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Early embryonic loss and adverse birth outcomes are the major reproductive disorders that affect both human and animals. The
LPS induces inflammation by interacting with robust cellular mechanism which was considered as a plethora of numerous
reproductive disorders such as fetal resorption, preterm birth, teratogenicity, intrauterine growth restriction, abortion, neural
tube defects, fetal demise, and skeletal development retardation. LPS-triggered overproduction of free radicals leads to oxidative
stress which mediates inflammation via stimulation of NF-κB and PPARγ transcription factors. Flavonoids, which exist in
copious amounts in nature, possess a wide array of functions; their supplementation during pregnancy activates Nrf2 signaling
pathway which encounters pregnancy disorders. It was further presumed that the development of strong antioxidant uterine
environment during gestation can alleviate diseases which appear at adult stages. The purpose of this review is to focus on
modulatory properties of flavonoids on oxidative stress-mediated pregnancy insult and abnormal outcomes and role of
Nrf2 activation in pregnancy disorders. These findings would be helpful for providing new insights in ameliorating oxidative
stress-induced pregnancy disorders.

1. LPS Overview and Its Drawbacks

Early pregnancy failure is a main obstacle that leads to signif-
icant effects on pregnancy outcomes in humans and animals
[1]. Approximately 15–20% clinical pregnancies experience
abortion [2], and about 30–50% conception resulted in early
embryonic loss in mammals [3]. Moreover, assisted repro-
ductive techniques enhance pregnancy rate in infertile
women without avoiding early embryonic loss [4]. Humans
get constant exposure of LPS at minimum levels in

gastrointestinal inflammatory diseases [5]. Lipopolysaccha-
ride (LPS) is derived from G-negative bacteria; maternal
exposure to pregnant rodents causes placental inflammation
contributing in embryonic resorption, fetal growth restric-
tion (FGR), preeclampsia fetal brain injury, and miscarriages
which develops by alternation in cytokine productions [6, 7].
These cytokines were released by trophoblastic, decidual, and
chorioamnionitic cells and other cell types [8]. In humans,
LPS infection provokes fetal loss and preterm labor [9] and
is thought to be regulated by LPS-induced ROS-mediated
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teratogenesis [10]. In addition, basal amount of ROS is
necessary in early embryonic growth and metabolism; exces-
sive generation of uterine ROS is detrimental to oxidative
DNA damage of the embryo [11, 12]. In pregnant mice,
LPS exposure at late gestation leads to preterm delivery and
fetal demise [13, 14], and in later gestational stages, maternal
LPS infection causes intrauterine fetal growth restriction
[15]. The signaling molecule, nitric oxide (NO), displays an
essential role in implantation, decidualization, vasodilation,
myometrial relaxation, and overactivation possibly induced
by free radical-mediated pathology. Enhanced production
of LPS-induced nitric oxide has been reported in embry-
onic resorption and abortion [16]. LPS-triggered abortion
mechanism has been depicted in Figure 1. Nrf2 proteins
display a key role in the elimination of oxidative stress
through Nrf2-ARE signaling pathway [17, 18] as reported
in preeclampsia conditions [19]. Nrf2 is very sensitive to
maternal immune status and is responsible for fetal growth
and survival through maintaining fetus desirable placental
environment; later, Nrf2 protein expression of the placenta
was decreased following delivery [20] suggesting its impor-
tant function in fetal survival. Thus, any inappropriate func-
tion could lead to inducing numerous pregnancy disorders.
The flavonoids of the polyphenol group are well-recognized
natural compounds, which elicit strong antioxidant and
anti-inflammatory activities that would be helpful in the

elimination of LPS-potentiated pregnancy disorders. The
polyphenols such as curcumin possess strong anti-
inflammatory activity through influencing diverse pathways
to modulate cellular functions. It can also decrease inflam-
mation by inhibiting NF-κB pathway via inactivation of
IKK complexes [21, 22]. A study reported that curcumin
polyphenols suppress methylglyoxal-induced apoptosis in
mouse ESC-B5 cells and blastocysts by inhibiting reactive
oxygen species (ROS) [23]. The anti-inflammatory strategy
would be helpful in alleviating pregnancy-related compli-
cations [24]. This review emphasizes LPS-mediated preg-
nancy disorders and adverse birth outcomes, modulatory
activities of polyphenols, and the role of Nrf2 signaling
pathway. We have given detailed description below on
the previous reports of polyphenol supplementations such
as epigallocatechin gallate, curcumin, baicalin, and tricin
which attenuate LPS-induced reproductive disorders, while
genistein and quercetin develop strong antioxidant preg-
nant uterine environment that encounters disease in extra-
uterine life. These findings would be helpful in improving
animal productions.

1.1. Disruption Pregnant Uterine Environment by
Inflammatory Cytokines. The LPS binds with Toll-like recep-
tor 4 (TLR4) with the facilitation of cluster of differentiation
14 (CD14) on cell surface of macrophages and monocytes.
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Figure 1: LPS-induced abortion by regulating strong cellular network. After induction of LPS, binding protein interacts with Toll-like
receptor 4 (TLR4) and activates downstream adaptor proteins MYD-88, which subsequently stimulate IKK complex, resulting in
ubiquitination and phosphorylation of IkBα proteins that translocate NF-κB into the nucleus for production of several proinflammatory
cytokines such as TNF-α, IL-β, IL-6, and PGF2E which causes microvascular damage leading to thrombosis, ischemia, necrosis of decidual
cells, and finally abortion. On the other hand, flavonoids prevent abortion by inhibition of IKK complex proteins and bring NF-κB into its
inactivated form in cytoplasm. These beneficial effects of flavonoids are mediated by activation of PI3K/Akt pathway; hence, it prevents
development of free radicals by supplementation of flavonoids during pregnancy.
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Upon activation of TLR4, it disseminates LPS signals to mye-
loid differentiation factor (MYD88) adaptor molecules; thus,
its stimulation is known to be regulated by several signaling
molecules including NF-κB proteins [25]. NF-κB exerts an
important role in the development of inflammation while
its activation occurs by degradation and phosphorylation of
IκB kinases such as IKKα and IKKβ which results in the
translocation of NF-κB into the nucleus where it induces
the formation of inflammatory cytokines, tumor necrosis
factor-α (TNF-α), interleukin-beta (IL-1β), interleukin-6
(IL-6), and interleukin-8 (IL-8), and inducible inflammatory
enzymes, nitric oxide (NO) and reactive oxygen species
(ROS) [26, 27]. As mentioned above, that LPS persuades
inflammation which triggered various pregnancy disorders
in mid and late gestation [28]. The inflammatory mediators,
such as TNF-α, interrupt placental blood supply and its
function [29] resulting in fetal injury [30]. Studies on
mice report that inflammation mediated by TNF-α and
interferon-gamma (IFNγ) in macrophages and uterine
natural killer (uNK) cells causes vascular injury and placental
ischemia in uterine endothelial cells [31]. It was further
noted that LPS mediates IFNγ and TNF-α through activa-
tion of Toll-like receptors and is responsible for activation
of cytokine-induced abortion [32] by possibly downregu-
lating expression of cyclooxygenase-2 enzyme (COX-2)
protein that encounters fibrinogen-like protein-2 (Fgl2)
in the fetomaternal site [33]. The abortogenic effect varies
according to the nature of LPS, source, time length, and
dose regimen [32]. The interleukin-10 (IL-10) is an anti-
inflammatory cytokine which minimizes pregnancy-related
inflammation through regulation of TNF-α and other
cytokines and chemokines [34]. The growing body of tex-
ture revealed that maternal LPS induced uterine inflam-
mation by cytokines through transplacental transmission
that enhances the risk of brain diseases at the adult stage
of life [35].

The peroxisome proliferator-activated receptor (PPAR)
is a nuclear protein stimulated by multiple ways such as
activations of prostaglandins (PGs) and leukotrienes
(LTs). After activation, it stimulates transcription factors
and mediates various cellular functions including cell
differentiation, apoptosis, lipid metabolism, peroxisome
proliferation, and inflammation response. In pregnancy,
PPAR signals regulate trophoblast invasion and differenti-
ation [36], placentation [37], and maternal metabolism
[38]. The improper regulation of PPAR receptors causes
complications including preeclampsia (PE), intrauterine
growth restriction (IUGR), and preterm birth [39]. In vitro
studies on knockout mice propose that stimulation of
PPAR suppresses proinflammatory cytokines and distin-
guishes immune cells from anti-inflammatory phenotypes
[40]. Naturally occurring compounds polyphenols exert
ability to stimulate PPAR nuclear receptors and exert
fruitful impact on pregnancy. It has been noted that
PPARγ was considered as a potential target for therapeutic
intervention against preeclampsia [41]. Limited research
on PPAR signals in pregnancy disorders have been
observed; therefore, more studies are needed to explore
further insights.

2. Positive Effects of Cytokines in
Pregnancy Development

Naturally, the immune system protects uterine environment
from invading pathogens to full-term birth [42]. Excessive
levels of endometrial cytokines, prostaglandins, and leuko-
cytes are released during inflammatory condition [43]. The
endometrial mediated cytokine and chemokine productions
give directions to the blastocyst to connect with endometrial
walls. When invasion and lysis of trophoblast exist, conver-
sion from epithelial cells to stromal cells repairs endometrial
tissue which replaces cells in the placenta. This structure is
mediated by Th1 cellular responses where an ample amount
of proinflammatory molecules such as IL-6, LIF, IL-8, and
TNF-α was contributed [44] and these also recruit immune
cells towards the decidua. In human and mouse, a huge pop-
ulation of decidual leukocytes has been witnessed at the site of
implantation. Of note, these cells are comprised of 65–70%
uterine natural killer (uNK) cells and 10–20%, based on mac-
rophages and dendritic cells (DCs) [45]. The macrophages
and DCs localize in the decidua during the entire pregnancy
and exhibit a key role at maternal-fetal interface [46]. The
macrophages and DCs have the capability to secrete a variety
of anti-inflammatory molecules (IL-4, IL-10, and IL-13) and
enzymes, which are mainly involved in structural modifica-
tion and angiogenesis [47].Moreover, it was documented that
macrophages mediate trophoblast invasion and might exert
main function in eliminating debris which comes from tro-
phoblastic apoptosis at different phases of gestation [44].
The presence of DCs in maternal tissue during implantation
has been observed [48], and it was further illustrated that
DCs have the ability to alter Th1 proinflammatory cytokines
to Th2 anti-inflammatory cytokines at latter stages of gesta-
tion [49]. Near to parturition, anti-inflammatory response
converted into pro-inflammatory response in order to induce
uterine contractions initiates to parturition [50]. Overall,
observation indicates the key functions of anti- to pro-
inflammatory cytokine response during the entire pregnancy.
Of note, limited evidences of inflammatory response have
been documented before implantation of the embryo.

3. Interruption in Redox Balance

In normal homeostasis, ROS are neutralized by antioxidant
defense in vivo. This balance is encountered by overpowering
of ROS production and incompetency of antioxidant system
to eliminate them. Growing evidences show that early expo-
sure of oxidative stress in pregnancy might have long-term
complications [51]. The antioxidant defense against locally
produced NO by inducible nitric oxide synthase enzyme
downregulates NO signals in the placenta which are crucially
important for normal vascular development. In the first tri-
mester of pregnancy, fetal growth was subjected to hypoxia
[52], while in the prenatal period, it was documented that
the fetus is highly vulnerable to oxidative damage whereas
antioxidant supplementation during pregnancy ameliorates
reproductive disorders such as implantation failure and fetal
anomalies [53]. It has been reported that enhanced sodium
dismutase-1 (SOD1) in mice suppresses fetal anomalies and
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protects against diabetes-related embryopathy [54]. In
pregnancy, having intrauterine growth restriction (IUGR),
preeclampsia (PE), and gestational diabetes mellitus (GDM)
has been recorded to have higher chances of fetal hypoxia
(markers of oxidative stress). Moreover, a deficient supply
of oxygen has been observed in pathogenesis of IUGR and
PE conditions [55]; on the other hand, preterm delivery
arises from ischemia-reperfusion injury which decreased
body weight.

4. LPS-Driven Inflammatory Pathways

LPS activates inflammation through multifaceted mecha-
nism [56, 57] Maternal LPS triggers embryonic resorption
through strong cellular network which is responsible for
increased excessive placental TNF-α, IL-1β, and IL-6 expres-
sions that subsequently reduced phosphorylated Akt protein
(serine/threonine-specific protein kinase) thereby causing
decreased number of live pups, fetal weight, and placental
weight [6, 58, 59]. Moreover, LPS also stimulates both tran-
scription factors such as MAP kinases (MAPKs) and nuclear
factor-κB (NF-κB) [60]. Prevalence of uterine inflammation
is a major outcome of infection and idiopathic preterm birth
[61] caused by alleviation of cytokine activity before preterm
labor, cervix and fetal membranes by neutrophils and macro-
phages [62]. Several studies reported that proinflammatory
cytokines such as IL-1β, IL-6, and TNF-α may activate
contraction-associated proteins (CAPs) comprising oxytocin
receptor (OTR), connexin 43 (CX43), prostaglandin H
synthase- (PGHS-) 2, and prostaglandin receptors, in the
myometrium, which exert uterotonic factors such as PGs that
induce subsequently labor and inflammatory signals, sug-
gesting a potential target in attenuating preterm birth [63].
In addition, normal labor in mouse associates with subse-
quent stimulation of NF-κB and AP-1 within the uterus,
whereas LPS-induced preterm labor (PTL) in two mouse
models has been reported to have activated NF-κB and Jun
N-terminal kinase (JNK) transcription factors [64].

5. Pregnancy-Related Disorders and Adverse
Birth Outcomes

5.1. Effects of LPS on Decidual Cells. The vast literature has
been published on decidual cells, which focuses on pregnancy
recognition, fetal growth, and survival. Decidual cells are the
maternal tissue which acts under the influence of progester-
one and testosterone in circulation in order to maintain
growth following implantation of blastocyst with the endo-
metrium. Later on, decidual and trophoblastic cells form
the placenta of maternal portion [65]. Crosstalk between
LPS and Toll-like receptor 4 (TLR4) resulted in harmful
effects on pregnancy through releasing a variety of inflamma-
tory cytokines in murine models [66]. Certain cytokines such
as IL-4, IL-6, and IL-10 elicit beneficial effects on pregnancy
[67]. Wang et al. [68] demonstrated that baicalin treatment at
4μg/mL to uterine decidual cells which was cultured with
LPS on day 6 of pregnancy. Meanwhile, in in vivo exper-
iment, LPS was inducted at day 6 of pregnancy and subjected
on oral doses of baicalin at day 7 and day 8 of pregnancy.

The results documented that baicalin prevents damage to
decidual cells and reduces TNF-α activity, hence produc-
ing fruitful effects on pregnant mice.

5.2. Maternal LPS-Mediated Teratogenicity. Some studies
have found that LPS induces teratogenicity by overriding of
free radicals. The subcut induction of LPS causes fetal mal-
formation such as anencephaly and eye deformities [69]
and developmental toxicity regulated by maternal side [70].
Uprising of tumor necrosis factor-alpha (TNF-α) in fetal
liver and brain-induced fetal death occurs through either
maternal circulation or amniotic fluid which mediated LPS
induction [71]. In addition, LPS also induced lipid peroxida-
tion and GSH depletion in maternal liver and placenta and
increases expression of HO-1 in fetal liver that was counter-
acted by radical trapping agent N-tertiary-butylnitrone
(PBN), a compound used for spin trapping. It has been well
characterized that ROS are unstable reactive species which
could not be eliminated successfully during organogenesis
process and transfer from maternal to fetal tissues, irrespec-
tive of avoiding antioxidant defense. Hence, lacking of GSH
proclaimed to develop ROS within fetal tissues. ROS develop-
ments in fetal tissues are not well clarified [72] though TNF-α
can cross maternal serum and amniotic fluid to fetuses [71].

5.3. Oxidative Stress and Preterm Birth. Premature birth
frequently occurs prior to normal delivery, when antioxi-
dants could not be so active to alleviate oxidative stress
resulting in preterm birth. It develops due to hindrance in
uteroplacental transfer of nutrients which keeps newborns
more sensitive against increasing ROS insults [73]. The
MnSODmRNA seems to be present in fetal membranes after
labor and show its existence in chorioamnionitis [74]. It has
been revealed that inflammation might be involved in
placental antioxidant system which depends upon the con-
cept development. Recently, studies rectified that [75, 76]
cytokines are the main regulators for premature birth; hence,
expression of NF-κB induced cytokines as a novel target
for alternative therapeutic options. NF-κB is recognized
in the induction of proinflammatory genes and mediates
the expression of adhesion molecule, chemotactic factors,
and acute phase proteins. The activation of NF-κB signaling
pathway may enhance synthesis of proinflammatory cyto-
kines that induce infected preterm birth [77, 78]. The current
study has shown that polyphenols particularly curcumin
exert beneficial effects on inhibition of NF-κB-linked preg-
nant tissue-infected premature birth in mice, suppress
TNF-α and IL-8, and mitigate oxidative insult in mothers
and fetuses [79].

5.4. Preeclampsia and Oxidative Stress. Preeclampsia seems
to be reported after 20 weeks of gestation in humans [80].
Some literatures build up strong relations between maternal
inflammation and oxidative stress. Researchers stated that
increased maternal inflammation through a variety of
signaling pathways and presence of oxidative stress might
be the possible factors for inducing preeclampsia condition
[81, 82]. In preeclampsia, reactive oxygen species initiates
apoptosis of syncytiotrophoblast in placentation mechanism
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and affects anterior remodeling [83]; hence, it mediates
inflammation. In addition, oxidative stress has been pre-
sumed to stimulate maternal endothelial cells as an inducer
of preeclampsia condition [84].

5.5. Oxidative Stress-Induced IUGR Complications. Liu et al.
[85] revealed that LPS induced intrauterine growth restric-
tion in late gestation mice. It is stated that fetal IUGR is more
susceptible in late gestation to increased risk of metabolic
disorders such as insulin resistance, diabetes mellitus, obe-
sity, hypertension, and cardiovascular diseases in model
animals [86, 87]. Moreover, maternal protein restriction
during pregnancy triggers fetal IUGR after prompt growth
and alters gene expression in adipose tissue which is more
prone to obesity in adult mice [88]. Numerous literatures
established links of IUGR with oxidative stress. In IUGR
pregnancies, oxidative stress markers such as MDA and pro-
tein oxidation of mother and fetus erythrocytes confirmed
the strong relations [89]. In addition, oxidative/antioxidant
markers were elevated in IUGR pregnancies, suggesting that
neonates with IUGR elicited low level of antioxidant defense
lipid peroxidation [90].

6. Significant Impact of Nrf2 Pathway
on Pregnancy

Nrf2 is a leucine-based zipped transcription factor which
displays a key role against oxidative stress by induction of
phase II antioxidant enzymes [91]. Activation of Nrf2 is
crucial for ameliorating oxidative stress-mediated cellular
damage via protection through 20S proteasome or [92] by
p62-dependent autophagy [93]. Normally, Nrf2 is located
in Kelch-like ECH-associated protein-1 (Keap1) [94]. Keap1
functions as sensors for oxidative stress [95]; upon activa-
tion, Nrf2 binds with Maf recognition/antioxidant response
element and electrophilic response element (ARE/EpRE) in

promoter target genes encompassing NAD(P)H:quinone
oxireductase 1 (NQO1) [96], heme oxygenase1 (HO-1) [97],
glutamate cysteine ligase(GCL) [98], and the light chain of
the amino acid cystine-glutamate exchanger (xCT) [99]
involved in glutathione biosynthesis. Notably, more than
hundred genes have been identified; many of them are
redox-sensitive transcription factors [100].

Numerous reports were described the protective effects
of Nrf2 on the embryo against adverse effects of oxidative
stress in utero (Table 1). Nrf2 knockout mice were con-
sidered as indicators of placental oxidative stress which
suppress fetal growth [101]. Nrf2-deficient mice are vul-
nerable to methamphetamine-induced fetal DNA insult
and neurological deficits [102], whereas polyphenols such
as hydroxytyrosol-induced Nrf2 stimulation ameliorate
oxidative stress-mediated effects in cognitive function and
neurogenesis in offspring [103]. Activation of Nrf2 has
exhibited to reduce Et-OH-induced neural crest apoptotic
cells in a fetus [104], and trophoblastic triggered apoptosis
by inflammation [105]. At the same time, aforementioned
studies indicated that Nrf2 exerts protective effects towards
oxidative insult during early-pregnancy development (i.e.,
neutral crest formation), while some other studies docu-
mented significant effects of Nrf2 in redox mechanism in
later-developmental phases. The in utero Keap1/Nrf2 sig-
nals have been demonstrated in response to amniotic fluid
through increased expressions of genes contributed in
epidermal development [106]. The Nrf2 is very sensitive
to the maternal immune system to mediate the function
of fetal membranes to birth. Importantly, Nrf2 protein
expression was decreased in fetal membranes during preg-
nancy due to amniotic infection. The pitfalls in Nrf2 regula-
tion can facilitate preterm delivery; knockdown of Nrf2 in
amniotic cells causes upregulations of proinflammatory
cytokines which causes rupturing fetal membranes. More-
over, a beneficial effect of Nrf2 on antioxidant mechanism

Table 1: Some enlisted Nrf2 gene regulation in maternofetal tissues.

Origin Regulation of Nrf2 protein/gene Functional significance References

Human umbilical
endothelial cells

NQO1, GCLM, Nrf2, GSK3β
GDM ↑ oxidative stress and ↓ Nrf2 activity and

overexpression of antioxidant expression
[112]

Rat Nrf2, HO-1, SOD2
Hydroxytyrosol (HT) and moderate

Restraint stress (GD14-20) ↑ Nrf2-dependent
gene expression

[113]

Rat liver GSTP, Nrf2
Maternal perfluorooctane sulfonate ↑ methylation of Nrf2-

dependent GSTP gene promoter
[114]

Nrf2−/− and WT mice
Nrf2, GSTA3, MGST1, GSTA4

Gpx2, AKR1B1, AKR1B10, NQO1
Postnatal hyperoxia ↑ Nrf2-dependent gene expression,

abolished in Nrf2−/− mice
[115]

Mouse embryos
Nrf2, SOD1, SOD2, SOD3, CAT,

Trx, Gpx1, Gpx2, Gpx3, GR
Maternal ethanol or D3T exposure ↑ Nrf2-dependent

gene expression
[116]

Mouse embryos
GSH, NQO1, HO-1, GCLC, GST, Prx1

Trx1, Trx2
Maternal D3T administration ↑ Nrf2-dependent gene

and ↓ H2O2-induced Trx1 and Trx2 oxidation
[117]

AKR1B1: aldo-keto reductase family-1 member B1 (aldose reductase); AKR1B10: aldo-keto reductase family-10 member B10 (aldose reductase); CAT:
Catalase); GCLC: glutamate-cysteine ligase catalytic subunit enzyme; GCLM: glutamate-cysteine ligase regulatory subunit enzyme; GDM: gestational diabetes
mellitus; GR: glutathione reductase; GSK3β: glycogen synthase kinase 3 beta; GSH: glutathione peroxidase; GSTA3: glutathione S-transferase alpha-4;
GSTA4: glutathione S-transferase alpha-4; Gpx1, 2, and 3: glutathione peroxidase 1, 2, and 3; GST: glutathione S-transferase; GSTP: glutathione reductase;
GPO: glutathione peroxidase; HO-1: heme oxygenase; MGST1: microsomal glutathione S-transferase 1; NQO1: (NAD(P)H:quinone dehydrogenase 1;
Nrf2: NF-E2-related factor 2; Prx1: peroxiredoxin 1; SOD1, 2, and 3: sodium dismutase 1, 2, and 3; Trx1 and 2: thioredoxin-1 and 2).
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is more obvious in alleviating adverse developmental out-
comes. In neural crest cells, where excessive glucose declines,
CuZnSOD, MnSOD, catalase, GPx1, Nrf2, and Pax3 expres-
sions induce vulnerability to these cells which leads to oxida-
tive damage [107]. Importantly, overexpression of catalase
enhances Nrf2 and its downstream HO-1 expression, thus
showing a protecting role in obesity-induced diabetes fetal
renal damage [108]. The Nrf2 expression is also decreased
in IUGR placenta [109]. In preeclampsia pregnancies, the
role of Nrf2 has been reported to be somehow controversial,
whereas reduced expression of Nrf2 was noted in placental
oxidative stress-induced preeclampsia [110]. Inappropriate
regulation of Nrf2-based HO-1 expression mediates soluble
fms-like typrsine kinase-1 (sFlt-1) [111]. Increased level of
sFtl-1 has been recorded in the pathogenesis of PE and
development of maternal hypertensive condition during
pregnancy. Overall, Nrf2 function in normal pregnancy
is incomplete although it is providing protection during
uterofetal life against a variety of stressors.

Cheng et al. [112] have demonstrated that protein levels
were significantly affected during redox status of GDM due
to overproduction of superoxide radicals, protein oxidation,
DNA damage, and reduced GSH synthesis. Moreover, in
GDM cells, lipid peroxidation did not show Nrf2 genes and
protein levels to its targeted genes NAD(P)H:quinone oxido-
reductase 1 (NQO1), Bach1, cystine/glutamate transporter,
and glutamate cysteine ligase. Lipid peroxidation triggered
GSH and NQO1 activity which was revoked by Nrf2 in
normal cells, and overexpression of Nrf2 in GDM cells partly
restored NQO1 induction. Improper functions of Nrf2 in
fetal endothelium increased the risk of inducing T2DM and
CVD diseases to offspring. Zheng et al. [113] revealed the
alternation in spontaneous activity and impair in learning
and memory levels in prenatal stress male and female
offspring. The stress was found to be due to downregulating
of neuronal proteins and glucocorticoid levels. Similarly,
alteration in protein oxidation, SOD, and mitochondrial
activity was also declined, whereas hydroxytyrosol (HT)
enhanced FOXO1 and FOXO3, Nrf2, and HO1 proteins
and restored mitochondrial functions. It indicates that HT
is a potential maternal nutritive compound that provides
protection towards neurogenesis and cognitive offspring. In
a study documented by Wan et al. [114], exhibiting the
overexpressions of GSTP was contributed with transcription
factors Keap1-Nrf2/MafK. Therefore, early induced alterna-
tions in cytosines within GSTP gene were referred as a
biomarker of hepatic PFOS, whereas the direct role of
PFOS-induced hepatotoxicity needs to be further elucidated.
In another findings demonstrated by [115], it was shown that
hyperoxia induced alveolar growth in neonatal lung by
induction of p21/p53 pathways, a potential risk for develop-
ing bronchopulmonary dysplasia (BPD) in preterm infants.
Results indicate that activation of Nrf2 pathway promoted
antioxidant response genes which were declined by hyper-
oxia. Dong et al. [116] reported that exposure of maternal
ethanol induces fetal alcohol syndrome that enhanced
expression of Nrf2 and Nrf2-ARE protein levels in mouse
embryos. Hence, it increases the response of proteins and
antioxidant enzymes. In addition, dithiole-3-thione (D3T)

treatment minimizes ethanol-mediated reactive oxygen
species productions and inhibits apoptosis in mouse
embryos. The results reported that simulation of Nrf2 was
involved in releasing antioxidant response against exposure
of ethanol embryos. In other investigation, it was docu-
mented that H2O2 decreased glutathione peroxidase (GSH),
thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2
(Trx2) in a whole cultured embryo with 10μM dithiole-3-
thione (D3T). D3T enhanced Nrf2 responsive genes. These
findings showed that stimulation of Nrf2 provides protection
against chemically mediated oxidative stress by maintaining
intracellular redox mechanism, thereby stabilizing normal
embryo development [117].

7. Dietary Supplementation of
Polyphenols during Pregnancy

Flavonoids, the compounds of polyphenols, have received
worldwide recognition due to their enormous existence in
nature, and more than 10000 diverse molecular components
have been identified so far [118]. Foods, vegetables, fruits,
and herbs are rich sources of flavonoids [119]. It has come
into central position due to presenting several functions
encompassing antioxidant, anti-inflammatory, and antiabor-
togenic properties [120, 121]. LPS mediates inflammation
through numerous series of cellular events that subsequently
stimulates NF-κB pathway which encodes genes for inducing
inflammation such as iNOS, NO, and COXs that synthesize
prostaglandins and cytokines. Moreover, Toll-like receptors
are responsible for the production of reactive oxygen species
[122, 123]. As described above, LPS mediates pregnancy
disorders and adverse birth outcomes through the regulation
of proinflammatory cytokines such as TNF-α and IL-8 in
maternal sera, amniotic fluid, fetal liver and fetal brain
[124] and induced fetal IUGR, fetal resorption, and preterm
delivery which was reversed by TNF-α inhibitor and che-
mokine inhibitor, respectively. Flavonoids suppress chemo-
kine production comprising TNF-α, IL-1β, and monocyte
chemoattractant protein-1 [125]; some protective effects
of polyphenols are illustrated in Table 2.

The uptake of enriched polyphenol food has been docu-
mented to enhance plasma antioxidant status in humans
[126] and reduce incidences of oxidative insult in vitro
and in vivo studies in a human placenta and trophoblasts,
respectively [127]. The flavonoids ameliorate oxidative
stress-mediated inflammatory response by suppression of
inflammatory mediators (reactive oxygen species (ROS)
and nitric oxide (NO)), decreased inflammatory enzymes
such as cyclooxygenases (COXs) and inducible nitric oxide
synthase (iNOS) modulating NF-κB and activating protein-
1 (AP-1) signals [26, 128] decreasing cytokine expressions,
and activation of phase II enzymes glutathione S-transferase
(GST) [129]. Supplementation of polyphenols has shown
beneficial effects on pregnancy and was referred as therapeu-
tic intervention to encounter pregnancy disorders and
adverse birth outcomes [130]. Lack of antioxidant defense
creates hindrances in homeostasis due to the exceeding
amount of ROS, while their supplementation may show
protective effects [130].
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Vanhees et al. [131] exhibited that exposure to intrauter-
ine flavonoids such as quercetin and genistein at lower level
inhibited oxidative stress and DNA damage in the liver of
adult mice that subsequently develops antioxidant environ-
ment through regulation of Nrf2 signaling pathway. It
indicates that dietary antioxidant supplementation during
gestation develops long lasting antioxidant defense that elim-
inate oxidative stress at adulthood, where oxidative stress was
assumed to be involved in chronic diseases. Importantly,
LPS-mediated inflammation plays a key role in embryonic
resorption, fetal growth restriction, and preeclampsia [132].
The polyphenols like curcumin ameliorate abnormal preg-
nancy outcomes by suppressed LPS-triggered inflammation
in mice. The anti-inflammation activity of curcumin was
achieved by upregulation of phosphorylated Akt pathway
which was decreased by LPS induction [59]. Tricin, a
polyphenol-derived compound, encountered inflammation
by activation of Akt signals and cellular proliferation. This
anti-inflammatory effect of Akt pathway was obtained by
inhibition of IKK protein activity which brings NF-κB back
into the cytoplasm in its normal physiological position
[133]. Several compounds like the flavonoid group of poly-
phenols induced stimulation of Nrf2 signals. This evidence
was proved by [134] who revealed the neuroprotective prop-
erties of polyphenols by activation of Nrf2/HO-1, thereby
exerting therapeutic insights of polyphenolic compounds.
Another example of epigallocatechin gallate (EGCG) treat-
ment enhanced nuclear accumulation, anti-oxidant response
element (ARE) binding with Nrf2.These results indicated
that ECGC regulated Nrf2-mediated expression of few
antioxidant enzymes particularly stimulation of Akt and
ERK1/2 signaling; hence, it supports antioxidant system in
attenuating oxidative stress [135]. Some polyphenols and
their chemical structure are depicted in Figure 2. Literature
has shown a less number of studies on antioxidant supple-
mentation such as flavonoids during pregnancy, as it was
known as strong antioxidative compounds proven from

other evidence, whereas some report exhibited ambiguous
results that might be due to timing of supplementation,
improper dose regimen, and lack of antioxidant-targeted
compounds. More research should be warranted to explore
methods for minimizing uterine oxidative stress and mimic
ROS-mediated diseases from mothers to newborns.

8. Concluding Remarks and Future Perspectives

We have clearly defined that stimulation of Toll-like recep-
tors by LPS-induced generation of free radicals and their
excessive amount leads to fetal resorption, preterm birth,
teratogenicity, intrauterine growth restriction, abortion,
neural tube defects, fetal demise, and skeletal development
retardation. Moreover, oxidative stress also activates NF-κB,
PPAR-γ, AP-1, and JNK pathways which accounts for path-
ological conditions in aforementioned pregnancy disorders.
In addition, NF-κB is responsible for transcription of several
proinflammatory cytokines which are known to induce preg-
nancy disorders and adverse outcomes such as TNF-α, IL-1β,
IL-6, and PGF2E. Importantly, stimulation of Nrf2 signals
plays a crucial role in ameliorating pregnancy insults. It was
further counted that oxidative stress is the major contribut-
ing factor, whereas polyphenols are the novel compounds
for treating oxidative stress-related disorders. Limited studies
have been documented on polyphenol supplementation
during pregnancy and its outcomes. It was presumed that
intrauterine fetal life decides the future of a wide array of
complications which appear at later stages of life. Nutrition
and antioxidant supplement are the main players for fetal
reprogramming. Any impairment in this system might have
disturbance in extrauterine life. Studies reported that strong
maternal uterine antioxidant environment could prevent
pregnancy disorders and abnormal birth outcomes and could
also prevent other complications later in life which might
initiate from embryonic stage. More molecular evidences
are required for antioxidant/inflammatory events from

Table 2: Beneficial effects of polyphenols in LPS-induced pregnancy disorders.

LPS doses
Gestation stages

(days)
Pregnancy disorders Flavonoids/protective effects References

LPS 0.2mL/0.2 μg/mouse 4–7 Abortion
Quercetin indicates antiabortive effects through

influence on CD4+/CD8+ T lymphocytes
and IFN and IL-4

[136]

LPS 0.1 μg per mouse 6.7 Fetal resorption

Polyphenolic compounds of Radix Scutellariae and
Rhizoma Atractylodis (baicalein, wogonin, oroxylin,
baicalin, wogonoside, oroxylin A-7-glucuronide
reduced fetal resorption and including IL-10

Pharmacological effects and pharmacokinetic properties
of Radix Scutellariae and its bioactive flavones

[137, 138]

LPS, 0.1mL/10 g
in vitro/in vivo

6
6 & 7

Injury of decidual cells
Baicalin, 4μg/mL in vitro and in vivo at different doses
prevents decidual cell injury by inhibition of TNF-α

[68]

LPS at 0.2ml,
murine model

7
Abortion and
reabsorption

Bao Tai Wu You, Tai Shan Pan Shi, or Bai Zhu San
at 0.5ml oral medication for 7 days ameliorates
INF-γ and increases IL-10 and IL-4 thus showing

beneficial effects

[139]

CD4 and 8: cluster of differentiation 4 and 8; IFN: interferon; IL-4: interleukine-4; IL-10: interleukine-10; INF-γ: interferon gamma; TNF-α: tumor necrosis
factor-alpha.
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fertilization to parturition during pregnancy. We assume that
these findings would be helpful in understanding oxidative
stress-induced pregnancy insults and might give new road-
map to researchers for therapeutic intervention which could
subsequently improve human and animal fertility.
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