI using the Pearson correlation r between 

predicted and observed expression levels for each of the 49 GTEx v8 tissues with more than 

70 samples. The white box edges depict interquartile range, whiskers 1.5× the interquartile 

range, center black dot marks the median level, and the outlines display the kernel 

probability density. The median correlation is also shown below the x-axis label.
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Extended Data Fig. 4. Prediction performance comparison between JTI and three single-tissue 
approaches (top eQTL, BSLMM, and DPR) in two independent datasets.
Prediction models were trained using BLSMM (5-fold cross-validation FUSION default 

setting) and JTI (see Methods) in GTEx v8 a, brain frontal cortex BA9 region and d, EBV-

transformed lymphocytes. The x-axis and y-axis represent the Pearson correlation r between 

the predicted expression and observed expression in external (non-GTEx and independent) 

datasets. i.e., a, PsychENCODE and d, GEUVADIS. b, and e, show the corresponding 

comparisons between JTI and top eQTL, which simply models the genetically regulated 

expression using the top eQTL. c, and f, We also compared the prediction performance with 

the DPR model, a nonparametric Bayesian method with a Dirichlet process prior on effect-

size variance, using the software tool ‘TIGAR’ with 5-fold cross-validation. The green, 

purple, and pink dots denote genes imputable using only JTI, BSLMM, top eQTL, and DPR, 

respectively. The black and grey dots denote genes consistently imputable and not 

imputable, respectively, using both methods.
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Extended Data Fig. 5. JTI and PrediXcan showed a substantial increase in iGene discovery 
between GTEx v6p and v8.
We compared the number of imputable genes across all the tissues between GTEx v6p 

(yellow) and v8 (green). The prediction performance of GTEx v8 was superior to v6p for 

both a, PrediXcan and b, JTI in all tissues. The number of iGenes can be found in 

Supplementary Table 1.
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Extended Data Fig. 6. Prediction performance comparison among PrediXcan, JTI, original 
UTMOST, and modified UTMOST for brain frontal cortex BA9.
We compared the cross-validation prediction performance (r2) in GTEx (internal, brain 

frontal cortex BA9) and the prediction performance in PsychENCODE (an external test data 

set, brain prefrontal cortex) among a, PrediXcan, b, JTI, c, original UTMOST, and d, 

modified UTMOST. The lower figures e, f, g, and h, are the zoom-in version of the 

corresponding upper figures. The yellow, green, and purple dots indicate high, medium, and 

low density.
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Extended Data Fig. 7. Prediction performance comparison among PrediXcan, JTI, original 
UTMOST, and modified UTMOST for EBV transformed lymphocytes.
We compared the cross-validation prediction performance (r2) in GTEx (internal, EBV 

transformed lymphocytes) and the prediction performance in GEUVADIS (an external test 

data set, LCLs) among a, PrediXcan, b, JTI, c, original UTMOST, and d, modified 

UTMOST. The lower figures e, f, g, and h, are the zoom-in version of the corresponding 

upper figures. The yellow, green, and purple dots indicate high, medium, and low density.
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Extended Data Fig. 8. Type I error rate for PrediXcan, UTMOST, and JTI.
The Q-Q plots show the type I error from applying PrediXcan, UTMOST, and JTI models in 

a, b, and c brain frontal cortex BA9 and d, e, and f, Liver. The blue dashed lines show the 

95% CI of the expected -log(P). Type I error rate for all the tissues can be found in 

Supplementary table 3.
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Extended Data Fig. 9. TWAS power analysis for PrediXcan, UTMOST, and JTI.
The true expression level of randomly sampled causal genes and the effect size for each gene 

on trait were simulated. In this model, each gene, on average, contributed 0.5% to the 

phenotypic variance. For each gene, the predicted (i.e., genetically determined) expression 

level was generated according to the proportion of variance explained (PVE), based on the 

actual prediction performance (R2) in two external datasets (a, PsychENCODE and b, 

GEUVADIS), for each of the three imputation approaches (PrediXcan, UTMOST, and JTI). 

Power was estimated as the proportion of simulations that attain significance (defined as 

Bonferroni adjusted P < 0.05).
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Extended Data Fig. 10. Comparison of the estimated gene effect size on LDL-C from MR-JTI 
and the median estimator (median level of Wald ratio estimates across all cis-eQTLs).
For each gene, the median estimator was calculated as the median of the Wald ratio 

estimates across all the cis-eQTLs. The Wald ratio estimate for a cis-eQTL is the ratio of the 

estimate for the GWAS effect size and the estimate for the eQTL effect size.

a, Positive correlation between the estimated gene effect size from MR-JTI and the median 

estimator effect size (Spearman r = 0.72, P < 2.2e-16) was observed. b, No significant 

correlation was observed between the median estimator and the MR-JTI estimate from 

shuffled GWAS summary statistics data. Furthermore, note that MR-JTI’s type I error is 

well-controlled.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: The JTI framework: multi-tissue gene expression imputation model and causal inference 
engine.
To improve imputation in a target tissue (blue box), JTI borrows information from the 

remaining tissues (green box) by leveraging tissue-tissue similarity from expression and 

epigenomic (e.g., ENCODE/Roadmap) profiles. For JTI, the prediction model is generated 

via cross-validation by solving an optimization problem (Methods) that incorporates data on 

gene expression similarity and DHS profile similarity across tissues. Prediction performance 

is assessed through cross-validation in GTEx and validation in additional external datasets 

(e.g., PsychENCODE and GEUVADIS). In trait mapping applications, prediction models 

can be applied to GWAS summary statistics to identify robust gene-level associations. 

Finally, causal effect inference is performed for each of the genes from the association 

analysis, using a novel summary statistics-based approach, MR-JTI. To this end, MR-JTI 

estimates the confounding due to invalid genetic instruments on the trait, providing an 

approximately unbiased causal effect estimate, and implements a statistical test of the null 

causal hypothesis. The LD contamination, a major challenge for TWAS, is addressed by a 

variable selection process to estimate the per-instrument contribution to heterogeneity 

(Methods).
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Fig. 2: Comparison of the prediction performance between PrediXcan and JTI.
a, The number of imputable genes (iGenes) is greater for JTI than for PrediXcan in all GTEx 

(v8) tissues. b, Most (92.9% on average) of the iGenes under PrediXcan are also iGenes 

under JTI. c, The increase in the proportion of iGenes (ΔpiG) is negatively correlated 

(Spearman r = −0.80, P = 4.4e-12) with tissue sample size; thus, tissues with small sample 

sizes, which therefore have more to gain, tend to show higher ΔpiG. Tissue panels with more 

modest sample sizes can benefit more and indeed display greater performance gains under 

JTI. Tissue panels that have the largest sample sizes also show performance gains though 

less, as expected.

Zhou et al. Page 33

Nat Genet. Author manuscript; available in PMC 2021 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: Comparison of the performance of the various methods using external transcriptome data 
from GEUVADIS LCLs (a-d) and PsychENCODE prefrontal cortex tissues (e-h).
a, e, The Venn diagram plots show the overlap of the iGenes (defined by r > 0.1 and P < 

0.05) from PrediXcan, UTMOST, and JTI. b, f, The bar plots of the number of iGenes using 

the different training models. c, d, g, h, The scatter plots of the correlation r between 

predicted and observed expression. Comparison of c, g, UTMOST and d, h, JTI with 

PrediXcan. The orange, green, and blue dots denote genes only imputable using UTMOST, 

JTI, and PrediXcan, respectively. The black and grey dots denote genes consistently 

imputable and not imputable, respectively, using both methods in the comparison. The 

specific training and test datasets used are shown on the left. Note, for example, that we used 

GTEx EBV-transformed lymphocytes as training set and GEUVADIS LCLs (a matched cell 

type) as test set in the bottom-half analyses.

Zhou et al. Page 34

Nat Genet. Author manuscript; available in PMC 2021 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: Manhattan plot for LDL-C level from the application of PrediXcan and JTI models in 
liver to UK biobank LDL-C GWAS summary statistics.
a, LDL-C TWAS Manhattan plot showing the association results from application of 

PrediXcan (blue) and JTI (green) models. The known genes (from the KEGG cholesterol 

metabolism pathway and the literature-based silver standard) and additional genes are shown 

in dark circle and light circle, respectively. Number of b, known genes and c, additional 

genes that were significantly associated (PFDR < 0.05) with LDL-C. Except for ABCA1, all 

(eight) known genes found by PrediXcan (SORT1, LPA, TNKS, FASD3, LIPC, KPNB1, 

PLTP, and APOC2) were identified by JTI with greater or similar level of significance. JTI 

identified 8 additional known genes (ANGPTL3, LIPA, PPARG, CETP, etc.).
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Fig. 5: Improved performance of JTI relative to PrediXcan in GTEx liver tissue for LDL-
associated genes.
The upper scatter plots a, b, c, and d show the prediction performance for KPNB1, 
ANGPTL3, PPARG, and LPA, respectively, using PrediXcan. The bottom scatter plots e, f, 
g, and h show the JTI results, which outperform the corresponding PrediXcan results. (Here 

“not imputable” is defined as r < 0.1 [which implies r2 < 0.01] or P > 0.05.) A regression 

line (shown as yellow dashed line) is included if the gene is imputable. LDL-C associated 

genes were identified using JTI or PrediXcan applied to UK biobank GWAS summary 

statistics.
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Fig. 6: MR-JTI identifies LDL-C associated genes with potential causal effect.
We performed causal inference using MR-JTI. The JTI results are highlighted on the TWAS 

Manhattan plot. Yellow, green, and grey dots denote the genes with both JTI and MR-JTI 

significance, only JTI significance, and non-JTI significance, respectively. In total, 138 

genes had causal support for effect (Bonferroni-adjusted 95% confidence intervals do not 

contain 0) on LDL-C after heterogeneity control. Among the 138 genes, 6 are well-known 

LDL-C related genes. Additional results from the MR-JTI analysis are found in 

Supplementary Table 8.
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