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Summary

It is known that inoculation of antigen into the anterior chamber (a.c.) of a
mouse eye induces a.c.-associated immune deviation (ACAID), which is
mediated in part by antigen-specific local and peripheral tolerance to the
inciting antigen. ACAID can also be induced in vivo by intravenous (i.v.)
inoculation of ex-vivo-generated tolerogenic antigen-presenting cells
(TolAPC). The purpose of this study was to test if in-vitro-generated retinal
antigen-pulsed TolAPC suppressed established experimental autoimmune
uveitis (EAU). Retinal antigen-pulsed TolAPC were injected i.v. into mice 7
days post-induction of EAU. We observed that retinal antigen-pulsed
TolAPC suppressed the incidence and severity of the clinical expression of
EAU and reduced the expression of associated inflammatory cytokines.
Moreover, extract of whole retina efficiently replaced interphotoreceptor
retinoid-binding protein (IRBP) in the preparation of TolAPC used to
induce tolerance in EAU mice. Finally, the suppression of EAU could be
transferred to a new set of EAU mice with CD8+ but not with CD4+regulatory
T cells (Treg). Retinal antigen-pulsed TolAPC suppressed ongoing EAU by
inducing CD8+ Treg cells that, in turn, suppressed the effector activity of the
IRBP-specific T cells and altered the clinical symptoms of autoimmune
inflammation in the eye. The ability to use retinal extract for the antigen
raises the possibility that retinal extract could be used to produce autologous
TolAPC and then used as therapy in human uveitis.
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Introduction

The eye is the prototype for the study of immune-privileged
mechanisms. Because ocular antigens are not sequestered
from recognition by the immune system [1], multiple layers
of immune regulation exist, both locally and peripherally,
to preserve the visual axis. Ocular-induced regulation of
immune responses suppress inflammation and the adaptive
immune response, in part, by generating antigen-specific
regulatory T cells (Treg) that contribute to both local and
peripheral tolerance [2]. In addition, activated T cells spe-
cific for ocular antigens that are able to cross the structural
barriers of the eye meet multiple immunosuppressive
mechanisms to prevent them from finding their targets and
inducing inflammation within the eye [2–5].

In spite of all the overlapping immunoregulatory mecha-
nisms that exist, uveitis occurs in approximately 0·2% of
the US population [6], with autoimmunity contributing to

approximately 50% of the aetiology. While 0·2% of the
population is not classified as an orphan disease, the
National Institute of Health (NIH) considers it a rare
disease. Autoimmune uveitis is a sight-threatening inflam-
matory disorder that affects all ages, and is a significant
cause of visual loss [7]. Each year 17·6% of active uveitis
patients experience a transient or permanent loss of vision,
and 12·5% will develop glaucoma [8]. Uveitis is also associ-
ated with several systemic diseases, including arthritis [9].
The medical community predominantly treats the clinical
symptoms of uveitis with corticosteroids, with increasing
prescriptions for biologicals such as anti-tumour necrosis
factor (TNF)-α compounds [10]. A more specific treat-
ment and restoration of the immune homeostasis would be
a welcome treatment for uveitis.

Experimental autoimmune uveitis (EAU) is a disease of
the neural retina that is induced by immunization of
rodents (mice or rats) with retinal antigens. Generally, the
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antigen is introduced in concert with strong adjuvant and
pertussis toxin injections to overcome natural immune
resistance [11]. Because the use of strong adjuvants would
interfere with the induction of tolerance, we used a well-
established adoptive transfer model of EAU, which induces
EAU by transferring interphotoreceptor retinoid-binding
protein (IRBP)-primed T cells to naive recipients in the
absence of adjuvants [7]. The purpose of this study was to
determine if restoration of aspects of immune privilege in a
mouse with EAU would interfere with and suppress the
progression of the uveitis. More specifically, we wanted to
know if we could induce suppression of the immune
response to the inciting retinal antigen by inducing toler-
ance by the transfer of ex-vivo-generated TolAPC to EAU
mice.

Materials and methods

Animals

C57BL/6J (B6) female (8–12 weeks old) mice were pur-
chased from Jackson Laboratory (Bar Harbor, ME, USA)
and used for all experiments. All animals were treated
humanely and in accordance with the guidelines of the NIH
office of Laboratory Animal Welfare; the protocols were
approved by the Schepens Institutional Animal Care and
Use Committee. All experiments were conducted in accord-
ance with the Association for Research in Vision and Oph-
thalmology (ARVO) Statement for the Use of Animals in
Ophthalmic and Vision Research.

Reagents

Cells were cultured in serum-free medium (SFM), consist-
ing of RPMI-1640 (Lonza, Walkersville, MD, USA), 10 mM
HEPES, 0·1 mM non-essential amino acids, 1 mM sodium
pyruvate, 100 U/ml penicillin and 100 μg/ml streptomycin
(all purchased from Life Technologies Gaithersburg, MD,
USA). Transforming growth factor (TGF)-β2 and mouse T
cell enrichment columns were purchased from R&D
Systems (Minneapolis, MN, USA). Peptide IRBP1-20
(GPTHLFQPSLVLDMAKVLLD), representing residues
1–20 of human IRBP, was synthesized by Invitrogen
(Carlsbad, CA, USA). Myelin basic protein (MBP), pertussis
toxin (PTX) and incomplete Freund’s adjuvant (IFA) were
purchased from Sigma Life Sciences (St Louis, MO, USA).
Heat-inactivated desiccated Mycobacterium tuberculosis
(H37 RA) was purchased from Difco laboratories (Detroit,
MI, USA). Tropicacyl® (tropicamide ophthalmic solution
1%) and phenylephrine hydrochloride ophthalmic solu-
tions 2·5% were both purchased from Akorn Inc. (Lake
Forest, IL, USA). Monoclonal antibodies for flow cytometry
such as Fc block (anti-2.4G2), forkhead box protein 3
(FoxP3) fluorescein isothiocyanate (FITC) (clone-FJK-16s),
CD8 phycoerythrin (PE) (clone LY3), CD4 PE (clone GK1-

5), anti CD253 TNF-related apoptosis-inducing ligand
(TRAIL) PE (clone N2B2), F4/80 FITC (clone BM8), CD40
PE (clone IC10), as well as mouse interferon (IFN)-γ and
mouse interleukin (IL)-17A enzyme-linked immunosorb-
ent assay (ELISA) kits were purchased from eBioscience Inc.
(San Diego, CA, USA). Mouse CD8+ and CD4+ T cell isola-
tion kits were purchased from Miltenyi Biotech (Auburn,
CA, USA).

Flow cytometry and cell sorting

Splenic cells that were analysed by flow cytometry were
stained in the presence of a saturated concentration of Fc
block (blocks FcRγ II/III). Cells (1 × 106) were stained with
the monoclonal antibodies using concentrations recom-
mended by the manufacturer. Stained cells were analysed on
a BD LSRII Flow analyser (BD Biosciences, San Diego, CA,
USA). For sorting TRAIL+ and TRAIL– populations,
enriched CD8+ T cells were passed through a MoFlo Cell
Sorter (Cytomation, Inc., Fort Collins, CO, USA).

Induction of EAU

EAU was induced by modification of methods reported [7].
Briefly, donor B6 mice were immunized subcutaneously
(s.c.) with 100 μl of an emulsion (1:1) of phosphate-
buffered saline (PBS) and IFA containing 200 μg of IRBP1–20

and 500 μg of M. tuberculosis H37RA (Difco Laboratories).
A single dose of PTX (200 ng) was injected intraperi-
toneally (i.p.) on the same day. The lymphocytes from
draining lymph nodes and spleens of the immunized donor
mice were collected on day 12 and activated in culture with
30 μg/ml of IRBP1–20 for 48 h, after which the non-adherent
cells were collected, washed and injected [5 × 106 cells/
0·1 ml PBS/intravenously (i.v.)] into recipient B6 mice to
induce EAU.

Scoring of EAU

The ocular fundus of the mouse eyes was examined by slit
lamp two times a week for clinical signs of EAU. Pupils were
dilated using Tropicacyl® and phenylephrine hydrochloride
ophthalmic solutions. The severity of inflammation was
clinically graded on a scale of 1–5, as described previously
[12,13]. In brief, a grade of 1 or less was considered as a
negative score. Briefly, 0 = no inflammation; 1 = focal vas-
culitis ≤5 spots or soft exudates ≤5; 2 = linear vasculitis or
spotted exudates ≤50% of the retina; 3 = linear vasculitis or
spotted exudates ≥50% of the retina; 4 = retinal haemor-
rhage or severe exudates and vasculitis; and 5 = exudative
retinal detachment or subretinal (or vitreous) haemorrhage.
A mouse was considered to have uveitis if at least one of its
eyes had a score of above 1 or more. The severity of uveitis
is represented as the highest clinical score achieved by either
eye in a mouse over the 25 days of the clinical disease. The
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clinical symptoms of EAU post-transfer of IRBP immune
cells are less severe than the clinical symptoms of EAU
induced by traditional immunization (includes CFA and
pertussis toxin).

Histopathological evaluation

Whole eyes were collected at the peak of the clinical
response (between 21–23 days after induction of EAU by
adoptive transfer of IRBP immune cells), immersed in 10%
formaldehyde and stored until processed. Fixed and dehy-
drated tissues were embedded in methacrylate, and 5-μm
sections were cut through the papillary–optic nerve plane
and stained with haematoxylin and eosin (H&E). The pres-
ence or absence of disease was evaluated in a blinded
fashion by examining six sections cut at different levels for
each eye.

Preparation of TolAPC

TolAPC were prepared by a modification of methods
reported [14–17]. Briefly, thioglycolate-elicited PEC was
cultured overnight in SFM with TGF-β (5 ng/ml) and
antigen [IRBP1–20 (50 μg/ml), retinal extract (100 μg/ml),
corneal extract (100 μg/ml) or MBP (100 μg/ml)]. After
incubation, the culture media was replaced with cold (4°C)
PBS for 10 min, and the APC were removed by gently scrap-
ing the Petri dish with a rubber policeman. To verify that
TolAPC were generated, the APC were analysed by flow
cytometry for expression of CD40 and F4/80. CD40, a
co-stimulatory molecule for immune activation, was down-

regulated but F4/80, a surface marker associated with ante-
rior chamber (a.c.)-associated immune deviation (ACAID)
TolAPC [18], was increased (Fig. 1). Recovered APC were
suspended in PBS (107 cells/ml). Each recipient mouse was
inoculated (i.v.) with 100 μl of cell suspension (106 cells) 7
days after induction of EAU.

Preparation of T cells from spleens for treatment of
EAU mice

Because, in most experimental animal groups, the EAU
peak clinical response subsided by 24 days, we collected cells
between 21 and 23 days post-initiation of EAU. Spleens
were dissociated individually into single-cell suspensions
and labelled as (i) EAU untreated or (ii) EAU-treated. Dis-
sociated spleen cells were passed through T cell enrichment
columns (R&D Systems). The T cell samples (5 × 106/100 μl
PBS) were separated further into CD8- or CD4-positive
populations, using magnetic isolation kits on fluorescence-
activated cell sorting before being injected into new EAU
mice. Cells from our donor mouse were injected (i.v.) into
one recipient EAU mouse.

In-vitro correlate for ACAID

It has been shown previously that induction of ACAID by
antigen inoculation into the a.c. could be bypassed by
injecting TolAPC i.v [16]. Furthermore, it is known that
in-vitro ACAID cultures where the TolAPC is co-cultured
(5–7 days) with spleen cells will generate both CD4+ and
CD8+ Treg cells. Thus, TolAPC generates Treg cells in vitro and

Double isotype APC no treatment

APC treatment with
IRBP alone

C
D

40
 P

E

F4/80 FITC

APC treatment with
IRBP + TGF-β

1·21

(a) (b)

100 101

F4/80 FITC

102 103 104

100 101 102 103 104

104

103

101

102

100

104

103

101

102

100

104

103

101

102

100

100 101 102 103 104

104

103

101

102

100

0

0

30

60

90

120

50

100

# 
of

 c
el

ls
# 

of
 c

el
ls

150

200

100 101 102 103 100 101 102 103

CD40PE

100 101 102 103

104

0·47

97·3
1·02

0·81 46

2·42
50·8

0·078 2·45

5·22
92·3

0·51 38·5

2·28
58·7

Fig. 1. Flow analysis of CD40 expression. (a)
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interphotoreceptor retinoid-binding protein

(IRBP) overnight to produce tolerogenic

antigen-presenting cells (TolAPC). F4/80 is
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ordinate. (b) Upper histograph of APC stained
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in vivo [19]. To generate sufficient numbers of the Treg cells
we used in-vitro cultures [16]. IRBP-pulsed TolAPC were
incubated with non-adherent spleen cells for 7 days. The
non-adherent cells were harvested and enriched for CD8+ T
cells using the magnetic affinity cell sorting (MACS®) cell
separation system following the manufacturer’s instructions
(Miltenyi Biotech). The purity of the separated cells was
checked using flow cytometry PE-conjugated CD8 mono-
clonal antibody.

Assay of in-vitro T helper type 1 (Th1) and
Th17-related cytokine production

Spleens were removed from each group of TolAPC or
untreated APC-treated mice 22 days after induction of EAU.
Cells were seeded in flat-bottomed, 12-well tissue culture
plates at a density of 6 × 106 cells per well in 2 ml of the
culture medium RPMI-1640 supplemented with 10% fetal
calf serum, 2-mM of L-glutamine, 1-mM of sodium
pyruvate and antibiotics in the presence of hIRBP1–20

peptide (50 μg/ml) and then cultured for 48 h. To assess
cytokine production, cell-free supernatants were collected
at 48 h and assayed for IFN-γ and IL-17 by using a mouse
IFN-γ and IL-17 ELISA (Ready-SET-Go! Kit; eBioscience,
Inc.).

Local adoptive transfer (LAT) assay [20]

The LAT assay is commonly used to test the efferent sup-
pressor activity of a population of cells [21]. The concept is
to inject (intradermally) a mixture of immune cells with
antigen into the ear pinnae of a naive mouse. The mouse
serves as a test tube for the immune response; the swelling
of the ear is evidence of a delayed hypersensitivity response
induced by the injected immune cells and antigen. CD8+ Treg

cells (5 × 105 cells) were mixed with spleen cells (5 × 105

cells) from mice immunized with IRBP and CFA 7 days pre-
viously and antigen was injected (10 μl/injection) into the
ear pinnae of B6 mice. The ear thickness was measured with
an engineer’s micrometer before and compared to ear
thickness 24 h after injection.

Preparation of retinal extract

The eyes were enucleated from euthanized mice. The eye-
balls were cut at the equator around the ora serrata, and the
posterior pole of the eyes was separated from the anterior
pole and lens. The retina, consisting of the neural retina and
the retinal pigment epithelial cells, was extracted from the
posterior pole. The extract from one retina was placed in
500 μ of RPMI on ice (1 min) and sonicated briefly three
times for 7 s at a probe intensity of 7 (MicrosonTM XL2000
Ultrasonic liquid processor; Qsonica, LLC, Newton, CT,
USA). After removal of the insoluble material by centrifuga-
tion (200 g for 5 min), the protein concentration of the

retinal extract was measured at 280 nm on an ND-1000
spectrophotometer, and adjusted to approximately 4 mg/ml.
The retinal extract (100 μg/ml) was used as antigen to pulse
the TolAPC.

Preparation of corneal extract

A 1·5-mm full-thickness cornea button was trephined
(under the hydration of PBS) from euthanized mouse
tissue, and sonicated in RPMI (100 μl) on ice to prepare a
homogeneous solution. The protein concentration of the
corneal extract from one corneal button was approximately
2 mg/ml. A dilution of the corneal extract (100 μg/ml) was
used to pulse the TolAPC.

Statistical analysis

All statistical analyses were performed using PRISMTM soft-
ware. Statistical differences in the incidence of uveitis and
peak clinical scores between controls versus experimental
groups were determined by non-parametric Mann–
Whitney U-tests. In some experiments statistical differences
between the course of the EAU (area under the curve)
between groups were also compared using non-parametric
Mann–Whitney U-tests. Statistical differences between
cytokine production in control and treated EAU in ELISA
assays were determined using a one-tailed Student’s t-test.
Differences were considered significant at P ≤ 0·05.

Results

IRBP-pulsed TolAPC suppress pre-existing EAU

TolAPC were generated by culturing thioglycolate-elicited
peritoneal exudate cells (PEC) in serum-free medium
(SFM) in the presence of IRBP1–20 and TGF-β2. Untreated
APC were cultured in SFM only, without IRBP and TGF-β2.
The TolAPC or untreated APC were injected (i.v. 106 cells/
mouse) into EAU mice. EAU was induced by IRBP-
sensitized cells that were transferred adoptively, as described
in Materials and methods. Mice with EAU that were treated
with TolAPC exhibited a delay in disease onset and a signifi-
cantly (P ≤ 0·001) lower peak EAU score over time
(Fig. 2a,b). The mice that received untreated APC treatment
had a mean clinical severity score of 2 ± 0·26, while the
mice that received TolAPC treatment had a mean clinical
severity score of 0·64 ± 0·13 (P ≤ 0·05) (Table 1). In addi-
tion, examination of haematoxylin and eosin (H&E)-
stained paraffin-fixed slides revealed that retinal sections of
eyes from EAU mice that received TolAPC showed a
reduced cell infiltration into the vitreous cavity and their
retinal layer structures lacked the retinal folds and vascular
swelling observed in the untreated mice (Fig. 2c,d). The fact
that the mice given TolAPC had peak clinical scores of 1 or
lower (mild or no uveitis) supported the postulate that the

S-M. Hsu et al.

40 © 2013 The Authors. Clinical and Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society
for Immunology, Clinical and Experimental Immunology, 176: 37–48



100×

0

Untreated APC
(a) (b)

(c) (d)

(e) IL-17

400

300

200

pg
/m

l

100

0

*

pg
/m

l

0

5 000

10 000

15 000

20 000

25 000 *

IFN-γ(f)

Tolerogenic APC

0

1

2

M
ea

n 
cl

in
ic

al
 s

co
re

s

M
ax

 E
A

U
 s

co
re

s

3

0

1

2

3

4

5 10 15

Untreated APC Tolerogenic APC

* *
* *

*

*

*

Tol APC

100×
GCL

INL

ONL

RPE

*

**

***

Days
Day 2120 25

Fig. 2. Effect of tolerogenic antigen-presenting cells (TolAPC) on clinical course of experimental autoimmune uveitis (EAU). (a) Average clinical

score over time of EAU in mice with and without TolAPC treatment. EAU was induced by adoptive transfer of interphotoreceptor retinoid-binding

protein (IRBP)-sensitized enriched T cells into C57BL/6 mice. A week later, TolAPC (red n = 14) or untreated antigen-presenting cells (APC) (black

n = 14) were injected intravenously (i.v., 106 cells/mouse) into EAU mice. Data shown are the mean clinical score (ordinate) of each experiment

group over time (abscissa), and are the sum of two independent experiments. Comparison of (the course of the clinical symptoms) untreated EAU

mice versus TolAPC-treated mice shows a significant difference (P ≤ 0·05) and is indicated. (b) Scatterplot shows peak scores on day 21 of individual

EAU mice were given TolAPC (red) or not (black). The peak clinical scores over time of TolAPC-treated EAU mice are significantly lower than the

peak scores over time of the untreated EAU mice. *Indicates a significant difference (P ≤ 0·05). (c,d) Photomicrographs of haematoxylin and eosin

(H&E)-stained retinal tissue. Representative photomicrographs paraffin-fixed H&E stained slides of the retina of (c) EAU mice that received

untreated APC (*leucocytes in vitreous cavity; **swelling; ***retinal fold) and (d) EAU mice that received TolAPC days post-initiation of EAU.

Retinal pigment epithelium (RPE), outer nuclear layer (ONL), inner nuclear layer (INL), ganglion cell layer (GCL). (e,f) Enzyme-linked

immunosorbent assay (ELISA) analysis of inflammatory cytokines in spleen cells harvested at day 23 of EAU mice that received either TolAPC or

spleen cells were restimulated with antigen with serum-free media for 48 h prior to collecting the supernatants for analyses. Bar graphs showing

(e) interleukin (IL)-17 and (f) interferon (IFN)-γ production. Spleen cells (from three separate mice) were harvested from APC- (solid bar) or

TolAPC-treated EAU mice (three per group) co-cultured with antigen (IRBP 50 ug/ml) (open bar). Supernatants from duplicate cultures were

harvested 48 h after restimulation with IRBP for ELISA analysis. An asterisk (*) indicates a significant difference (P ≤ 0·05).

Tolerogenic APC suppress EAU

41© 2013 The Authors. Clinical and Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society
for Immunology, Clinical and Experimental Immunology, 176: 37–48



TolAPC induced suppression of the clinical symptoms of
EAU. Thus, treatment of EAU mice with IRBP-pulsed
TolAPC a week after induction of the EAU delayed its onset
and suppressed the subsequent development and severity of
EAU (Table 1).

TolAPC treatment down-regulates the production of
EAU-associated inflammatory cytokines

To examine the effect of TolAPC treatment on the produc-
tion of inflammatory cytokines, IFN-γ and IL-17 [11] we
collected non-adherent cells from the spleens of EAU mice
that received TolAPC or untreated APC. The spleen cells
were restimulated with IRBP antigen for 48 h in vitro and
assayed for the production of IFN-γ and IL-17. Spleen cells
derived from TolAPC-treated EAU mice produced signifi-
cantly (P ≤ 0·05) less IFN-γ (Th1) and IL-17 (Th17) than
EAU mice receiving untreated APC (Fig. 2e,f). Thus,
TolAPC, but not APC, treatment resulted in suppression of
the inflammatory cytokine response in EAU mice.

Ability of retinal extract- versus IRBP-pulsed TolAPC
to suppress EAU

Although the retinal antigens that induce the EAU in the
mice are known, the target antigens in human uveitis
remain obscure. Here, we tested if retinal protein extract
(containing IRBP and other retinal antigens) would provide
the relevant antigens for producing the TolAPC that were
effective in this model of suppression. In this experiment
EAU was induced by injecting IRBP-specific cells as before,
but the TolAPC were made by incubation with TGF-β and
IRBP or mouse retinal extract. The retinal antigen-pulsed
TolAPC were then injected (i.v.) into the EAU mice, 7 days
post-induction with the IRBP-specific cells. As before, mice
were monitored and clinical symptoms were scored every
3–30 days. We observed that the retinal extract (but not
corneal extract, control)-pulsed TolAPC were as effective as
IRBP1–20-pulsed TolAPC in reducing the clinical symptoms
of EAU (Fig. 3a). Furthermore, if the TolAPC were pulsed
with the irrelevant antigen MBP, they were not able to

establish suppression of EAU (Fig. 3b). Therefore, it is pos-
sible to produce EAU-specific TolAPC when the TolAPC are
pulsed with retina extract.

TolAPC induce Treg cells in the spleens in host
EAU mice

Having shown that TolAPC treatment suppressed the pro-
duction of inflammatory cytokines and reduced the clinical
symptoms of EAU, we next analysed the cellular mecha-
nisms that might be responsible for the suppression. It is
known that tolerance induced by antigens a.c.-inoculated or
by TolAPC-inoculated i.v. induce Treg cells that can transfer
tolerance. To test for the presence of Treg cells, T cells were
enriched from spleens harvested (day 21) from individual
EAU mice treated with TolAPC, restimulated with IRBP in
vitro for 48 h prior to transferring (5 × 106, 100 μl) to
syngeneic recipients in which EAU had been induced 7 days
previously. Control groups of mice received either
restimulated enriched T cells from EAU mice that were
injected with untreated APC or were not injected with APC.
EAU mice receiving T cells from mice treated with TolAPC
exhibited a delayed onset of their EAU symptoms with less
severity compared with the EAU mice that received cells

Table 1. Incidence of uveitis and peak disease score of mice after

untreated antigen-presenting cells (APC) versus tolerogenic antigen-

presenting cell (TolAPC) treatment.

Treatment of

EAU mice

Incidence of mice with

clinical score ≥2

Peak disease

score ± s.e.m.

Untreated APC 9/14 2·0 ± 0·026

Tolerogenic APC 0/14* 0·64 ± 0·13*

Scores are from the experimental and control mice used for Fig. 2.

*Indicates a significant difference (P ≤ 0·05) between untreated and

TolAPC-treated mice. EAU: experimental autoimmune uveitis; s.e.m.:

standard error of the mean.
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(abscissa). The retinal extract-pulsed TolAPC-treated mice show a

significant (P ≤ 0·05) decrease in EAU clinical score over time

compared to scores of EAU in untreated mice. (b) Antigen specificity

of TolAPC-induced suppression. The EAU mice were treated with each

type of TolAPC, 7 days post-induction of EAU (Materials and

methods). Line graph of response of EAU mice to TolAPC pulsed with

indicated antigens. The transferred antigen-presenting cells (APC)

were not pulsed with antigen (black line, n = 15) or were treated with
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Data shown are mean clinical score (ordinate) over time (abscissa). An
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the curves. Statistics were performed using Prism software (Materials

and methods).
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from the control groups of mice (P ≤ 0·05) (Fig. 4a), sug-
gesting that the suppression of the autoimmune inflamma-
tion was mediated by Treg cells induced by the administered
TolAPC.

CD8+, but not CD4+, Treg cells transfer suppression to
EAU mice

Previous reports showed that either a.c. injection of antigen
or i.v. transfer of in-vitro-generated TolAPC induced two
types of Treg cells: afferent CD4+ Treg and efferent CD8+ Treg

cells. Both the CD4+ and the CD8+ Treg cells have been char-
acterized [22,23]. To determine which type of Treg cells
transferred the tolerance to EAU mice, the experiments
were repeated. Spleen cells were dissociated from spleens
harvested from EAU mice at 21 days and restimulated in
vitro with IRBP. The spleen cells were collected from two
groups of mice as follows: (i) individual EAU mice that
received untreated APC (Fig. 4b) and (ii) individual EAU
mice that received TolAPC (Fig. 4c). The spleen cells from
each mouse were restimulated in vitro in separate cultures
with IRBP (48 h), after which CD4+ T cell and CD8+ T cell
populations were enriched by magnetic bead separation. We
observed that transfer of efferent CD8+, but not the afferent
CD4+ T cells, suppressed the clinical symptoms of EAU
(Fig. 4a–c).

Characterization of the Treg cell

Both CD4+ and CD8+ Treg cells that are generated after cul-
turing spleen cells with TolAPC have been characterized by
Keino and colleagues [22,23]. We analysed if the harvested
CD8+ T cells expressed TRAIL. In brief, spleen cells were
harvested from experimental mice that received TolAPC
and had EAU scores of 1 or less. The dissociated spleen cells
were restimulated with antigen for 48 h. Post-culturing, the
non-adherent cells were collected, enriched by magnetic
bead separation for CD8+ T cells, and an aliquot of the
enriched CD8+ T cells was examined prior to transfer by
flow cytometry for expression of TRAIL. Interestingly, the
Treg cells collected from TolAPC-treated EAU mice that
transferred tolerance to a second set of EAU immunized
mice were CD8+FoxP3+TRAIL– (Fig. 4d). Analysis of the
mean fluorescence intensity (MFI) of the CD8+ T cell popu-
lations analysed by flow cytometry showed little or no shift
in TRAIL staining (Fig. 4e).

Local adoptive transfer assay

Thus far, we show that in-vitro-generated TolAPC trans-
ferred to EAU mice suppress the clinical symptoms of EAU
by generating CD8+TRAIL– Treg cells. To evaluate further the
expression TRAIL on CD8+ Treg cells, we generated CD8+ Treg

cells in vitro [24]. The suppressor function of the in-vitro-
generated Treg cells was evaluated in a local adoptive transfer

assay (Materials and methods). Others have reported that
Treg cells are generated in cultures where TolAPC have
similar characteristics to those generated in vivo [19,24–26].

After co-culturing F4/80+ TolAPC with spleen cells for 7
days, the non-adherent cells were harvested and the CD8+ T
cells sorted into TRAIL-negative and -positive populations
(Fig. 5a). The CD8+TRAIL– T cells suppressed the response
to IRBP in a LAT assay (Fig. 5b) (there were insufficient
CD8+TRAIL+ cells to test their function). Flow analysis of
the TRAIL–CD8+ Treg cells confirmed that CD8+ Treg cells
expressed CD103 (data not shown) [22]. Thus, 7-day cul-
tures of TolAPC with spleen cells generate CD8+CD103+

FoxP3+TRAIL– Treg cells that are capable of suppressing
efferent immune responses in vivo.

Discussion

It is reasonable to think that if autoimmunity occurs in the
eye, one or more mechanisms of immune privilege,
immune regulation, must be compromised. ACAID is a
model used to study ocular immune privilege in vivo and in
vitro that generates peripheral antigen-specific Treg cells
[2,17,27,28]. As early as 1992, Streilein and colleagues
reported that ACAID induction by intracameral inoculation
of the immunizing ocular autoantigen prior to the induc-
tion of uveitis reduced the incidence of EAU in mice [29].
No ocular inflammation was observed in the group that
received the retinal antigen via the a.c. prior to the induc-
tion of EAU, while 80% of mice that were injected a.c. with
PBS developed uveitis. Here, we extended these studies
and induced tolerance by transferring in-vitro-generated
TolAPC to experimental mice after EAU was induced. APC
become tolerogenic after exposure to immunosuppressive
factors such as TGF-β2 and antigen in vitro, and have been
shown to promote negative regulation of both Th1- and
Th2-mediated inflammation in part by generating antigen-
specific Treg cells [25,27,30].

The transfer of antigen-pulsed TolAPC has been shown
to induce tolerance in both naive and sensitized mice
[15,31]. Furthermore, we have reported previously that the
adoptive transfer of TolAPC successfully abrogated immune
inflammation and clinical symptoms in mouse models for
autoimmune pulmonary interstitial fibrosis [25], airway
hypersensitivity hyper-reactivity [26] and experimental
autoimmune encephalomyelitis (EAE) [32]. Here, we show
that TolAPC pulsed with retinal antigen (IRBP or extract of
retina) are capable of reducing the clinical symptoms and
inflammatory cytokines in an adoptive transfer model of
IRBP-induced EAU. Thus, depending on the frequency of
the unknown target antigen in a retinal extract, this
approach may provide a basis for a novel cell-based therapy
using autologous cells for the treatment of ocular autoim-
mune diseases such as uveitis.

The TolAPC associated with eye-induced tolerance were
first defined by their surface expression of F4/80 protein
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abscissa = days post-induction of EAU. Whole T cells, CD4+ or CD8+ T cells were collected from the spleens of mice that were either TolAPC or

antigen-presenting cells (APC). Enriched T cells were collected at the peak of clinical symptoms and transferred to a new group of EAU mice to test

for their suppressor function. (a) Clinical course of EAU in mice receiving no T cells (n = 14, black line); clinical course of EAU in mice receiving T

cells harvested from the EAU mice were injected with APC (n = 4, orange line); clinical course of EAU in mice receiving T cells harvested from the

EAU mice that were injected with TolAPC (n = 4, blue line). (b) Effects on EAU of mice receiving enriched T cells (CD8+ T red line; CD4+ T green
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(P ≤ 0·05) in overall severity of the disease over time between two indicated experimental groups. (d) Representative flow cytometry analysis of
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are resting CD8+ T cells stained with tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) antibody only; lower left block shows
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and were therefore thought to be macrophages [14,33–37].
However, once F4/80+ macrophages are mobile their
appearance becomes dendritic [33]. Also, although F4/80
is expressed predominantly by macrophages, F4/80 is
expressed by a subset of dendritic cells (DC) that is
tolerogenic [38,39]. Importantly, F4/80 protein expression
is necessary for the tolerogenic function of TolAPC [40].
Although F4/80 may not always distinguish macrophages
from other APC, the inability to induce ACAID in op/op
mice, a B6 mouse with a spontaneous mutation in the csf
gene region resulting in a deficiency in some macrophage
but not DC populations, supports the notion that the
F4/80+ TolAPC are macrophages [41].

A variety of DC has been shown to be tolerogenic in
experimental models [42–44]. While the majority opinion
is that immature DC are tolerogenic [44–47], the use of
immature DC for therapeutic reasons has limited potential
because of the possibility that they could mature once
exposed to the immune state of the recipient [48]. Other
investigators contend that tolerogenic DC are semi-mature
[49]; other reports show that a subtype of DC
(plasmacytoid dendritic cells) has tolerogenic capabilities

[50,51]. Thus, it becomes clear that several types of APC
have the potential of becoming tolerogenic.

Our laboratory has been successful in generating TolAPC
from thioglycolate-induced PEC and bone marrow-derived
macrophage/DC [26] as well as macrophage hybridoma no.
59 [52,53]. We have also made TolAPC from enriched
human DC isolated from human peripheral blood lympho-
cyte samples (unpublished data). Thus, our experience sup-
ports the idea that multiple types of APC have the potential
of maturing into TolAPC if the critical components of
TGF-β and antigen activation are present together. APC
activated by antigen in the presence of TGF-β progress
through distinct regulatory pathways, and subsequently
express distinct regulatory markers. Therefore, we propose
that immature macrophages/DC have the option to mature
through multiple pathways into immune-activating or
immune-regulating cells.

CD8+ Treg cells were first identified in ACAID induction
in the 1990s [54]. The CD8+ Treg cells induced by antigen
injection into the eye express CD103 and have a novel
genetic pattern associated with their efferent suppressor
function [22]. ACAID-induced CD8+ Treg cells can suppress
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by secreting TGF-β2 [55]. One report suggests that a popu-
lation of CD8+TRAIL+ Treg cells develop in an extra-ocular
environment post-antigen inoculation to the a.c. and
mediate suppression [56]. In this paper, we analysed the
CD8+ T cell population from the spleens of the TolAPC-
treated and control-treated EAU mice for expressing
TRAIL. We observed that CD8+ T cells harvested from
TolAPC-treated EAU mice were able to transfer tolerance,
but they were negative for TRAIL. Thus our data suggest
that TolAPC injected into mice with EAU generate
CD8+FoxP3+TRAIL– Treg cells can mediate and transfer effer-
ent suppression of EAU. Apropos this observation are
reports that support the idea that the CD8+ Treg cells sup-
press by multiple mechanisms [57,58] and that the mecha-
nisms are strain-dependent [59]. Reported studies show
that C57BL/6 CD8+ Treg cells express less TRAIL than
BALB/c CD8+ Treg. Moreover, C57BL/6 CD8+ Treg suppres-
sion is IL-35-, IL-10-dependent and BALB/c CD8+ Treg sup-
pression is TRAIL-dependent.

Consistent with the idea that CD8+ Treg cells from differ-
ent mouse strains use different methods to suppress is the
posit that CD8+ Treg suppressive mechanisms may vary with
the substrain of mouse used. The C57BL/6 mouse is the
most well-known inbred mouse strain and provides the
genetic background for congenic and mutant mice. There
are also a number of substrains derived from the founder
B6 strain. The fact that the substrains express genetic and
phenotypic variances is not always acknowledged in
research papers. For instance, genotyping demonstrated
genetic differences in the C57BL/6J and the C57BL/6N
substrains at 11 single nucleotide polymorphism (SNP) loci
[60]. The SNP pattern for the C57BL/6 mouse from NCI
(the C57BL/6 CrSlc substrain) and the C57BL/6N substrain
were the same [60]. Moreover, Mattapallil and colleagues
identified the CRB1rd8 mutation of the retinal degeneration
phenotype in the C57BL/6N but not the C57BL/6J
substrain [61], and cautioned researchers that these mice
provide the background from many genetically modified
strains used in the study of the eye. Indeed, recent studies
with C57BL/6 mice with the Crb1rd8 mutation with a CD11c
expression of yellow fluorescent protein (eYFP) transgenic
reporter show abnormal numbers of CD11c-positive cells in
the retina of 8–10-week-old mice [62].

The studies reported here induced CD8+TRAIL– Treg cells
in the C57BL/6J substrain, while the studies that induced
the CD8+TRAIL+ Treg cells post-antigen inoculation into the
a.c. used C57 BL/6N mice homozygous for the Rd8 muta-
tion [56]. Thus the markers expressed and the methods
used to suppress immune responses by the ‘ACAID’-
induced CD8+ Treg cells may depend upon not only the
strain of mouse used [59] but also the substrain used.

This is the first time that F4/80+ TolAPC has been used to
treat existing inflammation in the eye. Others have shown
that bone marrow-derived immature DC cultured in
granulocyte–macrophage colony-stimulating factor (GM-

CSF) and pulsed with antigen were able to inhibit EAU
(induced with IRBP, CFA and PTX) if given before the
induction of the uveitis [63]. Our experimental design
differs from these and previous studies using ACAID
mechanisms to suppress EAU [29], in that the antigen-
pulsed, TGF-β2-treated TolAPC were given a week to 10
days after adoptively transferring EAU, suppressing an
already established autoimmune response, supporting the
possibility of the development of therapy for human auto-
immune uveitis.

In summary, we show that TolAPC generated ex vivo by
TGF-β2 treatment in the presence of EAU-inciting antigen
(IRBP) or retinal antigen extract were able to modulate the
clinical symptoms and inflammatory cytokines of IRBP-
induced EAU in mice. Mechanistic studies showed that the
efferent suppression could be transferred with CD8+FoxP3+

TRAIL– Treg cells. Together, these observations raise the pos-
sibility that the clinical symptoms of human uveitis might
be relieved by therapy that uses target tissue extract instead
of a specific antigen (currently unknown) to generate
TolAPC from the patients’ own cells for autologous
transfer.
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