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Abstract: There are barriers to in-depth memory-based dietary assessment techniques in
community-based research. Food pattern modeling may be an alternative method to traditional
assessment techniques. The objective of this study was to pilot a comparison of food pattern modeling
to 24 h diet recalls for predicting hematological outcomes of iron status. Data from 3–24 h dietary
recalls in 27 women were analyzed by two methods: mean dietary intake estimates or food pattern
modeling. Food pattern modeling was used to determine the total inventory of foods consumed with
iron, phytate, or ascorbic acid or iron–phytate ratios. Each variable was analyzed for its relationship
to hemoglobin, ferritin, and acute iron absorption from a meal challenge study by creating receiver
operating characteristic (ROC) curves. There were no differences in ROC curves or diagnostic
accuracies between food pattern modeling or mean dietary intake estimates for iron, vitamin C,
phytate, or phytate–iron ratios for estimating hemoglobin or ferritin values (p > 0.05). Food pattern
modeling was inferior to mean dietary estimates for acute iron absorption, suggesting that more
detailed methods may be necessary for studies with sensitive or acute dietary measurement outcomes.
Food pattern modeling for total iron, vitamin C, phytate, and phytate–iron ratios may be comparable
to detailed memory-based recalls for larger studies assessing the impact of foods on iron status.
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1. Introduction

Recently, criticisms of memory-based dietary assessment methods have spurred conversation
about the context from which a diet assessment is made. Some dietary assessment methods seek to
understand whole food consumption, while others quantify macro- and micronutrients, quantities
of phytonutrients, and other active dietary components [1]. While there is real concern about the
validity of self-reported dietary intake measurements, there are few truly objective dietary-measurement
techniques, necessitating valid and reliable self-reported dietary measurements for nutrition research [1].
One suggestion for researchers interested in specific nutrient adequacy is that the use of a “method that
captures frequency of consumption and amounts consumed of all foods and beverages contributing
the dietary component of interest with a high degree of validity [1].” The “gold-standard” for this
approach would be multiple-pass 24 h diet recalls taken on several days. However, limitations to
this method include detail-based memory fault, reporter bias, difficulty obtaining repeated measure
recalls, and difficulty obtaining direct histories from patients and participants. These barriers make the
process of highly detailed dietary recall assessment methods difficult in some areas of population-based
research, particularly in programs that need frequent monitoring for nutrient-based intervention.
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Food pattern modeling is an emerging dietary assessment method that has been used for
community-based nutritional trials and development of dietary guidelines [2–4]. In food pattern
modeling, foods consumed are categorized or grouped by their nutrient content and consumption
patterns are used to estimate nutrients of interest or dietary adequacy [2]. Unlike food frequency
questionnaires or multiple-pass dietary recall methods, food pattern modeling does not give context to
the quantity or frequency of food consumption but rather to the foods consumed. Advantages of this
dietary assessment method include simplicity, reliability, and cost-effectiveness compared to 24 h diet
recalls [3]. Despite this, food pattern modeling has not been rigorously validated against 24 h recall
methods to predict nutrient adequacy in clinical trials and its retrospective validity to biochemical or
anthropometric measures has not been explored.

While studies have used food pattern modeling to determine dietary iron nutritional adequacy [4,5],
there has been no validation of this assessment method against gold standard methods. Adequacy of
dietary assessment methods for iron may be particularly important to investigate. Iron is one of the
most common micronutrient deficiencies globally [6], and iron deficiency is the target of many local,
national, and research-based nutrition intervention programs. Some simple assessment methods for
iron intake, such as food frequency questionnaires [7], have been validated. However, food-frequency
questionnaires thus far have been hemeprotein focused and may not be applicable to populations
consuming diverse or primarily non-heme iron-based diets. Further, it is not well understood whether
food patterns rich in phytate [8], dietary iron [9], phytate–iron ratios [10], or ascorbic acid [11], all of
which have been linked to regulation of iron bioavailability from food, can be evaluated through food
pattern modeling. It is also not known how food pattern modeling for these nutrients compares to
more intensive methods of diet recall to accurately predict outcomes related to known hematological
markers of iron adequacy, such as hemoglobin, ferritin, or acute iron absorption.

The utility and validity of food pattern modeling depends on first understanding whether it
can similarly predict hematological iron-status indices compared to intensive memory-based recall
methods. The objective of this study was to compare the diagnostic accuracy of food pattern modeling
to 24 h diet recall methods for predicting hematological indices of iron status.

2. Materials and Methods

2.1. Sample Size

A sample size was calculated using a paired equivalence test for hemoglobin, ferritin, or acute
iron absorption differences of <15% between dietary assessment methods and with a correlation of at
least 85% between methods using a power of 80% from hematological outcomes among participants
on a rolling basis. The greatest of the three sample size calculations was 21 paired tests for ferritin,
which was used for analysis.

2.2. Study Recruitment, Inclusion Criteria, and Study Preparation

The study protocol for the present study was approved by the Institutional Review Board at
Wichita State University (#4396). In brief, fifty-six women responded and were screened by email for
inclusion criteria listed below on a rolling basis. Before participation, an informed consent document
was signed and all study procedures, risks, and benefits were identified verbally and in writing.
Participant inclusion criteria dictated that participants were premenopausal, were aged 18–35 y, were
nonobese (BMI ≤ 30.0 kg/m2), had no history of oral or gastrointestinal disease, were moderate (≤14 g
alcohol per day) or nonalcohol consumers, and were nontobacco users. Participants were excluded
if they were pregnant, were breastfeeding, had blood or gastrointestinal disorders affecting iron
absorption, or were taking medication that would impair iron bioavailability. Participants were asked
to stop iron containing medications and supplements seven days prior to study activities. Of the 56
total participants that were contacted for participation, 30 met inclusion criteria and were enrolled.
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After study completion, only 27 participants had three completed 24 h dietary recalls needed for
study analysis.

2.3. Hematological Data Collection

To evaluate dietary recall methods against hematological outcomes, each participant completed
an iron-rich meal challenge to assess for iron status and bioavailability. Meal challenges followed a
format previously described [12,13]. Prior to the meal, two separate blood samples were collected by
venipuncture in a 5-mL serum separator and 3-mL ethylenediaminetetraacetic acid (EDTA) evacuated
tubes to measure serum iron (by spectrophotometry), ferritin (by immunoassay, sensitivity 0.1 ng/mL),
and complete blood count, including hemoglobin (g/dL) [12,13]. After blood draw, the challenge
meal was administered. All meals consisted of a 95-g bagel with 12 g sugar-free strawberry jam (half
sprinkled with 18 mg iron as ferrous sulfate), a 90-g banana, and 355 mL of water. Blood samples
were drawn to measure acute iron absorption at 210 min post-meal in a 2-timepoint draw to estimate
the percentage of maximum iron recovery (% max iron absorption) as described previously [12–14].
After study activities were completed, blood and serum were sent to Quest Diagnostics for analysis
within 24 h. Serum iron data were used to calculate acute iron absorption for iron bioavailability
analysis. Calculations were completed as described previously [12–14].

2.4. Dietary Analysis

Participants completed three 24 h dietary recalls via the Automated Self-Administered 24-Hour
Recall (ASA24) three days prior to the test meal. Dietary data were extracted, and means were
calculated for four nutrients of interest related to hematological outcomes: iron, phytate, phytate–iron
ratio, and ascorbic acid [15]. To determine the nutrient density for food pattern modeling, variables of
interest were assigned to a dichotomous categorical value (either “high” or “low” quantities) according
to parameters from previous research [4]. During this process, an electronic spreadsheet (Microsoft
Excel) was used to review all individual food items from dietary assessment data for each participant.
Based on extracted data, individual food items for dietary recalls were coded into categories based on
average nutrient content for each variable of interest per 100 g servings. Using previously defined parameters,
the cutoff point between high and low phytate–iron ratios was 1 [16,17]. Food iron and ascorbic acid
content were categorized based on iron cutoff values of 0.35 mg/100 g [4,5,18–20] and 24 mg/100 g [4,19–22]
respectively. Phytate was categorized using a cutoff point of 50 mg/100 g [19,23,24] (Table 1).

Table 1. Categorization of nutrient density for food pattern modeling by nutrients of interest.

High Low

Phytate–iron ratio (per 100 g) >1 ≤1
Iron content (mg/100 g) >0.35 ≤0.35
Ascorbic acid (mg/100 g) >24 ≤24
Phytate (mg/100 g) >50 ≤50

A comprehensive dietary nutrient density profile was created for each participant based on mean
variable-nutrient density for all foods consumed. Using categorized food items for each nutrient,
a sum score for overall food pattern was tabulated by taking the total number of consumed foods
that were categorized with high nutrient density for each variable, divided by the total number of
foods consumed.

Food pattern modeling estimated nutrient density (for each variable)

=
Total number o f nutrient dense (“high”) f oods consumedmb f oods coumed

Total number o f f oods consumed number o f f oods consumed
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To construct mean dietary intake variables for comparison to food pattern modeling, estimated
iron (in milligrams) and ascorbic (milligrams) acid intakes were extracted and means were calculated
from three 24 h dietary recalls collected during the study. Food intake logs were downloaded from the
Automated Self-Administered 24 h recall for manual calculation of phytate and phytate–iron ratios.
During this process, an electronic spreadsheet (Microsoft Excel) was used to review all dietary data for
each participant. Food items were referenced from United States Department of Agriculture (USDA)
tables and entered in an electronic spreadsheet; phytate amounts were calculated and averaged for
each recall [25]. The phytate–iron ratio was calculated using the equation:

Average estimated phytate intake (mg)
Average estimated iron intake (mg)

To compare mean dietary estimates against food pattern modeling variables for hematological
outcomes, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV) of each method was calculated. Similarity of methods was compared by using a receiver
operating characteristic (ROC) curve calculation [26]. The ROC was used to compare continuous
hematological variables (hemoglobin, ferritin, and acute iron absorption) against estimated mean
nutrient intake and food pattern modeling variables. Curves were created to estimate likelihood ratios
for each assessment type by setting discrete values within the continuous hematological data indices
to form dichotomous comparisons for analysis.

ROC curves were established using points within the nadir and peak values for hemoglobin,
ferritin, and iron absorption among participants. Hemoglobin values ranged from 11.0 to 14.0 g/dL with
0.5 g/dL intervals; ferritin values ranged between 5 and 55 ng/dL with 5 ng/dL intervals, and acute iron
absorption values ranged from 0 to 50%, with 5% intervals. ROC parameters were chosen according to
participant outcomes. Quartiles for each dietary assessment method variable were calculated to plot
ROC curves according to previous studies [4,27], where the values are reported Table 2:

Table 2. Nutrient Quartiles for Receiver Operating Curve Analysis?

Quartile Nutrient Intake Percentile (%)

Q1 76–100
Q2 51–74
Q3 26–50
Q4 0–25

2.5. Statistical Analysis

Data were analyzed using SAS statistical software (SAS Studio version 3.8), statistical significance
was set at p < 0.05, and data are presented as mean ± SD. Before analysis, all data were analyzed for
normality and homogeneity of data by Levine’s test of homogeneity.

Fisher’s exact test was used to compare dietary assessment methods against hematological
outcomes. From the table analysis, sensitivity, specificity, PPV, and NPV were calculated for each
nutrient by each hematological cutoff value. Mean dietary estimates and food pattern modeling method
sensitivity and specificity were plotted for ROC curve analysis. The calculated response elements for
each dietary analysis method were compared by a Student paired T-test, using p < 0.05 as a cutoff for
significant differences between methods.

3. Results

3.1. Demographics and Background

Baseline demographic background is included in Table 3. Participants were aged 19–35 (mean
24.5 ± 4.2 y) and were occasional or moderate alcohol consumers. The mean participant BMI was
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23.2 ± 4.2 kg/m2. Mean hemoglobin was 13.1 ± 1.0 (range 10.9–14.7 g/dL); ferritin was 30.3 ± 15.1
(range 5–61 ng/dL); and acute iron absorption from the meal study was 14.4 ± 26.0% (range 0–50%).

Table 3. Baseline demographics.

Variable N Mean

Height (m) 27 1.7 ± 0.1
Weight (kg) 27 64.8 ± 13.3
BMI (kg/m2) 27 23.2 ± 4.2
Hemoglobin (g/dL) 27 13.1 ± 1.0
Hematocrit (%) 27 39.4 ± 2.5
MCV (fL) 27 87.9 ± 5.2
MCH (g/L) 27 29.4 ± 2.5
Ferritin (ng/dL) 27 30.3 ± 15.0
C-Reactive Protein (µg/mL) 27 2.8 ± 4.5
Acute iron absorption (%) 27 14.4 ± 26.0

Data are mean ± standard deviation; BMI: Body mass index; MCV: mean corpuscular volume; MCH: mean
corpuscular hematocrit.

3.2. Dietary Intake

Mean estimated iron and ascorbic acid intakes from the 24 h dietary recall analysis were 14.7 ± 5.9
and 92.9 ± 85.1 mg/d, respectively (Table 4). Fruit and vegetable intake were 1.0 ± 0.8 and 1.8 ± 1.4
cups per day, respectively. The average meat protein intake was 130.4 ± 76.5 g/day, and nut and seed
intakes were 19.8 ± 28.3 g/day. The mean phytate–iron ratio was 4.15 ± 1.9, and average dietary phytate
intake was 669 ± 547 mg/d. Generally, overall recommendations by the 2015–2020 Dietary Guidelines
for Americans (DGA) [28] were met by participants. However, mean iron, folate, and fiber intake
were generally low while protein and sugar intake were high compared to age and gender-matched
recommendations. Nutrient cutoffs for ROC quartile characteristics are listed in Table 5.

Table 4. Mean nutrient intake from 24 h recall assessment.

Variable Mean Intake ± SD Dietary Reference Intake [1]

Number of foods 9.6 ± 2.8 NA
Energy (kcal/day) 1830 ± 473 2000
Protein (g/day) 77.1 ± 22.1 46
Fat (g/day) 73.0 ± 25.4 <78
Carbohydrate (g/day) 209.0 ± 58.2 130
Sugar (g/day) 84.6 ± 35.6 <20
Fiber (g/day) 18.6 ± 6.1 28
Iron (mg/day) 14.7 ± 5.9 18
Zinc (mg/day) 10.2 ± 3.5 8
Copper (mg/day) 1.1 ± 0.4 0.9
Ascorbic acid (mg/day) 92.9 ± 85.1 75
Thiamin (mg/day) 1.7 ± 0.7 1.1
Riboflavin (mg/day) 1.9 ± 0.5 1.1
Niacin (mg/day) 23.7 ± 6.8 14
Pyridoxine (mg/day) 2.0 ± 0.8 1.3
Folate (µg/day) 359.8 ± 111.3 400
Cyanocobalamin (µg/day) 5.9 ± 5.5 2.4
Fruit (g/day) 80.0 ± 64.0 160.0
Vegetable (g/day) 144.0 ± 112 200.0
Starchy vegetable (g/day) 24.0 ± 40.0 55.0
Legumes (g/day) 8.0 ± 16.0 15.0
Grain (g/day) 161.6 ± 68.0 170.0
Meat proteins (g/day) 130.4 ± 76.5 155.0
Soy protein (g/day) 11.3 ± 17.0 8.5
Nuts and seeds (g/day) 19.8 ± 28.3 8.5
Milk (mL/day) 14.8 ± 8.9 700.0
Phytate (mg/day) 669.6 ± 547.4 NA i

i Data are mean ± standard deviation for three 24 h dietary recalls; dietary reference intake for females aged 19–30
according to the 2015–2020 Dietary Guidelines for Americans [1].
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Table 5. Nutrient cutoffs for receiver operating characteristic (ROC) curves by dietary assessment type.

Dietary
Assessment

Method

Intake
Quartile Phytate: Iron Iron Vitamin C Phytate

Mean dietary
estimates

Ratio mg mg mg

Q4 <2.9 <9.9 <45 <343.9
Q3 2.9–4.2 9.9–13.3 45–62.2 343.9–456.7
Q2 4.2–7.1 13.3–16.3 62.2–99.1 456.7–629.7
Q1 >7.1 >16.3 >99.1 >629.7

Food pattern
modeling

* Nutrient density

Q4 <0.35 <0.47 <0.03 <0.11
Q3 0.35–0.42 0.47–0.55 0.03–0.07 0.11–0.2
Q2 0.42–0.47 0.55–0.60 0.07–0.14 0.2–0.25
Q1 >0.47 >0.6 >0.14 >0.25

∗Estimated nutrient density =
Total # high content f oods consumed (per variable)
Total high and low f oods consumed (per variable) .

3.3. ROC Analysis by Diet Assessment Type for Hemoglobin

Overall, food pattern modeling compared to mean nutrient estimates were non-inferior and both
were not statistically different for total iron (p = 0.7 and 0.06), phytate (p = 0.84 and 0.07), vitamin C
(p = 0.65 and 0.96), or phytate–iron ratios (p = 0.15 and 0.06) for hemoglobin outcomes. The ROC curves
created for total iron, phytate, vitamin C intake, and phytate–iron ratios indicated that there were no
independent differences in likelihood ratios for hemoglobin interval points between analysis methods
(Table 6 and Figure 1A–D). The PPVs for iron intake hemoglobin values were 44.3 compared to 51.9%
for mean estimated intake or food pattern modeling analysis, respectively, and the NPV values were
44.5 compared to 51.8%, respectively. There were no trends toward superiority for mean estimated
intake compared to food pattern modeling analysis methods in predicting hemoglobin values for iron,
phytate, vitamin C, or phytate–iron ratios. The mean difference in sensitivity between the two dietary
assessment methods was 4.2%, and the mean specificity difference was 4.6%.

Table 6. Diagnostic accuracy of mean nutrient estimates versus food pattern modeling assessment
methods for hematological indices of iron sufficiency.

Outcome Variable Method Sensitivity Specificity PPV NPV P Sensitivity P Specificity

Hemoglobin

Iron
MIE 27.6 62.6 44.3 44.5 0.7 0.06
FPM 33.9 69.3 51.9 51.8

Ascorbic acid
MIE 32.0 67.4 51.4 47.9 0.65 0.96
FPM 36.2 62.4 46.6 51.8

Phytate MIE 32.5 62.4 49.0 45.3 0.84 0.07
FPM 36.8 62.3 45.5 53.5

Phytate: iron ratio MIE 33.2 70.5 55.2 49.1 0.15 0.06
FPM 35.5 61.5 44.9 51.9

Ferritin

Iron
MIE 28.1 50.1 24.9 54.2 <0.0001 * 0.001 *
FPM 45.4 60.1 39.2 66.0

Ascorbic acid
MIE 45.1 61.7 55.7 51.2 0.37 0.39
FPM 43.9 60.3 51.9 52.4

Phytate MIE 45.9 62.6 57.0 51.8 0.09 0.19
FPM 45.6 61.9 54.0 53.6

Phytate: iron ratio MIE 43.9 60.3 51.9 52.4 0.11 0.82
FPM 47.8 65.0 60.8 52.4
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Table 6. Cont.

Outcome Variable Method Sensitivity Specificity PPV NPV P Sensitivity P Specificity

Acute iron
absorption

Iron
MIE 49.0 68.1 62.3 55.4 0.0012 * 0.0063 *
FPM 42.9 61.3 51.9 52.4

Ascorbic acid
MIE 43.5 62.3 55.4 50.6 0.008 * 0.03 *
FPM 38.9 57.5 47.2 49.1

Phytate MIE 39.8 59.7 50.6 48.8 0.88 0.4
FPM 40.0 58.5 48.5 50.0

Phytate: iron ratio MIE 38.9 57.1 50.6 45.2 <0.001 * 0.005 *
FPM 44.6 63.1 54.1 53.9 ii

ii Outcomes are expressed as percentage. PPV: positive predictive value; NPV: negative predictive value; * p < 0.05.
Mean intake estimates (MIE): average estimated nutrient intake from 3–24 h dietary recalls on the ASA24:2018 [2];
Food pattern modeling (FPM) according to nutrient density of each variable, where Estimated nutrient density =
Total # high content f oods consumed (per variable)
Total high and low f oods consumed (per variable) .Nutrients 2020, 12, x FOR PEER REVIEW 7 of 13 

Nutrients 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nutrients 

 
Figure 1. Receiver operative characteristic (ROC) curve for dietary assessment measurement by hemoglobin 
outcomes: mean intake estimates versus food pattern modeling for (A) iron, (B) ascorbic acid, (C) phytate, 
and (D) phytate–iron ratio for hemoglobin outcomes. There were no significant differences between 
assessment methods for hemoglobin outcomes prediction (p > 0.05). 

3.4. ROC Analysis by Diet Assessment Type for Ferritin 

Food pattern modeling compared to mean nutrient estimates was non-inferior and not statistically 
different for phytate (p = 0.09 and 0.19), vitamin C (p = 0.37 and 0.39), and phytate–iron ratios (p = 0.11 and 
0.82) by sensitivity and specificity at any ferritin cutoff value. There was, however, a statistical improvement 
in diagnostic capacity of food pattern modeling compared to mean dietary estimates for total iron intake 
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a mean improvement in sensitivity and specificity for ferritin estimation by food pattern modeling by 17 
and 10% respectively compared to mean nutrient estimate analysis, suggesting that food pattern modeling 
was non-inferior to 24 h recall dietary estimates in predicting ferritin outcomes. 

Figure 1. Receiver operative characteristic (ROC) curve for dietary assessment measurement by
hemoglobin outcomes: mean intake estimates versus food pattern modeling for (A) iron, (B) ascorbic
acid, (C) phytate, and (D) phytate–iron ratio for hemoglobin outcomes. There were no significant
differences between assessment methods for hemoglobin outcomes prediction (p > 0.05).



Nutrients 2020, 12, 1911 8 of 12

3.4. ROC Analysis by Diet Assessment Type for Ferritin

Food pattern modeling compared to mean nutrient estimates was non-inferior and not statistically
different for phytate (p = 0.09 and 0.19), vitamin C (p = 0.37 and 0.39), and phytate–iron ratios (p = 0.11
and 0.82) by sensitivity and specificity at any ferritin cutoff value. There was, however, a statistical
improvement in diagnostic capacity of food pattern modeling compared to mean dietary estimates for
total iron intake related ferritin estimation (sensitivity p < 0.0001; specificity p = 0.001; Table 6 and
Figure 2A–D). There was a mean improvement in sensitivity and specificity for ferritin estimation
by food pattern modeling by 17 and 10% respectively compared to mean nutrient estimate analysis,
suggesting that food pattern modeling was non-inferior to 24 h recall dietary estimates in predicting
ferritin outcomes.

Nutrients 2020, 12, x FOR PEER REVIEW 8 of 13 
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= 0.88; specificity: 58.5 vs. 59.7%, p = 0.4) and phytate–iron ratios (sensitivity: 44.6 vs. 38.9%, p < 0.001; 
specificity: 63.1 vs. 57.1%, p < 0.005). 

Table 6. Diagnostic accuracy of mean nutrient estimates versus food pattern modeling assessment methods 
for hematological indices of iron sufficiency. 

Figure 2. Receiver operative characteristic (ROC) curve for dietary assessment measurement by
ferritin outcomes: mean intake estimates versus food pattern modeling for (A) iron, (B) ascorbic
acid, (C) phytate, and (D) phytate–iron ratio for ferritin outcomes. Nutrient density variables were
non-inferior to mean intake estimates for ferritin outcome prediction (p > 0.05).

3.5. ROC Analysis by Diet Assessment Type for Acute Iron Absorption

Acute iron absorption estimates were significantly different by dietary assessment method
depending on nutrient variable type. For estimated iron intake, the estimated mean intake dietary
analysis was superior to food pattern modeling for sensitivity and specificity of iron absorption
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estimation (42.9 vs. 49.0%, p = 0.0012; 61.3 vs. 68.1%, p = 0.0063, respectively; Table 6 and Figure 3A–D).
Estimated mean vitamin C intake was statistically superior to food pattern modeling for diagnostic
accuracy related to acute iron absorption (sensitivity and specificity: 38.9 vs. 43.5%, p = 0.008; 57.5 vs.
62.3%, p = 0.03, respectively). Despite this, food pattern modeling was non-inferior to mean estimated
intake for total phytate (sensitivity: 40.0 vs. 39.8%, p = 0.88; specificity: 58.5 vs. 59.7%, p = 0.4) and
phytate–iron ratios (sensitivity: 44.6 vs. 38.9%, p < 0.001; specificity: 63.1 vs. 57.1%, p < 0.005).Nutrients 2020, 12, x FOR PEER REVIEW 10 of 13 
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Figure 3. Receiver operative characteristic (ROC) curve for dietary assessment measurement by acute
iron absorption outcomes: mean intake versus food pattern modeling for (A) iron, (B) ascorbic acid,
(C) phytate, and (D) phytate–iron ratio for acute iron absorption outcomes. Nutrient density variables
were inferior to mean intake assessments for estimated iron intake and acute iron absorption.

4. Discussion

The objective of this study was to pilot the diagnostic accuracy of food pattern modeling to 24 h
diet recall methods. In this study, food pattern modeling was used to predict hematological indices
for four variables: iron, ascorbic acid, phytate, and phytate–iron ratios. These variables were chosen
due to their known impact on the hematological indices of iron status and to their common focus in
community nutrition research and programming [3–14,17–19,21–24,27].

Food pattern modeling has been used to estimate community level nutrient intake through
modeling methods like the present approach elsewhere [29–32]. However, this is the first study, to our
knowledge, that has compared the effectiveness of food pattern modeling to repeated multiple-pass
memory-based dietary assessment by comparing acute and chronic measurements of nutrient status
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by hematological outcomes. This is also the first study to have compared food pattern modeling and
24 h dietary recall for nutrients with a known relationship to iron status.

Diagnostic measurements, including sensitivity, specificity, PPV, NPV, and ROC curves were not
significantly different between food pattern modeling and mean dietary intake estimates for markers
of long-term iron status, including hemoglobin and ferritin. Despite this, food pattern modeling was
statistically inferior to mean dietary intake estimates for acute iron absorption for estimated iron
and ascorbic acid intake. This suggests that, while food pattern modeling may be non-inferior to
24 h dietary recall methods for long-term markers of iron status, it may be inadequate to predict
acute markers of iron absorption. However, it has been suggested that dietary iron intake may be
poorly predicted by single-meal iron bioavailability studies compared to long-term markers or iron
status [3,12,13,33], questioning whether the improved diagnostic capabilities of 24 h dietary recalls
may be needed in community-based dietary assessment. In addition, the mean difference in diagnostic
accuracy for all nutrient variables for any hematological outcome between assessment methods was
less than twenty percent, often trending in favor of food pattern modeling methods for assessment.
This suggests of non-inferiority of food-pattern modeling to 24 h recall assessment in this study.

There were several limitations to the generalizability of this study that outline the challenges of
food pattern modeling as a dietary assessment method available for widespread use. As a proof-of
concept pilot study, hematological outcomes here were correlated with two dietary assessment types
approximated from 3–24 h dietary recalls. However, this study was conducted in a homogenous
population that largely was not iron deficient. While studying women may be a sensitive group to
changes in iron status and absorption, results from this study cannot be generalized to other populations
of interest, such as children, pregnant women, or populations with largely anemic cohorts. In addition,
this modeling was based on the overall iron intake for hematological outcomes prediction. Future
studies may benefit from understanding nuances in nutrient bioavailability during model-building.
One such exploration may be to consider differences in modeling between heme and non-heme iron
sources. Further, this was a small sample size. Future studies should aim to explore differences in
methods using larger sample sizes in populations with geographic diversity.

Despite its definition in the Dietary Guidelines for Americans [2], there is no standardized approach
to food pattern modeling as a form of dietary or nutrient assessment. In addition to the methodology
from the present study, other studies reviewed suggested a variety of models and methods that were
employed with characteristics that met the definition of food pattern modeling [3,4,6–8,30–32]. To use
food pattern modeling broadly, methodology and further validation should be considered for research
and programming moving forward.

Finally, this study aimed to model differences in assessment methods for four known nutrient
variables that impact iron absorption and status; however, modeling for diverse nutrient, in diverse
dietary settings may reveal limitations with food pattern modeling. It is relatively unclear at this time
how food pattern modeling can be standardized to populations and programs wishing to utilize this
method without complicated modeling efforts. Future studies should outline guidelines and research
gaps for researchers and programming intending to use food pattern modeling to estimate nutrient
intake for a wide variety of macronutrients and micronutrients.

5. Conclusions

Despite limitations, this study was able to validate as a proof-of-concept pilot that food pattern
modeling may be as effective as dietary recalls for community health programming or nutrition research.
Further, the study was completed in participants consuming a wide diversity of foods when compared
to some populations globally. Outcomes generated suggest that food pattern modeling for iron-relevant
nutrients was as diagnostically accurate as detailed memory-based recall assessment methods in
predicting hematological markers of iron status. This may demonstrate that, with standardized
guidelines and further research, food pattern modeling could be a simple, readily utilizable dietary
assessment method for research and community health.
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