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Abstract

Here we present a Joint-Tissue Imputation (JT1) approach and a Mendelian Randomization (MR)
framework for causal inference, MR-JTI. JTI borrows information across transcriptomes of
different tissues, leveraging shared genetic regulation, to improve prediction performance in a
tissue-dependent manner. Notably, JT1 includes single-tissue imputation PrediXcan as a special
case and outperforms other single-tissue approaches (BSLMM and Dirichlet Process Regression).
MR-JTI models variant-level heterogeneity (primarily due to horizontal pleiotropy, addressing a
major challenge of TWAS interpretation) and performs causal inference with type-I error control.
We make explicit the connection between the genetic architecture of gene expression and of
complex traits, and the suitability of MR as a causal inference strategy for TWAS. We provide a
resource of imputation models generated from GTEx and PsychENCODE panels. Analysis of
biobanks and meta-analysis data and extensive simulations show substantially improved statistical
power, replication, and causal mapping rate for JTI relative to existing approaches.
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The Genome-wide Association Studies (GWAS) methodology has substantially increased
our understanding of the genetic basis of complex diseases. The reported enrichment of trait-
associated loci in noncoding regions has promoted eQTL analyses and transcriptome-wide
association studies (TWAS)1=3, which explicitly exploit the fact that gene expression may be
a molecular mediator between genotype and phenotype.

The power of TWAS / PrediXcan, a two-stage procedure, may be attributed to two factors.
The first comes from the accuracy of the prediction model of gene expression. The second
comes from the association between gene expression and phenotype. As GWAS meta-
analyses continue to increase in sample size, the prediction quality remains a rate-limiting
step. Improvement in the prediction quality should substantially increase the power of
TWAS / PrediXcan. However, current approaches do not fully leverage the multi-tissue
nature of transcriptome resources (Genotype-Tissue Expression [GTEX] project) and the
comprehensive atlases of regulatory elements (ENCODE project or Roadmap Epigenomics).
Conventional TWAS / PrediXcan generates the prediction model for a gene in each target
tissue separately=3, ignoring the presence of tissue-shared genetic regulation. MultiXcan
integrates information across multiple tissue studies to improve statistical power for
association analysis by regressing the principal components of the predicted expression data
across the tissues on the trait*. However, MultiXcan is a multi-tissue association analysis
approach and does not aim to improve prediction of gene expression in each tissue;
furthermore, the effect size and direction of each PC are not easily interpretable. UTMOST
is a cross-tissue TWAS approach that aims to improve the prediction performance (through
variable selection using a group penalty term)®. However, it does not leverage the similarity
among tissues. Recent studies have shown that eQTL sharing among tissues is abundant®-8,
with stronger sharing among biologically-related tissues (e.g., the various brain regions)®.
We hypothesize that, for any given tissue, we can improve prediction by leveraging other
tissues with similar genetic regulation profile.

Here, we develop JTI, an extension of PrediXcan® that exploits the power of multi-tissue
transcriptomes (the GTEx v8 panell9) and atlases of regulatory elements, to elucidate the
genetic architecture of gene expression and to identify gene-level associations with complex
traits. The method leverages the shared regulatory architecture of gene expression to
substantially improve prediction. Prediction accuracy is evaluated in two external
transcriptome datasets, demonstrating that JT1 outperforms conventional PrediXcan and
another multi-tissue imputation methodology UTMOST®. Application of JTI models to
GWAS data and a biobank leads to replication of well-known gene-level associations and
identifies novel associations that are specific to JTI.

Mendelian Randomization leverages genetic variation to make inferences about causality
using observational data. Using multiple genetic variants, PrediXcan can be viewed as (two-
sample) allele-score-based Mendelian Randomization112 but without pleiotropy control
(Extended Data Fig. 1). In Instrumental Variable (1V) analysis, three conditions!3 are
required for a model Zto be a valid instrument for estimating the causal effect of a gene G
on the trait Y'(Fig. 1): marginal relevance (i.e., Zis associated with G), confounder
independence (i.e., Zis independent of a confounder U), and exclusion restriction (i.e., there
is no direct effect of Zon Y'which is not completely mediated by G). The causal inference
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of interest to us is G— Y. The presence of Z — Y other than through G would indicate the
existence of a pleiotropic effect, violating exclusion restriction (Extended Data Fig. 1). The
inverse-variance weighted (VW) method provides a consistent estimate of causal effect
when all the genetic variants used are valid 1Vs14:15, Subsequently, MR-Eggerl®, weighted
medianl?, MR-PRESSO18, and related approaches were developed to address (the
pervasive) horizontal pleiotropy, which can lead to biased causal effect estimates, false-
positive causal relationships, and loss of power. Under PrediXcan, the weighted allele score
(i.e., the imputed genetically-determined expression), as an instrumental variable, may
contain genetic variants with horizontal pleiotropic effects and thus result in a biased
estimate of the causal effect of Gon Yeven if most of the variants are valid instruments. To
address this major limitation, we provide an approach for jointly estimating the causal effect
and the heterogeneity using summary statistics, thus incorporating Mendelian
Randomization into JTI.

Extending conventional PrediXcan!, we developed a multi-tissue expression prediction
framework (Fig. 1). PrediXcan generates prediction models using only the samples in the
target tissue by solving a family of minimization problems (equation [1] in Methods). In
contrast, JTI integrates all tissues through a /oss function parameterized by a set of weights
(i.e., weighted square error loss; equation [2] in Methods) in order to improve prediction
performance in a target tissue, assigning higher weights to tissues with a greater degree of
similarity and lower weights to tissues with a lower degree of similarity. A reference multi-
tissue transcriptome panel (GTEXx) was used to train models. For each target tissue, an
optimization problem is solved (Methods) via cross-validation. Besides the within-reference-
panel (GTEX) performance evaluation, we tested the models in external datasets
(PsychENCODE for brain prefrontal cortex and GEUVADIS for lymphoblastoid cell lines
[LCLs]). Methodological and performance comparisons were performed among PrediXcan,
JTI, and UTMOST. We applied the models to GWAS data to identify gene-level associations
and sought independent replication of results. We developed a causal inference engine MR-
JTI, as an extension of JTI, that provides a unified framework for TWAS and (two-sample)
Mendelian Randomization. MR-JTI estimates the overall heterogeneity, providing a way to
address a major challenge of TWAS interpretation.

Similarity matrix

JTI exploits the shared genetic regulation of gene expression across tissues. The similarity
matrix for expression profile was generated from the tissue-level expression Pearson
correlation (Extended Data Fig. 2) and, for proof-of-principle, gene-level DNase |
hypersensitive sites (DHS) similarity for each tissue-tissue pair (Methods). Weights used in
the loss function were calculated as the product of power laws, one for the expression-based
similarity and another for the DHS-profile-based similarity (data source: ENCODE and
Roadmap; Methods). One feature of a power law, (/) = /", that makes it attractive as a
functional form for quantifying similarity is scale invariance; power laws with a predefined
exponent are equivalent up to constant factors: 7(cr) = (1) & m(r). The powers are

Nat Genet. Author manuscript; available in PMC 2021 April 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhou et al. Page 4

considered hyper-parameters (with PrediXcan a special instance), and hyper-parameter
tuning is performed for each gene by cross-validation (Methods).

Performance of JTI and single-tissue models

We compared the performance of JTI and PrediXcan as imputation methodologies using
GTEX v8. On average, PrediXcan resulted in 6,842 imputable genes (“iGenes,” defined as
genes with > 0.1 and P < 0.05 from the correlation between predicted and observed
expression) across the 49 tissues (Fig. 2a). The criterion 7> 0.1, rather than /2> 0.01, was
used to filter genes with a negative correlation between predicted and observed expression.
The average number of iGenes, 10,527, was substantially higher with the application of JTI
(Fig. 2a, Supplementary Table 1). On average, 92.9% of the PrediXcan-derived iGenes
remained imputable under JTI (Fig. 2b). For tissues with more than 200 samples, 96.5% of
the iGenes were captured by JTI. To further quantify the performance gain, we calculated
the increase in the proportion of iGenes and the increase in /2 (expression variance explained
by local genetic variation), denoted by ApiG and A/, respectively. The ApiG (mean =
60.3%) and A2 (mean = 0.036) varied from tissue to tissue (Fig. 2c and Supplementary
Table 1).

Tissues with small sample sizes tended to have greater gains in the proportion of imputable
genes (Fig. 2c). Among the 49 tissues (Extended Data Fig. 3), the vagina tissue showed the
highest performance gain (N = 141, ApiG =111.2%, A2 = 0.050). Tissues with large sample
sizes (e.g., whole blood, N = 670, ApiG = 27.7%, ArZ = 0.015) and tissues with highly
specific genetic regulation or expression profile (e.g., testis, N = 322, ApiG = 32.8%, A2 =
0.021), showed more limited gains. Thus, tissues with more modest sample sizes or those
with some similarity with the other tissues are the ones likely to see greater gains from a
multi-tissue model. Nevertheless, the performance gain from this model in all tissues was
substantial.

We compared JTI with other single-tissue imputation approaches: the top eQTL; Bayesian
Sparse Linear Mixed Model (BSLMM), and Dirichlet Process Regression (DPR)19
(Methods and Extended Data Fig. 4). JTI outperformed these single-tissue approaches,
highlighting the performance gain from leveraging the cross-tissue information.

Prediction performance as a function of sample size

To assess the impact of sample size on imputation performance, we conducted a comparison
of GTEX v6p and v8 models. Among the 44 overlapping tissues (average sample size Nygp =
160, Nyg = 332), the average number of iGenes increased from 4,570 (v6p) to 7,213 (v8) for
PrediXcan and from 6,340 (v6p) to 10,969 (v8) for JTI, showing the substantial influence of
sample size (Supplementary Table 1, Extended Data Fig. 5).

Comparison with existing joint-tissue methodologies

In addition to the multi-tissue feature, a distinctive feature of JTI is its integration of data on
regulatory elements (extensible to functional genomic data [Methods]) from an epigenomic
reference panel. We, therefore, evaluated JTI more fully through comparison with UTMOST
(i.e., the Cross-Tissue gene Expression IMPutation [CTIMP] of the framework)®, which
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lacks the feature. We modified the UTMOST script after detecting artificially-inflated
prediction performance in external datasets (Supplementary Note, Extended Data Fig. 6 and
Extended Data Fig. 7). Throughout, “UTMOST” denotes the “modified UTMOST” unless
explicitly noted (as “original UTMOST”).

We first evaluated the performance, in PsychENCODE data (brain prefrontal cortex, N =
415), of PrediXcan, UTMOST, and JTI models trained in GTEXx v8 brain frontal cortex BA9
tissue. In comparison with the single-tissue PrediXcan (Nijgenes = 3,193), UTMOST (Nigenes
=4,486) and JTI (Njgenes = 5,417) identified more iGenes (r> 0.1 and £< 0.05) (Fig. 3a).
Of the 3,193 PrediXcan-derived iGenes, 2,920 were captured by both UTMOST and JTI
(Fig. 3b). In addition to the 2,920 iGenes, UTMOST and JTI identified 1,219 additional
shared iGenes, showing the consistent improvement from a multi-tissue approach. KEGG
pathway and Gene Ontology analysis showed that the 1,219 genes were significantly
enriched in metabolic pathways (P = 2.80e-06) and membrane (P= 5.10e-05)
(Supplementary Table 2). Notably, 1,110 JTI-specific iGenes were replicated in
PsychENCODE, compared to 311 UTMOST-specific iGenes, underscoring the substantial
gain in replication rate (measured in an external dataset) that can be attained through JTI.
Fig. 3c and 3d show the shared and method-specific iGenes from all pairwise comparisons
between the methodologies.

Next, we conducted comparisons using GTEX v8 EBV-transformed lymphocytes as the
training set and GEUVADIS LCLs data (N = 421) as the test set. In comparison with
PrediXcan! (Nigenes = 2,066), UTMOST (Nigenes = 2,926) and JTI (Nigenes = 3,352)
identified more iGenes (Fig. 3e). UTMOST and JTI captured 87.5% and 93.2%, respectively
(Fig. 3f, 3g, 3h), of the 2,066 PrediXcan-derived iGenes.

Type-l error and power analysis

Given the possibility of inflated type I error (e.g., due to shared samples across tissues), we
conducted extensive simulations (see Supplementary Note) and found that JTI controls the
type | error rate. Indeed, JTI, PrediXcan, and UTMOST displayed equivalent type I error
rates (Extended Data Fig. 8 and Supplementary Table 3).

We also estimated their statistical power (see Supplementary Note). The predicted
expression (i.e., genetically determined) levels were generated using actual empirical
prediction performance (/2) values in the two external datasets (PsychENCODE [brain
prefrontal cortex] and GEUVADIS [LCLs]) from the PrediXcan, UTMOST, and JTI models.
Notably, the statistical power of JTI was substantially higher than that of UTMOST and
PrediXcan across all sample sizes ranging from 5k to 500k (Extended Data Fig. 9) based on
the PsychENCODE dataset. By comparison, based on the GEUVADIS dataset, JTI and
UTMOST outperformed PrediXcan, with JTI showing a modest improvement in statistical
power over UTMOST. Due to the availability of several brain regions in the GTEX resource,
JTI benefits from leveraging tissue-similarity information across the relevant (brain) tissues,
which may explain JTI’s substantial performance improvement. However, the reduced gain
in power for JT1 over UTMOST in LCLs may be due to the fact that gene expression in
LCLs is more highly tissue-specific and, thus, JTI applied to this tissue has less to gain from
leveraging tissue-similarity information.
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Application to GWAS data

We applied PrediXcan and JTI models to a continuous trait, low-density lipoprotein
cholesterol (LDL-C, quantile-transformed), from a GWAS (UK biobank LDL-C; N =
343,621) dataset (Methods, Fig. 4a). In general (Supplementary Fig. 1), the proportion of
true positives 11 was higher for JTI (0.251) than PrediXcan (0.232). PrediXcan and JTI
identified 411 and 680 associations in liver, respectively (Pepp < 0.05). Among the 411
PrediXcan significant genes (Prpr < 0.05), 353 (85.9%) also showed nominal association
under JT1 (P< 0.05). Of the 411, nine were well-known lipid metabolism genes
(Supplementary Table 4); JTI extended this number to seventeen (Fig. 4b). The SORT1-
PSRCI-CELSRZ ccluster, LPA, FADS1, KPNB1, and additional genes were found to be
associated with LDL-C level using either PrediXcan or JTI (Supplementary Table 5). Within
the well-known SORTI-PSRCI-CELSRZ cluster, JTI and PrediXcan showed similar
association signals for the putatively causal gene SORTI. For KPNB1, JTI showed a boosted
signal (P = 4.80e-14) relative to PrediXcan (P = 3.95e-09). One possible interpretation is the
greater imputation quality (Fig. 5a and 5e) for JTI (2 = 5.16%) than for PrediXcan (/2 =
1.91%). Similar levels of improvement were observed for ANGPTL3, PPARG, and LPA
(Fig. 5b-5d and 5f-5h).

JTI identified 328 additional associations (JT1 Pepp < 0.05, PrediXcan P> 0.05,
Supplementary Table 5). The improved imputation quality for CE7P (JTI: /2= 5.30%;
PrediXcan: not imputable) and FADSI (JTI: 10.06%; PrediXcan: not imputable), which
were among the 328, likely contributed to the significant associations from JTI (P=
5.71e-32 and P=9.19e-34 for CETPand FADSI, respectively). JTI identified some novel
associations with LDL-C. A signal on CCDC92 (P = 7.14e-06) was amplified by JTI (P=
6.52e-08) via higher /2 (JTI: 8.86%; PrediXcan: 2.46%). A genome-wide significant signal
for POL K was identified only by JT1 (P=3.49e-75). The association of POLK in liver was
successfully replicated in both GLGC and BioVU (P=5.70e-21 and P = 5.24e-03,
Supplementary Table 6), with concordant direction of effect. The higher prediction quality
of 7T/IRAPresulted in a stronger association signal from JTI (/= 5.33%, P= 7.10e-06) than
PrediXcan (/2 = 2.35%, P= 3.68e-03). The association between 7/RAPand LDL-C was
replicated in BioVU (P=1.17e-02, Supplementary Table 6).

Performance comparison of PrediXcan and JT1 was performed in additional GWAS datasets
(Supplementary Table 7), including bipolar disorder, schizophrenia, blood glucose, HDL-C,
Vitamin C, C-reactive protein, and creatinine, in relevant tissues. On average, PrediXcan and
JTI identified 377.9 (range: 64 — 973) and 576.3 (range: 130 — 1192) significant genes (Prpp
< 0.05), respectively.

Causal effect inference and heterogeneity estimation

We observed that the Mendelian Randomization “model” (6= af, where &is the trait effect
vector and g is the expression effect vector for the instruments, and a is the gene-level
causal effect on the trait) describes the summary data (i.e., the genetic effects in GWAS and
gene expression data) reasonably well. That is, the causal effect (of the gene on a complex
trait) has a consistent magnitude across gene expression based genetic instruments for highly
polygenic traits based on theoretical (Methods) and empirical grounds20.
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Our primary aim is gene prioritization and determination of gene causal effect on a trait. We
provide a novel approach to causal inference (Methods) and highlight possible sources of
bias (PSB), including unmeasured confounding, weak instrument bias (Supplementary
Note), and invalid instruments due to horizontal pleiotropy. Extending JTI, the MR-JTI
framework implements causal effect inference (Fig. 1, Extended Data Fig. 1). By modeling
the heterogeneity (mainly involving horizontal pleiotropy), MR-JTI further helps prioritize
genes (Methods).

We performed causal inference on the 680 genes in liver with a significant JT1 association
with LDL-C (JTI Pegpp < 0.05). Because of the generally modest sample size of
transcriptome studies (e.g., compared to GWAS meta-analyses of complex traits), the
genetic instruments may suffer from weak instrument bias (Supplementary Note); however,
the F-statistic for JTI tended to be higher than for PrediXcan, driven by the higher variance
in gene expression explained by the JTI models (Extended Data Fig. 3).

For each gene, we compared the MR-JTI estimate of the gene effect with the median
estimator, i.e., the median of the Wald ratio estimates (a consistent estimator when less than
half of Vs are invalid; Supplementary Note) across the ¢/s-eQTLs (Prpgr < 0.05) (Extended
Data Fig. 10). A significant positive correlation was observed (Spearman r= 0.65, P<
2.2e-16) in the actual data but no correlation from shuffled GWAS summary statistics
(Extended Data Fig. 10). The LD-pruning at /2 = 0.2 may still leave some underlying
correlation. We therefore conducted MR-JT based on LD pruning at /2 = 0.01. The Pearson
correlation (/) between the effect size (gene-level) using /2= 0.2 and using /= 0.01 is
0.909.

MR-JTI identified 138 significant genes (based on Bonferroni adjustment) compared to 30
(4.41%) genes based on shuffled GWAS summary statistics. The well-studied gene SORT1
(Supplementary Fig. 2) and nearby co-expressed genes PSRC1 and CELSRZ2 showed
significant association with LDL-C level after heterogeneity control. Furthermore, LFPA,
TNKS, FASD3, PLTP, and LPIN3 are additional well-known genes showing significant
associations (Fig. 6; Supplementary Table 8). The expression of POLK, the replicated LDL-
C-associated gene, attained positive correlation via MR-JTI, which indicates a putative
causal role for POLK in lipid metabolism. The POLK protein (DNA polymerase kappa)
performs DNA synthesis across damaged genomic DNAZL, Copy loss or mutation of the
gene has, in fact, been associated with impaired genome integrity and replication-
independent repair?2. DNA-damage-induced accumulation of senescent cells in tissues leads
to chronic inflammation and impairment of glucose and lipid metabolism23. Notably,
significantly increased mutation frequencies have been observed globally in the liver tissue,
an important site of cholesterol metabolism, in Polk —/— mice24. Consistent with this
connection between POLK’s role in DNA repair and lipid metabolism, other DNA-repair
related genes (S/RT1, SIRT6, PARPI) have also been found to play a role in lipid and
glucose metabolism?3,

To further investigate the performance of MR-JTI, we conducted MR analysis using MR-
Egger, MR-PRESSO, SMR-HEIDI, and weighed median. MR-JTI outperformed the other
methods, identifying more significant results (138) than the second best-approach, the
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weighted median (115). In addition, MR-JTI identified six genes from the literature-based
silver standard (Methods), which is greater than the other approaches (Supplementary Table
9). Notably, we found that the 138 genes were significantly enriched for genes in the silver
standard gene list (P< 0.001, the overlap [6] is 13.3 times as much as the expected count
[0.45]) and, separately, in a conserved “cholesterol biosynthetic process” module in mice (P
=0.013, the overlap [16] is 1.68 times as much as the expected count [9.53])%°
(Supplementary Note). This analysis provides additional support for 16 of the MR-JTI
significant genes (including PLTP, FASD3, and POLK;, labeled in Supplementary Table 8
and 9).

DISCUSSION

By leveraging tissue similarity of gene expression and of epigenomic regulatory elements,
our methodology significantly improved prediction accuracy especially in brain (which saw
twice as many imputable genes) and other tissues with limited sample size. The improved
imputation quality, in turn, increased the power for transcriptome-wide association.

We integrated DHS similarity across tissues in the weights used in the JTI loss function,
exploiting the wide availability of DHS data. Further improvement can be expected from
integrating other epigenomic datasets, including ATAC-seq, Hi-C, and histone modification
ChlP-seq.

To evaluate the prediction performance, we applied the models to external data. Leveraging
PsychENCODE, JTI resulted in almost double the number of iGenes, substantially
outperforming UTMOST; leveraging GEUVADIS, JTI did not see as much improvement
likely due to the smaller sample size of the reference panel and the high tissue-specificity of
gene expression and DHS profile in LCLs. JTI identified more than 90% of the PrediXcan-
derived iGenes, showing the flexibility of our framework, i.e. for tissues that have a highly
tissue-specific profile, JTI automatically reduces to PrediXcan via hyper-parameter tuning.

The substantial performance gain for JTI relative to UTMOST may be attributable to several
factors. Firstly, tissue similarity based on shared regulatory elements contains relevant
information. Secondly, in contrast to UTMOST, JTI estimates only one effect size (not a
different effect size) for each SNP across similar tissues. Thirdly, the flexible input window
size for JTI captures much of the causal cis-regulatory information with reduced noise. Most
multi-tissue eQTLs are closer to the gene body26:27, Fourthly, in general, the genetic
architecture of gene expression may have a better fit with JT1’s model (i.e., a middle ground
between a sparse and polygenic architecture).

Applied to the LDL-C GWAS data, JTI showed consistent effect with PrediXcan for the top
hits and detects additional associations for genes that were not well-imputed by PrediXcan.
Indeed, a considerable number of gene-level associations were identified only by JTI.
Among these genes, some were expected (including PPARG, KPNB1, PCSK9) while some
were novel (e.g., POLK, TIRAP).

Horizontal pleiotropy is a primary challenge for MR-based studies, especially for a gene-
based MR. LD contamination — the scenario in which (certain) SNP predictors for the gene
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under test are in LD with variants with an effect on the trait through a different causal gene
in a GWAS locus - is an /nstance of horizontal pleiotropy (Extended Data Fig. 1). In our
study, we developed a unified framework for TWAS and MR, with MR-JTI providing not
only an imputation and association methodology (as PrediXcan has done), but also a causal
inference framework (which was absent from PrediXcan). Due to widespread pleiotropy?28,
we built a flexible framework to model the heterogeneity, with an approximately unbiased
causal effect estimate. Aside from population stratification, which should have reduced
effect in our ancestrally-homogeneous samples, the instruments should be independent (due
to random assortment of genetic variation at gamete formation) of unmeasured confounders
typically present in observational epidemiological studies which arise after conception. Any
inflation may reflect the residual influence of weak instrument bias or horizontal pleiotropy
due to invalid instruments. The enrichment of MR-JTI significant genes in the literature-
based silver standard and, separately, in the conserved cholesterol modules in mice is further
evidence that using MR-JT]I for prioritization considerably increases the likelihood of
capturing true causal genes.

MR-JTI differs fundamentally from FOCUS?2? and other approaches to causal inference.
Both MR-JTI and FOCUS seek to prioritize genes based on the evidence for causality.
FOCUS extends probabilistic SNP fine-mapping approaches, modeling the correlation
among TWAS signals, to obtain credible gene sets containing the causal gene at a given
confidence level. In contrast, MR-JTI aims to test for nonzero direct effect of the gene on the
trait and to model instrumental-variable-level heterogeneity (mainly involving horizontal
pleiotropy). Furthermore, MR-JTI differs from colocalization approaches3?, which aim to
show that the same genetic instruments are causal for expression and for the trait. For a gene
expression phenotype to be causal for a trait, having shared causal variants is necessary, but
not sufficient.

JTI’s current implementation has some limitations. For some GTEX tissues, there is not a
matched cell type with ENCODE or Roadmap DHS dataset. We could expect further
improvement with more suitable cell types that capture the shared regulatory elements.
Furthermore, shared samples across tissues were used to perform the training. Nevertheless,
performance evaluation of JTI prediction in external datasets showed reliable prediction
quality estimates, and extensive simulations demonstrated the type | error from the
association was well-controlled. Finally, JTI had a higher replication rate than PrediXcan,
indicating robust associations among the discovered genes.

In conclusion, we have developed a methodology with substantially improved statistical
power for post-GWAS analysis. In principle, the approach offers an integrative framework
for incorporating the vast functional genomic datasets that are being generated by genomic
consortia to functionally annotate the genome. Finally, we implemented a broadly useful
causal inference engine, leveraging the MR framework, to help prioritize the discovered
genes for functional follow-up studies.
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fic gene expression model building

PrediXcan performs gene expression imputation within a tissue using Elastic Net
regularization, as previously described?. Lety1, ys, ..., ¥, be the gene expression level in a
given tissue for the 7samples. A PrediXcan gene model solves the following minimization
problem:

= argming/) X0 _ (= +18) + A5 1613 + ol ®

The L, penalty for the effect-size vector B induces sparsity while the L, penalty promotes
grouping effect. The parameter a gives the relative weight of the two penalties; here we used
a = 0.50. Equation (1) has a Bayesian formulation; solving the minimization problem is
equivalent to determining the marginal posterior mode of B | y,A1,A; assuming the following
choice of prior distribution for p:

P(paexp(~ 12l I3 - 4111811 )

which is a “combination” of Gaussian and Laplacian priors.

In this study, gene models were trained in the GTEx’8:20 v8 data in 49 tissues. The gene
expression level used for training and testing was the residual of the normalized expression
level after adjusting for covariates: gender, platform, first five principal components, and
PEER factors for each tissue20. Biallelic SNPs within 1 Mb of the gene were used as
features. We included SNPs with minor allele frequency (MAF) > 0.05 and in Hardy-
Weinberg equilibrium (2> 0.05). LD pruning was performed for SNPs at the 2= 0.9 level.
(No significant difference in prediction quality was observed31.)

Building multi-tissue gene expression prediction models

We developed an alternative imputation approach, JTI, which borrows information across
tissue transcriptomes. The approach leverages information from the other tissues in a tissue-
dependent manner. Furthermore, JTI implements a novel approach to integrating high-
throughput functional genomic data (such as from reference epigenomes generated by
ENCODE32 and Roadmap?3) to improve prediction.

Lety =(y1, Y2, ---, Yn) be nobservations. In our case, each observation is a tissue-sample
pair. Let X = (X1, X2, ... Xn)| be the 77x pfeature matrix, where pis the number of features
(genetic variants) for a gene expression model. Let Birye = (B1 trues B2 trues -+- Bp true) T be the
effect-size vector for the p features. We estimate the effect-size vector Byyye by solving the
following optimization problem over all p:

p = axeming(112) 37 wi(vy = 5T B + (5% g15 + gl o
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Here lIgll; and lIBlly are the L, and Ly norm for B, respectively. The weight w;on the /th
observation comes from the similarity matrix generated from the tuned hyper-parameters
(see below). The weights are normalized to add up to the number of observations nthrough a

. . n
scaling factor: w; = w;, old( /Z?: L, ozd)'
This model differs from the tissue-specific model (PrediXcan; equation [1]) in applying

weights on tissue-sample pairs. Note the form of the penalty term, a combination of LASSO

and ridge penalties, remains the same as in equation (1): R(8) = (1 > “)||/3||% + a||pl|1, as we

want the gene expression model under JTI to continue to maintain the balance between
sparsity and grouping effect for the features. The loss function L(y, fx,)) now incorporates
the weight (see below for definition). Equation (2) has a natural Bayesian formulation that is
equivalent to the log of the following likelihood:

PGy|X, ﬂ)aH?z ' o L0 f(xi, B)

and the following choice of prior for p:

P(p)acxp(—AR(B))

The estimated model § (from equation [2]) is therefore equivalent to maximizing the
conditional probability AB | J), i.e., finding the posterior mode. In our current
implementation, the penalty hyper-parameter A was obtained from cross-validation and
fixed. We performed external validation and extensive simulations to evaluate the
performance of the model (Supplementary Note) in prediction and association analysis given
the potential influence of non-linear effects and the shared samples across tissues.

As in the single-tissue PrediXcan models, JTI models were trained using the same data from
the GTEx’820 v8 release. JTI used a flexible ciswindow size for model training. Since (1)
most eQTLs (especially cross-tissue) tend to be close to the transcription start site (TSS)8:26
and (2) a smaller window size will have less LD contamination (one of the major challenges
of traditional TWAS with its lack of control for horizontal pleiotropy)34, for each gene, the
cfs window size was determined based on cross-validation performance.

Incorporating regulatory elements

Cell-type specific DNase | hypersensitive sites (DHS), representing chromatin accessibility
and potential trans-acting factor occupancy, were used as markers of regulatory regions.
Some of the tissues in GTEX were mapped to the same cell type in ENCODE/Roadmap
because of the lack of cell-type-specific data (Supplementary Table 10). Wig format DHS
peaks were downloaded for each tissue/cell type, and quantile normalization was performed
across each cell type. For each gene, the ¢/s DHS similarity (in the region 10kb upstream
and downstream of TSS) between the focal tissue and the other tissues was estimated by a
monotonic function-based Spearman correlation (using “similaRpeak’3%).
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Similarity matrix

One approach to defining the weights (w)) in equation (2) is to set them to a constant,
thereby weighing all tissue-sample pairs equally in the loss function. However, borrowing
information across tissues may substantially improve prediction performance relative to the
tissue-specific models.

For each tissue and gene pair, we considered the quantile-normalized gene-level DHS profile
D (for a cell type that maps to the tissue) across the local region and the median gene
expression level £ (in the tissue) across the individuals. For a pair of tissues sand # we
calculated the correlation rp in DHS profile D (gene-level similarity) and the correlation 7z
in median gene expression £ across the genes in the genome (tissue-level similarity)
between the tissues. We assumed that the similarity between the two tissues is a
(sufficiently) smooth function S(s, t) = f(rp, r£) of the correlations rpand r= (More
generally, this function can be generalized to be defined on an n-dimensional vector of
correlations, such as from additional epigenome data.) One can therefore define S(s, t) as the
Taylor expansion in (rp, rg) around (0, 0):

S(sit) = Zi,jaij"Di"Ej-

If the DHS profile and gene expression level are perfectly correlated between the two tissues
(i.e., rp= re=1), we would define the two tissues to be perfectly correlated, which would
impose the constraint } ; ia;;= 1. For computational tractability, we assumed that this
similarity is driven by the leading monomial r5™r£". Note that in the simple case of the
similarity matrix being equal to the identity matrix:

i.e., where observations or tissue-sample pairs from a different tissue are given weight zero
while observations in the test tissue are given weight one, then the loss function in equation
(2) is the squared error for standard EN and consequently, JTI reduces to single-tissue
PrediXcan as a special case.

In contrast to other methodologies®, our approach assigns a weight () to each observation 7
using relevant information on transcriptional regulation. For a given target tissue s,
observations, i.e., tissue-sample pairs, from a tissue #with similar profiles on transcriptional
regulation to the target tissue sare given higher weights.

Tuning hyper-parameters using grid search

We conducted hyper-parameter optimization on the similarity matrix using grid search. The
choice of values for the hyper-parameter pair (/77,/7) may vary with tissue and gene, allowing
borrowing of information from the other tissues in a gene- and tissue- dependent manner.
The values for mand nwere from the fixed space:
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Q= {(m,n) ez XZ‘m,n = (40,41,42...,4L)}

(In our analysis, L = 3.) In general, one can use any compact subset Q of Z x Z; however, the
diameter of the lattice Q determines the computational demands of the grid search. For each
gene, five-fold cross-validation was performed for each pair (/m,/). The pair with the
minimal tuning error was chosen as the optimal pair.

S(s, t) in log-scale is a weighted sum of the correlations, where the weights are given by the
hyper-parameters. Thus, the grid search attempts to find the nearly optimal combination of
weights for the concordance measures from the input data (in this case, expression and
DHS). Furthermore, single-tissue PrediXcan is a special instance of JTI, with the similarity
matrix given by the identity matrix. This similarity matrix is equivalent to a specific choice
of hyper-parameters (“at infinity™), i.e., PrediXcan and JTI are equivalent at m= n= co. This
choice would be expected to perform well for genes with highly tissue-specific genetic
regulation or expression profile (and which requires no leveraging of the similarity with any
of the remaining tissues). As the hyper-parameter pair values — obtained from cross-
validation — move away from infinity, JTI incorporates the similarity information in order to
improve the prediction performance for the tissue under test.

Prediction performance

For each gene, we performed five-fold cross-validation for each tissue. The model
performance was estimated using the correlation between the prediction y;,5; = X/5:f and

the actual data y. A gene with r = corr(y, yzesr) > 0.1 and P < 0.05 was considered an

imputable gene (iGene). The threshold 7> 0.1 was justified based on simulations
(Supplementary Fig. 3) and the testing performance in an external dataset (Supplementary
Fig. 4). Genes that satisfied the loose threshold £ < 0.05 from the imputation performance
were kept so as not to severely limit the number of genes for the downstream association
analysis.

Compared to the single-tissue prediction model, the gain in imputation performance (A79)
and the increased proportion of imputable genes (ApiG) were plotted as functions of tissue
sample size (N). To assess the impact of tissue sample size on model performance, we also
built PrediXcan and JTI models using GTEX v6p data.

Comparison with existing methodologies

For comparison with other methodologies, we utilized 415 brain prefrontal cortex samples
from PsychENCODE and 421 LCL samples from GEUVADIS?’ as external test data. To
quantify the gain in prediction performance from leveraging the cross-tissue information, we
ran several single-tissue approaches: the single-SNP “top eQTL” method and two multi-
variant Bayesian approaches (performing 5-fold cross validation), namely, Bayesian Sparse
Linear Mixed Model (BSLMM) using FUSION with default parameters3 and Dirichlet
Process Regression (DPR)?, a nonparametric method with a Dirichlet process prior on
effect-size variance, using ‘TIGAR’19,
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We compared the prediction performance of JTI and UTMOST in the external datasets.
However, the original UTMOST code may artificially inflate the prediction quality
(Supplementary Note). We modified UTMOST by using uniform hyper-parameter pairs,
which resolved the inflation (Supplementary Note). Compared to the performance in the
external data, the cross-validation performance of the original UTMOST showed substantial
inflation (Extended Data Fig. 6¢). Our modification facilitated comparison of UTMOST
with PrediXcan and JTI (Extended Data Fig. 6 and Extended Data Fig. 7).

Application to GWAS: discovery and replication

We developed JTI and PrediXcan?” models using the GTEx v8 transcriptome data in 49
tissues and applied the models to GWAS data (Supplementary Table 1 and Supplementary
Table 8 for sample sizes). For each GWAS sample, we estimated the genetically determined
component ygpas Using Xeums,g the genotype matrix of the contributing variants to the

imputation model for the gene g
Yowas = Xowas, gh ®)

The posterior predictive distribution of ygpuas given the observations Veference from the
reference panel allows one to estimate the uncertainty:

P(Y;;w|yreference) = /P(YEMIL yreference)P(ﬂ|yreference)dﬂ

For primary illustration, we focus on the quantile-transformed LDL-C GWAS summary
statistic data from UK biobank (released by Ben Neale Lab on 08/08/2019, http://
www.nealelab.is/uk-biobank/). PrediXcan and JTI models for liver tissue were applied to
summary-statistics. The SNP-SNP covariance matrices were estimated in the GTEX v8
samples. Replication was conducted in both the Global Lipids Genetics Consortium (GLGC)
GWAS summary statistics (95,454 samples)3” and the BioVU repository (18,394 European
ancestry samples)38.

In addition, we compared the association results of JTI and PrediXcan for additional traits,
including HDL-C, glucose, schizophrenia (SCZ), bipolar disorder (BIP), Vitamin D, C-
reactive protein, and rheumatoid factor (Supplementary Table 7).

Causal effect inference and the calculus of MR-JTI

MR-JTI performs multiple-instrumental-variable causal effect inference (Fig. 1) using
summary data. The primary aim is to identify genes with causal effects on the trait of
interest. However, the estimate of the causal effect of a gene on the trait, using the imputed
expression — a weighted allele score — as a single instrumental variable, may be biased given
invalid instruments in the allele score. If all instrumental variables are valid, then the
estimated causal effect (a) from JTI is unbiased, and JTI (without heterogeneity control) and
Mendelian Randomization coincide. In our model-based approach, we estimate the
contribution of each genetic instrument to the overall heterogeneity given the possibility of
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invalid instruments!®. Under the Instrument Strength Independent of Direct Effect (INSIDE)
assumption, this approach yields a consistent estimate of the causal effect.

For causal inference of the gene-level effect on a trait, we must obtain an unbiased estimate
in the presence of invalid instruments. PrediXcan provided an association test but did not
attempt to control heterogeneity. Consider Jindependent genetic instrumental variables X,
Xo, ..., X0 test for the effect of the gene g on the phenotype . For the /-th variant, let B,
and g be its effect size on gene expression and on the phenotype, respectively, from
summary statistics on genetic associations. For a causal gene on the phenotype, the
relationship between the instrumental variable x;and g and the relationship between x;and
y, for all Jvalid instrumental variables, are given by the following model:

E(g|Xj=x) =aj+ﬁjx

E(ylxj~=x)=bj+0jx

The relationship between the gene expression trait gand yis given by:

E(ylg)=c+ag

Here a encodes the (nonzero) direct effect of the gene on the trait; a;and b are scalars that
may vary with the instrumental variable; and c is an intercept term (i.e., the value of the trait
when gene expression is zero) for the gene-phenotype relationship. Assuming that these
linear relationships hold and that each x;is a valid instrumental variable, then a direct causal

effect of gon y(i.e., g—; # 0) is equivalent to the *“chain rule” (with a nonzero instrumental-

variable effecton y; i.e., 8 # 6’, only through g):

=9y _0ydg _ .
0i = ox; ~ 0g 0x; = abi

or

a
0= Vy=(a—§)7g=aﬁ

where Vis the gradient operator. We note that the middle equality does not require W and
Vg to be constant (that is, y and g to be linear in the instrumental variables), and causal
inference can be performed in a more general context. Here, the partial-derivative operator

% applied to a function f(e.g., yor g) is defined as follows:
1

af = 1 Xj =X - Xj=Xx
8wy = im (Ui =401 Fl/lxi =)

0
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Marginal relevance (Vg # 0), confounder independence (% = 0, for each confounder Uand
1
each instrumental variable x}), and exclusion restriction (i.e., a?y exists only for g« = g) are
%

encoded in the relationship. Let us suppose that there are additional causal pathways g« 4 by
which the instrumental variables influence the phenotype y; resulting in a violation of

exclusion restrictior, that is, 3

(3*y P # 0 for each k& Then, the generalized chain rule yields:

O=ap+ Z(ag* k)

In this case, a nonzero B (from the assumption of marginal relevance) and a nonzero 6 (from
the association of the same instruments with the trait) do not necessarily imply a causal
effect of the test gene g on the trait (i.e., a # 0).

Here, we model the heterogeneity

h:=0-af= Z(ag* k)

as a linear sum of the contribution of independent instrumental variables since (a) horizontal
pleiotropy (i.e., the existence of a causal pathway due to g«  distinct from the test gene g)
can be widespread, (b) whether an instrumental variable is valid is not a priori known in
most cases (so that ruling out horizontal pleiotropy g« is not easily verifiable and the

corresponding effect, i.e. Wlth Vg« # 0, must be inferred), and (c) weak instrument

' 9g
bias (a form of finite sample blas in the estimate of Vg or B) may cause departure from
asymptotics. The heterogeneity h is the aggregate effect of all PSB. We then perform
parameter estimation:

=0-ap = zk  Okex + o “)

where 6 &[5 6] and p def | ;] are Fdimensional vectors with entries given by the estimated

effects on trait and gene expression, respectively, of the instrumental variables (from GWAS
and the eQTL data, respectively), e is the unit vector with 1 in the A-th position and 0

elsewhere, and 1 def [1 ] is the vector of LD-score for all the variants with its estimated effect

®. Note that in this model, when all instrumental variables are valid, then &;= 0, for all jand
w=0.

An alternative approach is to model h, with each component a random effect. In particular,

~N(aﬂ, 0'51)
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B~N(p. U%I)

~ N — 2
h=0—a/3~N(0,(p I)

where @2 = 6 + a%}, and o7 is upward-biased by horizontal pleiotropy. We obtained an

expression for the log likelihood of the GWAS and eQTL effect size data (assuming the
independence of the datasets):

1

1 _I
2

2

~\2 ~ 2
log = — é (i - 1) N é (9i—;ﬁi)

22 2
5 . log(47z aﬁag)
i=1 °p i=1 7]

We define an estimator for a as follows:

@+ = argmax|suplog L(B, )| = argmaxlog L(B., a)
a p a

Where B« is a vector with /th component given by:

22 o 2
oghi + abjc
B ’_:7/3

a‘% + 6{26%

However, the estimator a is statistically inconsistent.

To detect heterogeneity (equation (4)), we are looking for deviation from this Wald ratio
estimate.

®)

ISH
1
=)

The length of the vector Zi — 1 5kex + @, which is the difference-vector between the GWAS-

defined vector 6 and the expression-defined vector &g, provides an estimate of the overall
heterogeneity. One can perform the following LASSO optimization problem to estimate the
gene causal effect (), the contribution @) of the j-th instrument to the heterogeneity, and
the effect (@) of LD confounding:

J
@,8,® = argmin Z (GAj—uZi;—Uj—wlj)2+i(||[uj]||1 +|u|+|w|)
u, v, W=
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The optimization problem aims to minimize the objective function (the error in predicting
the GWAS effect at a variant from the regulatory effect on expression, the causal effect of
the gene on the trait, and the heterogeneity) while enforcing sparsity; that is, we estimate the
heterogeneity through optimization in the search space, preferring a model with fewer
predictors and about the same explanatory power. However, LASSO provides a weakly
consistent estimator with a complicated asymptotic distribution39. We sought to estimate the
standard error for each of these estimates using the bootstrap. However, the bootstrap is
inconsistent#%41 in case one or more of the regression parameters is zero (e.g., in the
presence of one more valid instrumental variable)4”48, We define a modified LASSO

estimator § %! (&* 3+, c&) of the true value S.

1 .
> T2 2respectlvely

@5,6; %, xiflaxl, |6, +|, @+

S= (a ) =
(a*,ﬁ*,w*> e 1 .
0if [@x], |6j’ x|, o] < mrespectlvely

We utilized a modified (threshold) residual bootstrap LASSO approach#?41, This approach
provides an estimator T’;?; that has the property of being consistent, i.e.,

plim Ty # % =S
m— o

That is, the estimator T’,ZZ; converges in probability to S, i.e., for any fixed 7> 0,

lim Pr(I1Ty, # * —S1>17)=0
m— oo

MR-JTI analysis of GWAS data

The genetic associations with exposure (eQTLs in the c/s-region) and with the GWAS trait
(QTLs) were analyzed in European-ancestry samples (thus reducing the possibility of
confounding) in a two-sample Mendelian Randomization framework using summary
statistics data. There is no sample overlap between the eQTL and GWAS datasets. Our
approach leverages multiple genetic instruments, consistent with the observed allelic
heterogeneity2? in gene expression, and estimates the heterogeneity.

We harmonized genetic variants across the eQTL and GWAS datasets to ensure that the per
additive copy of the same allele was used in the MR-JTI analysis, following the guidelines
for MR investigations#243, In our study, the genotype resource for both the eQTL and the
GWAS datasets were coded on the positive genomic strand. Only biallelic variants were
included in the MR-JTI analysis. Allele and strand information were used to detect potential
strand mismatch. In addition, palindromic variants with a MAF greater than 0.45 were
removed since it would be nearly impossible to verify that the alleles had been correctly
orientated?2. LD pruning was performed using PLINK (--indep-pairwise 50 5 0.2) to
decorrelate the SNPs in the ¢is-window.
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A characteristic feature of our approach is the testing of genes in the human transcriptome as
exposures, resulting in a large number of hypotheses. We defined Bonferroni-adjusted P <
0.05 as significant. Although this approach is conservative (and Mendelian Randomization
may suffer from low power), we aim to identify potentially causal genes with the strongest
support from an integrative GWAS-eQTL analysis.

Furthermore, although the estimated causal effect of the gene on the trait, as derived from
Mendelian Randomization, must be interpreted with caution (as the MR guidelines have
pointed out#2), our approach ultimately seeks to prioritize genes based on the presence of
causal effect on the trait, providing a resource for further functional studies (e.g., CRISPR).
We conducted analyses on a GWAS of LDL-C, using a literature-based silver standard
(Supplementary Table 4), to compare MR-JTI and other MR approaches (see Supplementary
Note).

Correlation among effect size estimates and Mendelian Randomization analysis
We evaluated the impact of the correlation among the GWAS effect size estimates eAj’s and,
similarly, the correlation among the regulatory effect size estimates Ej’s on the analysis.
Given effect size estimates eAj and 8y on the trait for the j-th and A-th instrument, respectively,
the following relationship holds:

2,2

oy ) =2/ _ 2y, 1)

where h}z_ and h,% are the per-SNP contribution to trait variance (heritability) of the j~th and -

th instrument, respectively. For a highly polygenic trait, this quantity is small owing to the
modest per-SNP contribution to the trait variance. For gene expression with allelic
heterogeneity, the corresponding quantity corr(ﬁj, ﬁAk) is small for a large proportion of genes

(using the imputation quality from the training as an estimate of gene expression
heritability). Thus, the pairwise correlations between these effect sizes are small, and the
simple model 8= ag (i.e., without the higher-order terms from the pairwise terms) is a good
fit, as was also shown empirically by the recent study20.

Statistical tests

All statistical tests are two-sided unless otherwise stated.

CODE AVAILABILITY

The code for JTI and MR-JTI and for reproducing the figures in this paper is available on
github (https://github.com/gamazonlab/MR-JT]I).

DATA AVAILABILITY

The protected data for the GTEX project (for example, genotype and RNA-sequence data)
are available via access request to dbGaP accession number phs000424.v8.p2. Processed
GTEX data (for example, gene expression and eQTLs) are available on the GTEXx portal:
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https://gtexportal.org. The URLS of the summary statistics datasets of all the GWAS meta-
analyses analyzed in the paper can be found in Supplementary Table 7. All summary results
from the gene-based analyses are in Supplementary Tables. The JTI GTEx models (as well
as the PrediXcan and [modified] UTMOST models we generated) are available for
download on Zenodo (http://doi.org/10.5281/zenodo.3842289). The PsychENCODE (http://
doi.org/10.5281/zenod0.3859065) and GEUVADIS (https://doi.org/10.5281/
zenodo.3859075) models have also been deposited.

Extended Data

Horizontal pleiotropy (substantial part of heterogeneity)
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Extended Data Fig. 1. TWAS could be biased by possible sources of bias (PSB), including invalid
instrumental variables (1Vs) dueto horizontal pleiotropy and weak instruments.

Conventional TWAS, such as PrediXcan, can be viewed as Mendelian Randomization with
multiple 1Vs, but without horizontal pleiotropy control. a, A major source of false positives
from TWAS is the use of invalid IVs due to horizontal pleiotropy. b, Horizontal pleiotropy
can arise in multiple ways. For example, it can come from LD-induced invalid 1Vs, i.e., LD
contamination. If we are testing the significance of Gene A, but one of the SNPs (yellow) in
the prediction model tags another coding (red) or regulatory (blue) variant that is causal for
the trait through another Gene B, causal effect estimation will be biased. ¢, Even without LD
contamination, the estimation may also be biased by the inclusion of weak or false positive
eQTLs in the prediction model for Gene A. In this case, the effect of the weak or false
positive eQTL for Gene A on the trait is actually mediated by another Gene B (by affecting
coding or regulation). More generally, weak instrument bias is a type of finite sample bias; it
arises in finite samples where the gene expression (“exposure”) is only weakly correlated
with the instrument set. Both b, and c, result in d, a biased estimate of gene causal effect on
trait. We estimate the heterogeneity due to PSB using threshold-based residual bootstrap
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LASSO (see Methods). Our approach estimates the heterogeneity due to invalid I1Vs and
gives an adjusted estimate of the gene causal effect on trait.
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Extended Data Fig. 2. The gene expression similarity matrix.
The median expression level (logp-transformed TPM) across all the samples of a given tissue

was used to evaluate the correlation (Pearson) of tissue-tissue pairs across the transcriptome.
The similarity map was generated by performing hierarchical clustering.
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Extended Data Fig. 3. Comparison of prediction performance between PrediXcan and JTI in all
GTEX v8 tissues.

We compared the performance of PrediXcan and JTI using the Pearson correlation rbetween
predicted and observed expression levels for each of the 49 GTEX v8 tissues with more than
70 samples. The white box edges depict interquartile range, whiskers 1.5x the interquartile
range, center black dot marks the median level, and the outlines display the kernel
probability density. The median correlation is also shown below the x-axis label.
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Extended Data Fig. 4. Prediction perfor mance comparison between JT| and three single-tissue
approaches (top eQTL, BSLMM, and DPR) in two independent datasets.

Prediction models were trained using BLSMM (5-fold cross-validation FUSION default
setting) and JT1 (see Methods) in GTEX v8 a, brain frontal cortex BA9 region and d, EBV-
transformed lymphocytes. The x-axis and y-axis represent the Pearson correlation r between
the predicted expression and observed expression in external (non-GTEx and independent)
datasets. i.e., 8 PsychENCODE and d, GEUVADIS. b, and e, show the corresponding
comparisons between JTI and top eQTL, which simply models the genetically regulated
expression using the top eQTL. ¢, and f, We also compared the prediction performance with
the DPR model, a nonparametric Bayesian method with a Dirichlet process prior on effect-
size variance, using the software tool ‘TIGAR’ with 5-fold cross-validation. The green,
purple, and pink dots denote genes imputable using only JT1, BSLMM, top eQTL, and DPR,
respectively. The black and grey dots denote genes consistently imputable and not
imputable, respectively, using both methods.
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Extended Data Fig. 6. Prediction performance comparison among PrediXcan, JTI, original
UTMOST, and modified UTMOST for brain frontal cortex BA9.

We compared the cross-validation prediction performance (/) in GTEx (internal, brain
frontal cortex BA9) and the prediction performance in PsychENCODE (an external test data
set, brain prefrontal cortex) among a, PrediXcan, b, JTI, ¢, original UTMOST, and d,
modified UTMOST. The lower figures e, f, g, and h, are the zoom-in version of the
corresponding upper figures. The yellow, green, and purple dots indicate high, medium, and
low density.
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Extended Data Fig. 7. Prediction performance comparison among PrediXcan, JTI, original
UTMOST, and modified UTMOST for EBV transformed lymphocytes.

We compared the cross-validation prediction performance (/) in GTEx (internal, EBV
transformed lymphocytes) and the prediction performance in GEUVADIS (an external test
data set, LCLs) among a, PrediXcan, b, JTI, ¢, original UTMOST, and d, modified
UTMOST. The lower figures g, f, g, and h, are the zoom-in version of the corresponding
upper figures. The yellow, green, and purple dots indicate high, medium, and low density.
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Extended Data Fig. 8. Type| error ratefor PrediXcan, UTMOST, and JTI.
The Q-Q plots show the type | error from applying PrediXcan, UTMOST, and JTI models in

a, b, and c brain frontal cortex BA9 and d, e, and f, Liver. The blue dashed lines show the
95% CI of the expected -log(A). Type | error rate for all the tissues can be found in
Supplementary table 3.
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Extended Data Fig. 9. TWAS power analysisfor PrediXcan, UTMOST, and JT]I.
The true expression level of randomly sampled causal genes and the effect size for each gene

on trait were simulated. In this model, each gene, on average, contributed 0.5% to the
phenotypic variance. For each gene, the predicted (i.e., genetically determined) expression
level was generated according to the proportion of variance explained (PVE), based on the
actual prediction performance (/A2) in two external datasets (a, PsychENCODE and b,
GEUVADIS), for each of the three imputation approaches (PrediXcan, UTMOST, and JTI).
Power was estimated as the proportion of simulations that attain significance (defined as
Bonferroni adjusted P < 0.05).
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Extended Data Fig. 10. Comparison of the estimated gene effect sizeon LDL-C from MR-JTI
and the median estimator (median level of Wald ratio estimates across all cis-eQTLS).

For each gene, the median estimator was calculated as the median of the Wald ratio
estimates across all the cis-eQTLs. The Wald ratio estimate for a cis-eQTL is the ratio of the
estimate for the GWAS effect size and the estimate for the eQTL effect size.

a, Positive correlation between the estimated gene effect size from MR-JTI and the median
estimator effect size (Spearman r=0.72, P< 2.2e-16) was observed. b, No significant
correlation was observed between the median estimator and the MR-JTI estimate from
shuffled GWAS summary statistics data. Furthermore, note that MR-JTI’s type | error is
well-controlled.
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Fig. 1: The JTI framework: multi-tissue gene expression imputation model and causal inference
engine.

Togimprove imputation in a target tissue (blue box), JTI borrows information from the
remaining tissues (green box) by leveraging tissue-tissue similarity from expression and
epigenomic (e.g., ENCODE/Roadmap) profiles. For JTI, the prediction model is generated
via cross-validation by solving an optimization problem (Methods) that incorporates data on
gene expression similarity and DHS profile similarity across tissues. Prediction performance
is assessed through cross-validation in GTEx and validation in additional external datasets
(e.g., PsychENCODE and GEUVADIS). In trait mapping applications, prediction models
can be applied to GWAS summary statistics to identify robust gene-level associations.
Finally, causal effect inference is performed for each of the genes from the association
analysis, using a novel summary statistics-based approach, MR-JTI. To this end, MR-JTI
estimates the confounding due to invalid genetic instruments on the trait, providing an
approximately unbiased causal effect estimate, and implements a statistical test of the null
causal hypothesis. The LD contamination, a major challenge for TWAS, is addressed by a
variable selection process to estimate the per-instrument contribution to heterogeneity
(Methods).
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a, The number of imputable genes (iGenes) is greater for JTI than for PrediXcan in all GTEx
(v8) tissues. b, Most (92.9% on average) of the iGenes under PrediXcan are also iGenes
under JTI. ¢, The increase in the proportion of iGenes (ApiG) is negatively correlated
(Spearman r=-0.80, P= 4.4e-12) with tissue sample size; thus, tissues with small sample
sizes, which therefore have more to gain, tend to show higher ApiG. Tissue panels with more
modest sample sizes can benefit more and indeed display greater performance gains under
JTI. Tissue panels that have the largest sample sizes also show performance gains though

less, as expected.
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Fig. 3: Comparison of the performance of the various methods using external transcriptome data
from GEUVADISLCLs(a-d) and PsychENCODE prefrontal cortex tissues (e-h).

a, e The Venn diagram plots show the overlap of the iGenes (defined by r> 0.1 and P<
0.05) from PrediXcan, UTMOST, and JTI. b, f, The bar plots of the number of iGenes using
the different training models. ¢, d, g, h, The scatter plots of the correlation rbetween
predicted and observed expression. Comparison of ¢, g, UTMOST and d, h, JTI with
PrediXcan. The orange, green, and blue dots denote genes only imputable using UTMOST,
JTI, and PrediXcan, respectively. The black and grey dots denote genes consistently
imputable and not imputable, respectively, using both methods in the comparison. The
specific training and test datasets used are shown on the left. Note, for example, that we used
GTEx EBV-transformed lymphocytes as training set and GEUVADIS LCLs (a matched cell
type) as test set in the bottom-half analyses.
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N of significant known genes

a, LDL-C TWAS Manhattan plot showing the association results from application of

PrediXcan (blue) and JTI (green) models. The known genes (from the KEGG cholesterol

N of significant additional genes

metabolism pathway and the literature-based silver standard) and additional genes are shown

in dark circle and light circle, respectively. Number of b, known genes and c, additional

genes that were significantly associated (Prpp < 0.05) with LDL-C. Except for ABCAZ, all

(eight) known genes found by PrediXcan (SORT1, LPA, TNKS, FASDS3, LIPC, KPNBI,
PLTP, and APOC2) were identified by JTI with greater or similar level of significance. JTI

identified 8 additional known genes (ANGPTL3, LIFA, PPARG, CETP, etc.).
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Fig. 5: Improved performance of JTI relativeto PrediXcan in GTEX liver tissuefor LDL-

associated genes.

The upper scatter plots a, b, ¢, and d show the prediction performance for KPNBI,
ANGPTL3, PPARG, and LPA, respectively, using PrediXcan. The bottom scatter plots e, f,
g, and h show the JT1 results, which outperform the corresponding PrediXcan results. (Here
“not imputable” is defined as 7< 0.1 [which implies 2 < 0.01] or > 0.05.) A regression
line (shown as yellow dashed line) is included if the gene is imputable. LDL-C associated
genes were identified using JTI or PrediXcan applied to UK biobank GWAS summary

statistics.
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Fig. 6: MR-JTI identifies LDL -C associated genes with potential causal effect.
We performed causal inference using MR-JTI. The JTI results are highlighted on the TWAS

Manhattan plot. Yellow, green, and grey dots denote the genes with both JTI and MR-JTI
significance, only JTI significance, and non-JTI significance, respectively. In total, 138
genes had causal support for effect (Bonferroni-adjusted 95% confidence intervals do not
contain 0) on LDL-C after heterogeneity control. Among the 138 genes, 6 are well-known
LDL-C related genes. Additional results from the MR-JTI analysis are found in
Supplementary Table 8.
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