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SUMMARY

Automated vehicles (AVs) are anticipated to improve road traffic safety. Howev-
er, prevailing decision-making algorithms have largely neglected the potential to
mitigate injuries when confronting inevitable obstacles. To explore whether,
how, and to what extent AVs can enhance human protection, we propose an
injury risk mitigation-based decision-making algorithm. The algorithm is guided
by a real-time, data-driven human injury prediction model and is assessed using
detailed first-hand information collected from real-world crashes. The results
demonstrate that integrating injury prediction into decision-making is promising
for reducing traffic casualties. Because safety decisions involve harm distribution
for different participants, we further analyze the potential ethical issues quanti-
tatively, providing a technically critical step closer to settling such dilemmas.
This work demonstrates the feasibility of applyingmining tools to identify the un-
derlying mechanisms embedded in crash data accumulated over time and opens
the way for future AVs to facilitate optimal road traffic safety.

INTRODUCTION

Road traffic crashes remain a serious public health and social problem, resulting in 1.35 million fatalities,

tens of millions of injuries, and 3% GDP loss annually (World Health Organization, 2018). Automated vehi-

cles (AVs) are expected to revolutionize road traffic safety and provide enhanced protection for occupants

(Schwarting et al., 2018; Olaverri-Monreal et al., 2020). Such anticipated benefits of these intelligent ma-

chines largely rely on their capacity to make appropriate safety decisions. Decisions are usually achieved

using rule-based (Campbell et al., 2010; Kala and Warwick, 2013), optimization-based (Liniger et al.,

2015; Kolekar et al., 2020), and learning-based methods (Sallab et al., 2017; Lechner et al., 2020). Existing

research efforts have been devoted to enhancing AV collision avoidance ability in a normal driving mode.

However, the complete avoidance of crashes remains unattainable, confirmed by the hundreds of AV-

involved crashes reported by the California Department of Motor Vehicles (California DMV, 2020). Based

on these valuable AV crash reports, many studies focused on analyzing AV collision frequencies, crash

types, and associated contributing factors (Xu et al., 2019; Boggs et al., 2020; Kutela et al., 2022),

evidencing that traffic crashes can still occur in the future due to the perception failures of ego vehicles

or the irrational actions of other traffic participants (Bonnefon et al., 2016; Wang et al., 2019; Franklin

et al., 2021). Yet, when confronting inevitable obstacles, little attention has been given to AV decision-mak-

ing systems that manage to reduce the severity of an imminent collision.

Conventional passive safety systems (e.g., vehicle body structure and occupant restraints) take the primary

responsibility for injury mitigation and work only after a collision begins. However, since vehicle maneuvers

during the critical time window from risk perception to collision occurrence will directly determine the colli-

sion severity, it is possible to establish a decision-making algorithm that makes safety decisions (i.e., vehicle

control inputs) focused on minimal human injury prior to an impending collision.

A vital part of such decision-making algorithms is accurate injury prediction. Occupant injuries in traffic

crashes are biomechanical consequences of the human body under transferred dynamic loads (e.g., defor-

mation and failure of tissues and bones). Inherent highly nonlinear characteristics lead to a lack of accurate

mathematical methods to interpret an injury process explicitly. A few simplified indicators have been used

to represent crash severity (e.g., impact location or vehicle body deformation), which cannot characterize

human injuries well due to the oversimplification of human-vehicle system interactions (Wang et al., 2019;

Simon et al., 2019; Parseh et al., 2021). To solve the need for injury prediction, one promising solution is to
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Figure 1. Multiple scales of the road traffic safety study and human injury-based decisions: the traffic, vehicle,

and human levels

(A–F) We understand traffic safety problems as a ‘‘top-down’’ process: the external load from a vehicle collision is

transferred and human injuries are generated via a traffic-vehicle-human interaction (A–C). Following this, we formulate a

decision-making algorithm as a ‘‘bottom-up’’ approach: a data-driven injury prediction model is developed by applying

deep learning algorithms to accumulated crash data (D) and subsequently used as an injury reference for safety decision-

making (E) to mitigate injury risk for imminent collision scenarios (F).
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combine existing traffic crash information as a databank with proper mining tools (Delen et al., 2017; Li

et al., 2019; Wang et al., 2021). The long-term accumulated crash information collected from different coun-

tries and regions provides vast amounts of data (Pfeiffer and Schmidt, 2007; Radja, 2016). In parallel, the

rapid development of data-driven methods creates new possibilities for identifying the complex but

intrinsic interactions between crash characteristics and resulting human injuries (Silva et al., 2020; Lian

et al., 2020).

When multiple traffic participants are involved and minimal loss is being pursued, vehicle safety deci-

sions on distributing harm and making trade-offs will possibly go further into the moral domain (Awad

et al., 2018). This leads to an increasing dispute about two primary decision principles with no conclu-

sion until now: ‘‘egoism’’ pursues the maximization of individual self-interest (i.e., the ego vehicle’s

safety), while ‘‘utilitarianism’’ deems the common interests of all participants as the actual motive (Mor-

due et al., 2020). Such social dilemmas remain a growing concern for AVs’ actual application and uni-

versal popularization, which strikes a large nerve for consumers, automakers, and policymakers (De

Freitas et al., 2021; Wang et al., 2022). Existing literature on ethical issues remains on the qualitative

description of human safety concerns, namely, sacrifice or survival (Bonnefon et al., 2016; Awad

et al., 2018; Faulhaber et al., 2019). When a subsequent injury can be precisely predicted, there is a

possibility of quantifying the risks to different participants, bringing insight for in-depth analysis of so-

cial dilemmas.

This paper explores whether, how, and to what extent such human injury-based decisions by AVs can

enhance human protection in improved traffic safety. Understanding safety protection in road traffic

follows a ‘‘top-down’’ process involving traffic, vehicle, and human levels (Figures 1A–1C). Correspond-

ingly, we propose a framework of an injury risk mitigation (IRM)-based decision-making algorithm that

makes safety decisions toward minimizing injury risk, which incorporates a ‘‘bottom-up’’ process

(Figures 1D–1F). First, an occupant injury prediction model was established using deep learning algorithms

to mine accumulated traffic crash data (Figure 1D). We then formulated a decision-making algorithm that

generates vehicle control inputs according to the quantified injury information, which, in essence, aims to
2 iScience 25, 104703, August 19, 2022



Figure 2. Formulation of the IRM algorithm

Confounding factors underlying the determination of the optimal safety decisions are first diagnosed at three levels: the state uncertainty of surrounding

vehicles at the traffic level, dramatic dynamic changes at the vehicle level, and complex biomechanical responses at the human level. We then propose three

corresponding strategies when establishing the IRM algorithm: introducing state-of-the-art sensor models and vehicle-to-vehicle communication (see STAR

methods), combining vehicle dynamics model Fð $Þ and vehicle collision model Hð $Þ, and establishing a data-driven human injury prediction model Ið $Þ.
(A) A typical imminent collision scenario. A vehicle (white) is driving through a T-intersection at high speed and cannot stop in time to avoid collision with the

surrounding vehicles (green or blue).

(B) Time domains for the IRM algorithm. When transferring vehicle states from the real-time domain (indicated by solid lines) into the virtual-time domain

(indicated by dashed lines), we have st = st, 0.

(C) Structure of the IRM algorithm. The optimal vehicle safety decision u
ðiÞ
t

�
at time step t is determined based on sensed information and updates the vehicle

dynamics st + 1 in the real-time domain. The zoomed-in decision-making block uses an enumeration method to solve the optimization problem u
ðiÞ
t

�
=

arg min
u
ðiÞ
t ˛U

j
ðiÞ
t . (env: environment information).
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find the optimal collision condition that results in minimal risk (Figure 1E). The IRM algorithm was compre-

hensively tested in a simulation platform using real-world crashes. The results showed that integrating

injury prediction into AV decision-making is promising for reducing traffic casualties (Figure 1F). Further-

more, potential ethical dilemmas were analyzed and discussed with quantified injury information via

case studies. To the best of our knowledge, this study is the first to integrate real-time injury prediction

into AV decision-making systems and quantify the potential benefits of human injury-based decisions for

imminent collision scenarios.
RESULTS

Formulation of the IRM algorithm

Consider an imminent collision scenario of n AVs (Figure 2A). s
ðiÞ
t and u

ðiÞ
t are the i-th AV’s states (e.g., po-

sition and velocity) and control inputs (i.e., accelerating, braking, and steering) at time t, respectively.

Vehicle states are updated as follows according to the dynamics model Fð $Þ:

st +1 = Fðst ; utÞ =
h
Fð1Þ

�
sð1Þt ; uð1Þ

t

�T

;/;FðnÞ
�
sðnÞt ;uðnÞ

t

�TiT
(Equation 1)

The vehicle control input u
ðiÞ
t ˛U consists of longitudinal and lateral control variables. We discretize deci-

sion space U into N decisions, i.e., U = fuð1Þ;/; uðNÞg, considering a trade-off between optimization ac-

curacy and computational efficiency (see STAR methods).
iScience 25, 104703, August 19, 2022 3
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The IRM algorithm performs decision optimization in the predictive horizon (i.e., virtual-time domain) and

executes the optimal decision in the physical world (i.e., real-time domain) (Figure 2B). When confronting

inevitable obstacles in real time t, using the vehicle collision model Hð $Þ (see STAR methods), the i-th AV

estimates the simulated potential collision conditions h
ðiÞ
t;k (including the collision velocity, angle, and

impact location of the two vehicles) as follows:

hðiÞ
t;k = H

�
st;k ; u

ðiÞ
t ; buð:iÞ

t ;p
�

(Equation 2)

where st, k denotes the vehicle states with collision occurring at virtual time k, p is vehicle structural param-

eters, and buð:iÞ
t represents the i-th AV’s estimation of the control inputs of the surroundings u

ð:iÞ
t . buð:iÞ

t equals

u
ð:iÞ
t if vehicle-to-vehicle communication (V2VC) is available for the AVs. Otherwise, the surrounding vehi-

cles are assumed tomaintain their kinematics, i.e., buð:iÞ
t is estimated to be u

ð:iÞ
t� 1 based on the observed con-

trol inputs at time t – 1.

Without loss of generality, this study focuses on driver injuries and assumes no other passengers for brevity.

The occupant injury severity score (OISS) j
ðiÞ
t , predicted by the injury prediction model Ið $Þ (see STAR

methods) and serving as the optimization objective, is determined as follows:

jðiÞt = aT$inj = aT$I
�
hðiÞ
t;k ; r ;o

�
(Equation 3)

where inj˛R4 represents the predicted probability vector of four injury severity levels and satisfies inj = 1;

a = ½aI;aII;aIII;aIV�˛R4 denotes a coefficient vector that assigns weights for each level; a is determined by

the distribution of real-world injuries in the NASS/CDS dataset (2004–2015) (Table S1); and r, o are vehicle

restraint system states and occupant characteristics identified from sensing information, respectively.

In summary, the i-th AV receives real-time predicted, periodically updated injury information andmaintains

the optimal safety decision with minimal OISS, i.e., u
ðiÞ
t

�
, until the collision either occurs or is avoided:

uðiÞ�
t = arg min

u
ðiÞ
t ˛U

jðiÞt = arg min
u
ðiÞ
t ˛U

aT$I
�
H
�
st;k ;u

ðiÞ
t ; buð:iÞ

t ;p
�
; r ;o

�
(Equation 4)

For other AVs, the optimal decision can be determined in the same way, forming a distributed algorithm for

multiple AVs, where each AV is assigned an independent decision-making problem. We consider different

types of errors and time delays to enhance the robustness (see STAR methods).
Establishment of the validation scenarios

We constructed imminent collision scenarios using real-world vehicle dynamic responses on our in-

house-developed simulation platform (Figure 3). We first collected and screened 200 real-world traffic

crashes (human drivers; from 2012 to 2019) with detailed on-site data, including vehicle information

(e.g., mass, size, and damage) and dynamics (trajectories and control inputs), occupant information

(e.g., age and gender), and restraint system information (e.g., belt and airbag usage). The filter criterion

was vehicle-to-vehicle crashes, middle-size passenger vehicle type, and no rollovers, occupant ejections,

or multiple impacts.

The collisions were reconstructed in the simulation platform as the validation scenarios. The IRM algorithm

is designed to be activated when danger emerges. If a collision eventually occurs, the critical time (i.e., from

detecting an emerging risk to collision occurrence) varies among traffic scenarios. Thus, it is not feasible to

set a fixed activation time for the IRM algorithm (tact) in different cases. To comprehensively test the per-

formance when implemented in AVs, we set a 1-s time window with 100-ms intervals before the actual colli-

sion occurrence and assumed that the IRM algorithm could be activated at any of the intervals. AV dynamic

responses were simulated following two rules: (1) before tact , the vehicle follows the real-world trajectory in

the original crash, and (2) after tact, the IRM algorithm exerts complete control on the vehicle’s maneuver.
Injury mitigation mechanisms of the IRM algorithm

Quantitative injury prediction is provided to guide decision-making toward minimal injury in imminent

collision scenarios. The IRM algorithm by itself identified and extracted the underlying mechanisms for

injury mitigation from the large-scale training dataset. We screened the protection measures taken by
4 iScience 25, 104703, August 19, 2022



Figure 3. Reconstructed critical scenarios for assessing the performance of the IRM algorithm

Our well-trained specialist teams collected first-hand on-site evidence (e.g., skid marks, broken glass, and bent guard rails), including locating the vehicles

involved, measuring the crash damage, and identifying the state of occupant restraint systems. The distribution of collision position and velocity indicates

that these collected scenarios cover a wide range of collision conditions, enhancing the comprehensiveness of the assessment. Detailed information of the

crashes is provided in Table S9. The inset on the lower left illustrates the IRM algorithm’s activation time covering a 1-s window before a collision.
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the IRM algorithm from all the simulated scenarios and grouped them into two categories and four

subcategories.

The first reduces impact energy inputs, which is the most intuitive way to mitigate collision severity

(Figures 4A–4D). The impact energy inputs are usually quantified by delta-v, i.e., the equivalent maximum

velocity change sustained by the vehicle during a crash. The IRM algorithm managed to reduce delta-v

through 1) longitudinal dynamics control, i.e., deceleration or acceleration to reduce the relative velocity,

and 2) lateral dynamics control, i.e., steering to reduce the relative angle and optimize the collision pattern

(e.g., switching a head-on crash to a side-impact impact with significantly lower delta-v).

The second adjusts the impact energy absorption (Figures 4E–4H). For a given level of impact energy

inputs, automotive engineers have been devoted to optimizing energy-absorption structures and

avoiding passing energy to humans inside. One practice by the IRM algorithm keeps the point of

impact (PoI) away from the occupant compartment and avoids direct collision toward the driver to guar-

antee the living space. The other way utilizes vehicle body structural crashworthiness (e.g., crash box

and longitudinal rail). For example, the IRM algorithm improved the overlap rate to enlarge the en-

ergy-absorption structures involved for driver-side offset impact, reducing a large intrusion on the

driver side.
Performance of the IRM algorithm

We present a performance assessment based on three defined application scenarios distinguished by the

AV development stage from low to high (i.e., S1, S2, and S3) (see STARmethods). We also introduced emer-

gency braking (EB) technology as a baseline strategy to represent existing active safety technology in immi-

nent collision scenarios.

Via the combination of the above injury mitigation mechanisms, the AVs with the IRM algorithm exhibited a

statistically lower OISS than human drivers in the same scenarios (Figure 5A). Taking tact at �500 ms as an

example, the green bar indicates that the S1-IRM algorithm reduced OISS by 2.1%–76.0% (median: 29.4%)

compared with human drivers among all the simulated cases. The best injury reductions in the S2 and S3

scenarios both reach 100% (i.e., collision avoidance). In terms of time sensitivity, the mitigation of injury

severity is positively related to tact for a given application scenario (i.e., the OISS reduction drops gradually

from 100% to 0% when tact changes from �1000 ms to �100 ms). The earlier the IRM algorithm takes over
iScience 25, 104703, August 19, 2022 5



Figure 4. Representative scenes reflecting the protection measures taken by the IRM algorithm

In each inset, the gray and red denote the original human-driven vehicles and the IRM-controlled AVs as its counterpart; the vehicle diagram reflects the

actual length measured from the collisions. (Veh: vehicle; delta-v measured in m/s).

(A and B) With longitudinal control only, Vehicle I reduced the relative velocity through braking (delta-v: 11.38/7.63 m/s), with the PoI nearly unchanged. A

similar law remains for rear-end collisions. The rear vehicle’s deceleration and the front vehicle’s acceleration jointly contributed to OISS reduction for both

drivers.

(C and D) With dynamics control in both longitudinal and lateral directions, AVs can brake and steer to either reduce the relative angle (41.3�/21.2�) or
switch a head-on crash to a side-impact impact with lower delta-v (4.29/1.63 m/s).

(E and F) AVs moved the PoI rearward (PoI: 6/7) or kept the PoI away from the occupant compartment (PoI: 15/14) to avoid passing impact energy to the

driver inside.

(H) For a driver-side offset impact, the IRM algorithm managed to utilize the energy-absorption structures by increasing the overlap rate from 50% to 100%.

Here, we referred to another case (G) for an interesting comparison: in the case of a non-driver-side offset impact, on the contrary, the IRM algorithm

preferred to reduce the overlap rate (50%/25%) to shift the impact further away from the driver side.
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control, the more time AVs have to make appropriate maneuvers and lower injury severity. In terms

of application scenarios, the S3-IRM algorithm provides the maximum benefit in injury risk reduction;

S2-IRM, S1-IRM, and EB follow in decreasing order, which aligns well with the expectation of AVs’ progres-

sion. The S3-IRM algorithm avoids more than half of the crashes (i.e., 55.5%) at tact of�500ms andmitigates

injury severity by 64.1%, 29.0%, and 9.1% at tact of �400, �300, and �200 ms, respectively. The EB strategy

exhibits the worst performance in injury mitigation, demonstrating that existing safety protection remains

to be further enhanced. We selected two representative crash cases that detailed the difference in injury

mitigation among different application scenarios of the IRM algorithm.

Case I: IRM outperformed EB via more flexible control. The initial real-world crash occurred at a

Y-crossing road without traffic lights, where ego (I) and surrounding (II) vehicles encountered frontal

collisions (Figure 5B). Compared to human-driven counterparts, Vehicle I with the EB strategy reduced

impact energy inputs using braking along the traveling direction (delta-v: 5.07/3.96 m/s). Further-

more, because of the more flexible control of vehicle dynamics, Vehicle I with the S1-IRM algorithm

combined appropriate steering and braking, reduced the overlap rate, and obtained a lower delta-v

(3.56 m/s). The S2-IRM algorithm simultaneously optimized the safety decisions on both vehicles.

The initial head-on crash was turned into a side impact, achieving the lowest delta-v (1.06 m/s) and hu-

man injury severity (i.e., OISS reduction of 93.3%).
6 iScience 25, 104703, August 19, 2022



Figure 5. Performance of the IRM algorithm

(A) Statistical analysis of OISS reduction. We calculate OISS reduction by comparing the IRM algorithm’s optimization results with the counterpart of human

drivers. The median injury mitigation at each tact is connected with dotted lines. The whiskers are omitted for the sake of simplicity.

(B) Case Study I: IRM outperformed EB via more flexible control.

(C) Case Study II: IRM optimized energy absorption from S1 to S3. The initial collision scene andOISS reduction by the IRM algorithm. The collision condition

and vehicle dynamics optimized by the IRM algorithm at tact of �500 ms (B) or �400 ms (C). (Veh: vehicle; HD: the original human-driven vehicles; delta-v

measured in m/s).
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Case II: IRM optimized energy absorption from S1 to S3. In the initial crash, the surrounding vehicle (II)

rushed through a crossing with a speed of approximately 90 km/h at the intersection and collided with

the ego vehicle (I) (Figure 5C). The EB strategy was not activated as the collision occurred from the rear

side. The S1-S3 IRM algorithms avoided the collision with tact earlier than �600 ms and mitigated hu-

man injuries with tact later than �600 ms. Compared with S1-IRM, the S2-IRM algorithm slowed Vehicle

II and reduced the relative angle to minimize the impact energy inputs, reducing delta-v from 4.60 m/s

to 2.76 m/s. In comparison, benefiting from V2VC, the S3-IRM algorithm achieved better cooperation to

position and orient two vehicles, avoiding direct collision toward the driver. Despite suffering a slightly

higher delta-v (2.93 m/s), the S3-IRM algorithm obtained the most significant OISS reduction of 77.4%.

As can be summarized from this typical case, three factors contributed to S3’s best protection perfor-

mance: (1) in comparison with EB, more flexible control of vehicle dynamics (i.e., both longitudinal and

lateral); (2) in comparison with S1-IRM, simultaneous optimization of decisions for multiple vehicles; and

(3) in comparison with S2-IRM, the availability of V2VC, which empower AVs to accurately perceive the

dynamics and intentions of surrounding vehicles.
iScience 25, 104703, August 19, 2022 7



Figure 6. Possible ethical issues encountered by AVs when making safety decisions

(A) Case study of two ethics-related scenarios that emerged from reconstructed crashes. Case III (‘‘Egoism’’ decision) (i-ii). Injury information and collision

conditions with the S1-IRM algorithm. Case IV (‘‘Utilitarianism’’ decision) (iii-iv). Injury information and collision conditions with the S3-IRM algorithm.

(B) Self-designed ethics-related scenarios involving multiple participants. The arrow length with vehicle diagrams represents the magnitude of the initial

driving velocity. (Veh: vehicle).
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Intervention of ethical issues

Ethical issues can emerge when AVs try to minimize human injury risks in critical scenarios, although the

machines themselves do not realize this. Another two representative scenarios precisely reflect such poten-

tial social dilemmas.

Case III: An AV followed the ‘‘Egoism’’ decision over a human-driven vehicle (Figure 6A (i-ii)). The initial fron-

tal collision occurred at an intersection where the surrounding vehicle (II; human-driven vehicle) rushed

through due to distraction and crashed into the ego vehicle (I; AV with the S1-IRM algorithm). Facing an

inevitable collision, the AV followed an ‘‘egoism’’ principle and made safety decisions toward minimizing

its own injury risk. Vehicle I slowed down and turned the initially possible frontal collision into a side impact

to reduce crash severity, decreasing its own OISS by 22.1%. However, Vehicle II suffered a direct impact on

the driver side, and the resultant intrusion into the occupant compartment increased Vehicle II’s OISS by

19.6%.

Case IV: AVs followed the ‘‘Utilitarianism’’ decision and made a trade-off (Figure 6A (iii-iv)). The initial real-

world crash occurred at an intersection at night in poor visual condition (i.e., neither of the vehicles noticed

the other). Vehicle I traveled at approximately 80 km/h and collided with Vehicle II. The S3-IRM algorithm

aimed to reduce the injuries of all traffic participants, categorized as the ‘‘utilitarianism’’ principle from a

global perspective. Vehicle I slowed down and turned left slightly simultaneously, increasing the overlap

of the two vehicles to utilize the energy-absorbing structures, managing to mitigate its OISS significantly

by 63.6%. However, the direct collision with the occupant compartment of Vehicle II caused severe defor-

mation. Despite the overall injury risk declining by 40.6% when considering both vehicles, the driver in

Vehicle II was actually ‘‘sacrificed’’ with an even higher OISS (i.e., aggravation of 23.1%).

Furthermore, we intentionally extended the ethical issues to a multiple-vehicle scenario by constructing

two inevitable collision scenarios at an intersection (Figure 6B). Vehicles I, II, and IV go straight through

the intersection, while Vehicle III turns right. We set the ego vehicle (I) as the only IRM-controlled AV.

The only difference between the two scenarios is the position and velocity of Vehicle II. For both scenarios,

Vehicle I cannot stop in time to avoid collisions due to a high initial speed and had to make an ethical de-

cision (driving straight, turning left, or turning right) that would directly affect the injury risks to the sur-

rounding vehicles (II, III, and IV). It demonstrated that the ‘‘optimal’’ decision is driving straight and
8 iScience 25, 104703, August 19, 2022
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colliding into Vehicle II (minimal OISS of 0.049) if Vehicle II is moving (Figure 6B (i)) and that it should turn

right and collide into Vehicle III (minimal OISS of 0.054) if Vehicle II is stationary (Figure 6B (ii)).

The question is, Vehicle I acts as an intelligent machine and directly decides whether the initially innocent

Vehicle III will, or will not, be involved in the crash. Specifically, the egoism principle may receive public criticism

for ‘‘murder-like’’ decisions in cases where vulnerable road users are sacrificed to protect vehicle occupants. For

example, if we replace Vehicle III in Figure 6B (i) with pedestrians or cyclists, the ‘‘optimal’’ egoism decision for

Vehicle I would be making a right turn, leading to the sacrifice of the vulnerable road users with no injury to its

own occupants. Such social dilemmas have triggered a heated debate, yet there is no widely accepted solution

(Bonnefon et al., 2016). As one step further than the simple qualitative descriptions (such as sacrifice or survival)

used in existing studies, this study models such problems and uses quantitative injury information. Technically,

this provides a safety reference to find a feasible solution to such dilemmas.
DISCUSSION

AVs are expected to drive better than human drivers in any situation. Such expectations largely rely on their de-

cision capability and directly concern human safety, especially when confronting inevitable collisions (Simon

et al., 2019). However, recent studies have suggested that AVs drive less well in scarce edge cases (i.e., near-

crash scenarios) than in regular traffic scenarios (De Freitas et al., 2021). Furthermore, most existing studies

on autonomous driving technology only focused on the collision avoidance capacity in dangerous conditions

yet neglected injury mitigation in imminent collision scenarios (Liniger et al., 2015; Sallab et al., 2017). Thus, it

is necessary to prepare a backup decision-making algorithm that activates and substitutes for the normal algo-

rithm. To this end, we integrate a quantified evaluation of human safety into the decision-making module,

formulating a human injury-based algorithm (i.e., IRM) that generates optimal vehicle control inputs for injury

minimization. The IRM algorithmwas thoroughly assessed using first-hand data collected from real-world traffic

crashes and demonstrated a strong capability for injurymitigation. Therefore, we propose to apply such human

injury-based safety decision-making algorithms to future safer AVs as the last defense line for occupant protec-

tion when a crash is inevitable and about to happen.
Predicting human injury from accumulated data

Real-time human injury prediction is a compulsory module that serves the IRM algorithm’s decision opti-

mization. Data from motor vehicle collisions have accumulated over time and can provide a possible

resource for prediction needs. One difficulty lies in finding an efficient mining tool to identify the highly

nonlinear relationship among human-, vehicle-, and traffic-relevant factors and injury outcomes. The other

is extracting the physical features from redundant information and then turning these features into quan-

titative indicators that machines can understand (e.g., OISS for quantifying injury severity). Keeping this in

mind, we make a pre-crash injury prediction by combining long-term accumulated traffic crash data (i.e.,

the NASS/CDS, 2004–2015 dataset) with emerging data-driven methods (i.e., deep learning algorithms).

Compared with traditional statistical regressions, the superior performance of deep learning algorithms

in handling problems involving complex nonlinearity and strong coupling can be harnessed in modeling

the multi-scale traffic-vehicle-human system. Concretely, the proposed injury prediction model signifi-

cantly outperformed existing regression-based methods, e.g., accuracy: 81.9% vs. 52.3%–62.5% (Stitzel

et al., 2016; Fiorentini and Losa, 2020).
Identifying injury mitigation mechanisms

The IRM algorithm is essentially a ‘‘mixed’’ form of learning-based (i.e., data-driven injury prediction) and

optimization-based (i.e., safety decisions toward minimal injury risk) methods. Such a framework differs

from other mainstream AV decision-making algorithms, i.e., rule-based methods (Campbell et al., 2010;

Kala and Warwick, 2013). It is usually not feasible to establish ‘‘if-else’’ decision-making rules to cover all

possible critical scenarios due to the inherent diversity of real-world collision conditions. Meanwhile,

although researchers have identified mature occupant protection mechanisms, the translation from the

natural language understood by humans to the programming language understood by intelligent ma-

chines (i.e., rules) requires considerable manpower and resources, and sometimes it is complicated and

ambiguous. For example, how should AVs act when two rules are contradictory in a specific scenario,

e.g., reducing impact energy inputs and changing the PoI, cannot be satisfied simultaneously (Figure 5C).

In contrast, by learning from objective crash data, the IRM algorithm can automatically determine the

optimal safety decisions without suffering the above problems.
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The learning-basedmodel has been deemed a ‘‘black-box’’ and questioned regarding its interpretability, i.e.,

humans cannot understand the decision-making process. However, the validation results of the IRM algorithm

demonstrated that its measures for reducing injuries were consistent with our perspectives on safety protec-

tion and supported by a sound mechanics basis (Figure 4). Nevertheless, not all the safety decisions it makes

can be comprehensively explained. It may stem fromeither the inherent limitations of the prediction approach

(e.g., insufficient data amount, skewed data distribution, and mining capacity) or be attributed to the fact that

the IRM algorithm identified some injurymechanisms that are too complex to be observed and understood by

humans directly. For example, the injury risk under a particular collision angle is significantly higher. We as-

sume that the body structure at this angle is generally weaker, or the impact at this angle will lead to vehicle

instability (e.g., out of control) and a secondary collision. We do not know if other physical laws dominate such

a decision discovered by the IRM algorithm. If these uncovered underlying mechanisms can be interpreted in

the future, theymay provide some insights that guide a safer design of next-generation vehicles. This iteration

triggered another interesting topic that deserves a thorough investigation.
Elaborating on the ethical issues with predicted injuries

Beyond technical advancements, a major parallel challenge before AVs are widely accepted lies in the ethical

principles that guide machine behaviors. Such rules are in urgent need, and any details must be approached

thoughtfully both in technology and morals (Shariff et al., 2017). We elaborate on the ethical issues caused by

the decision principle of either egoism or utilitarianism via case studies screened from reconstructed real-

world collisions (Figure 5). An ethical dilemma occurs: does a vehicle have the right to determine which sur-

rounding vehicles to collide with, even if it can exactly know the resultant injury severity? If yes, on what basis

should decisions bemade? Egoism? Utilitarianism? Or a combination of the two? The first question will signif-

icantly impact the public’s attitudes and the social acceptance of AVs. The second question will affect the pur-

chase desire of potential consumers because studies show that most consumers prefer AVs with the egoism

principle instead of utilitarianism (Bonnefon et al., 2016; Awad et al., 2018).

For AVs with IRM onboard, even when the resulting injuries of all the participants are precisely predicted on

the technical side, it is still difficult to tell a machine in advance how to react on the moral side. The judg-

ment on any decision principle has gone beyond the scope of this study and requires joint efforts from

academia, industry, and policymakers. This study presents the first efforts to use quantitative injury descrip-

tions of candidate safety decisions to model such social dilemmas, which, hopefully, provides a critical step

closer to establishing rules to formulate AV behaviors.
Limitations of the study

The establishment of the IRM algorithm in this study has several simplifications and limitations. First, due to

the size limits of currently available crash data, we decided to restrict the proposed injury prediction model

to drivers. The scalability and transferability of the framework (i.e., establishing a crash dataset, training

injury prediction models, and formulating safety decision algorithms) make it possible to extend to the pre-

diction of other road traffic participant injuries, such as pedestrians and cyclists. In that way, we suggest

taking all participant injury risks into account when making safety decisions. Second, we maintain the dis-

cussion on ethical issues among AVs in the present study (Figure 6) while believing that human-machine

interactions can lead to complicated situations, as evidenced in recent studies (Whiting et al., 2021; Ram-

churn et al., 2021). Thus, it is also necessary to evaluate the effects of the IRM algorithm when it is applied in

a mixed traffic system with the progressive penetration of AVs on the road. Meanwhile, we collected real-

world traffic crashes only involving conventional vehicles due to the restrictions on data access. It is

suggested to further directly compare the injury mitigation performance between the existing AV

decision-making algorithms and the IRM algorithm by reconstructing imminent collision scenarios using

AV-involved crashes. Finally, injury mitigation is estimated based on predicted injury information, and

the inevitable prediction error might be further reduced via state-of-the-art algorithms. In addition, since

the IRM algorithm makes decisions by minimizing the predicted injury severity, the associated prediction

error might overestimate the injury mitigation. Inspired by double Q-learning (van Hasselt et al., 2016), we

suggest using two independent injury prediction models (one for decision-making and the other for injury

mitigation estimation) to minimize such overestimations in future studies.
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Deposited data

Raw data https://crashviewer.nhtsa.dot.

gov/LegacyCDS/Search

N/A

Processed data https://github.com/wangqf1997/

Human-injury-based-safety-decision-

of-automated-vehicles

N/A

Software and Algorithms

Python https://www.python.org/ Version 3.7

Matplotlib https://matplotlib.org/ Version 3.1.3

PyTorch https://pytorch.org/ Version 1.7.1

Numpy https://numpy.org/ Version 1.16.0

Scikit-learn https://scikit-learn.org/ Version 0.0

Code from this paper https://github.com/wangqf1997/

Human-injury-based-safety-decision-

of-automated-vehicles

N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be handled by the lead contact, Bingbing

Nie.

Materials availability

This study did not generate new materials.

Data and code availability

d Dataset: The raw traffic crash data from NASS/CDS (2004–2015) is publicly available at https://

crashviewer.nhtsa.dot.gov/LegacyCDS/Search. The processed traffic crash data and our reconstructed

collision data are made available on GitHub at https://github.com/wangqf1997/Human-injury-based-

safety-decision-of-automated-vehicles.

d Code: All original code has been deposited on GitHub at https://github.com/wangqf1997/Human-

injury-based-safety-decision-of-automated-vehicles and is publicly available as of the date of

publication.

d Additional information: Any additional information required to reanalyse the data reported in this paper

is available from the lead contact upon request.
METHOD DETAILS

Injury risk prediction

We combined the accumulated traffic crash data with proper data-driven methods to establish the injury

prediction module.

We screened crash data from the National Automotive Sampling System/Crashworthiness Data System

(NASS/CDS, 2004–2015). The NASS/CDS is one of the largest and most authoritative crash datasets that

collected traffic crashes from 24 locations throughout the United States and has supported many in-depth

crash investigations (Radja, 2016). After data pre-processing, the final dataset consisted of 5,942 crash

cases focusing on single-collision sedan-to-sedan collisions (Figure S1). Nine crash elements were selected
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as the explanatory valuables, including four traffic-level variables (i.e., delta-v, collision angle, and PoIs of

the ego vehicle and the opposing vehicle), three vehicle-level variables (i.e., vehicle mass ratio, belt, and

airbag usage), and two human-level variables (i.e., occupant age and gender). Since injuries are sensitive

to different PoIs, we manually labelled detailed PoI information for each crash case according to the recon-

structed scene diagram and post-crash vehicle images (Figure S2). The dependent variable is occupant

injury severity, represented by the injury severity score (ISS) (Eppinger et al., 1999). The risk of suffering se-

vere or fatal injuries increases with increasing ISS (ranging from 0 to 75). We divided ISS into four levels (i.e.,

I: 0, II: 1-3, III: 4–14, and IV: 15–75) to describe injuries with different degrees of severity, i.e., the injury pre-

diction is a four-classification task. The detailed descriptions of variables are provided in Table S1,

Figures S3 and S4.

Most occupants in real-world collisions are non or slightly injured. Such data imbalance, where the severely

injured remain underrepresented, can affect prediction performance in model training. We alleviated this

issue through resampling methods to adjust the label distribution (i.e., the ratio between different injury

severity levels). There are three categories of resampling methods: under-sampling (US), over-sampling

(OS), and the combination of under- and over- sampling (CS). US methods balance data labels by discard-

ing samples from the majority class, while OSmethods add samples to the minority class. More specifically,

we selected the edited nearest neighbour (ENN), the synthetic minority over-sampling technique (SMOTE),

and their combination (SMOTE-ENN) for US, OS, and CS methods, respectively. Meanwhile, we randomly

divided the dataset into three sets: training set (70%), validation set (15%), and test set (15%). The label dis-

tribution of the resampled dataset is displayed in Table S2.

The best-performance data-driven method usually varies with the data source and filter criteria. We estab-

lished five machine learning algorithms (i.e., support vector machines, decision trees, k-nearest neigh-

bours, naive Bayes, and adaptive boosting) and three deep learning algorithms (i.e., feedforward neural

networks, recurrent neural networks, and convolutional neural networks) to determine the best prediction

model. In terms of the loss function, the cross-entropy loss was used for the classification task. Adaptive

moment estimation (ADAM) was adopted as the optimizer. The learning rate decreased with the training

epochs. We adopted different regularization approaches to reduce the over-fitting problem: 1) the training

process would early stop when validation loss increased in five consecutive epochs; 2) dropout layers were

added to reduce complex co-adaptations on the training data; 3) normalizationmethods also improved the

generalization ability. All eight data-driven algorithms were implemented in Python v3.7.0 (Python Software

Foundation, United States) with an Intel Core i9-10900K 3.70 GHz CPU and an NVIDIA RTX3090 GPU. Five

machine learning algorithms were implemented with the scikit-learn framework, while three deep learning

algorithms were implemented using the PyTorch framework.

After parameter tuning, the model hyperparameters with the best performance on the validation set were

determined (Tables S3 and S4). Among these data-driven algorithms, the stacked bidirectional RNN-based

injury prediction model with an over-sampling imbalance treatment achieved the best prediction accuracy

and a near real-time prediction ability (3.01 G 0.44 ms) (Figure S5). Therefore, it was selected as the on-

board injury prediction model Ið $Þ for the IRM algorithm, which was developed as follows:

inj = Iðh; r ;oÞ (Equation 5)

where inj˛R4 represents the predicted probability vector of the four injury levels and satisfies inj1 = 1; h is

the potential collision conditions, including the delta-v, collision angle, and PoIs of the two vehicles; and r

and o are vehicle restraint system states and occupant characteristics, respectively.

To better evaluate the performance of the proposed model, we selected several papers from the literature

on occupant injury severity prediction, including three major approaches: statistical regression (SR), ma-

chine earning (ML), and deep earning (DL) methods, and made a comprehensive comparison (Table S5).

Since the predictionmodels were trained and tested on different crash datasets with varying characteristics

(e.g., size, region, and variables), it is not suitable to directly compare the performance of different ap-

proaches. Combining the NASS/CDS data (one of the most authoritative crash databases) and deep

learning algorithm (one of the most powerful data mining methods), the proposed RNN-based model

demonstrated a satisfying prediction ability in three aspects: 1) obtaining a competitive prediction perfor-

mance (G-mean: 0.726, accuracy: 81.9%); 2) using less and readily available input valuables (only nine critical

valuables, excluding valuables not-directly related to injuries, e.g., alcohol test results and month of the
iScience 25, 104703, August 19, 2022 15
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year); 3) predicting occupant injuries with four severity levels (a more detailed prediction task in comparison

with binary classification).
Collision condition estimation

Delta-v is the maximum velocity change sustained by the vehicle during the crash and indicates crash

severity. We estimated delta-v before the collision considering its strong correlation with occupant injury

severity (Equations 6, 7, 8 and 9). The estimation was based on the plane 2-DOF rigid-body collision model

with momentum conservation (Figure S6).

P =
ð1+ eÞ�vn

2 + h2u2 � vn
1 � h1u1

�
1=m1 + 1=m2 + h2

1

.
I1 + h2

2

.
I2

(Equation 6)

C

e =

vn
2 + h2u2 � vn

1 � h1u1
(Equation 7)

Dv = P m (Equation 8)
1 = 1

Dv = P=m (Equation 9)
2 2

where P represents the collision impulse; e denotes the restitution coefficient; and C is a constant param-

eter that depends on the principal impact direction. For the two vehicles in a collision (i.e. i = 1, 2), Dvi is the

estimated delta-v; vi and vni represent the total velocity and the velocity component in the impulse direc-

tion; andmi, Ii,ui, and hi denote themass, themoment of inertia, the yaw rate, and the distance from the CG

(i.e., the centre of gravity) to the impulse line, respectively :We set C = 2 for frontal collision,C = 1.5 for side

collision, and C = 1 for rear collision (Ishikawa, 1994).

Based on the planar 2-DOF rigid-body collisionmodel, the onboard collision estimationmodelHð $Þ for the
IRM algorithm was developed as follows:

h = H�
s; u;p

�
(Equation 10)

where h represents the potential collision condition that includes the delta-v, collision angle, and PoIs of

the two vehicles; s is the vehicle states at the collision moment; u denotes the vehicle control inputs;

and p is vehicle structural parameters (e.g., vehicle size, mass, and moment of inertia).
Modelling of errors and time delays

The potential errors and time delays were also modelled on our in-house developed simulation platform to

enhance the robustness. Two types of errors were introduced: perception and control errors. The percep-

tion error was defined as the position errors when determining the positions of the surrounding vehicles,

which was developed as follows:

xd = xt + εx ; εx ˛Nð0; sxÞ (Equation 11)� �

yd = yt + εy ; εy ˛N 0; sy (Equation 12)�

sx =

sx 0; jxt j = 0
ksx jxt j+ sx 0; jxt j>0

(Equation 13)�

sy =

sy 0; jyt j = 0
ksy jyt j+ sy 0; jyt j>0

(Equation 14)

where xd and yd are the relative positions of vehicles with error disturbances; xt and yt denote the true rela-

tive positions; εx and εy are the random errors sampled fromGaussian distributions with zero mean error; sx
and sy are the variances; and sx_0, sy_0, ksx , and ksy are parameters related to the relative position. The con-

trol error was developed as follows:

€vd = €vxmax + ε €v ; ε €v ˛N
�
0; s €v

�
(Equation 15)

_ _
dd = dmax + ε _d; ε _d ˛Nð0; s
ε _d
Þ (Equation 16)

where €vd represents the change rate of gas or brake pedal position (i.e., the jerk) with disturbances; _dd is the

change rate of the steering angle with disturbances; ε €v and ε _d are the random errors sampled fromGaussian

distributions with zero mean error; and s €v and sε _d are the variances.

The time delay contained the perception time Tp and the decision time Td. The former referred to the time

to percept the positions and velocities of surrounding vehicles using onboard sensors, while the latter was
16 iScience 25, 104703, August 19, 2022



ll
OPEN ACCESS

iScience
Article
defined as the time to make decisions based on onboard computing resources. We assumed that time de-

lays with the S3-IRM algorithm aremarginal and almost negligible in the future because of the availability of

V2VC and cloud computing platforms. The above parameters regarding errors and time delays were deter-

mined according to the state-of-the-art technologies (Table S6) (Lu et al., 2021; Yeong et al., 2021; Lin et al.,

2019; Choi et al., 2018).
Technical details of the IRM algorithm

The discretized vehicle safety decision spaceU comprises five acceleration decisions (i.e., acceleration aacc,

partial acceleration ap� acc , constant-speed, partial deceleration ap�dec , and deceleration adec) and five

swerve decisions (i.e., left, partial left, straight, partial right, and right). The left or right decision satisfies

the steering wheel angle d = Gdmax, while the partial left or partial right decision satisfies d =

Gdmax=2. The maximum steering angle changes with the vehicle velocity to ensure the stability of the

vehicle dynamics.

dmax =

�
dthre + kdmax ðvthre � vxÞ; if vx < vthre
dthre; if vx R vthre

(Equation 17)

where vx represents the vehicle’s longitudinal velocity and vthre, kdmax
, and dthre are constant parameters

related to the vehicle’s steering system.

The pseudocode and parameters are summarized in Box S1 and Table S7.

To assess the IRM algorithm’s performance, we classified three application scenarios (i.e., S1, S2, and S3)

considering the development stage of AVs according to four indicators as follows (Table S8):

Optimizable vehicles

Optimizable vehicles represent AV penetration levels. Since the public’s acceptance of AVs is believed to

be progressive, a mixed traffic system will be retained over a considerable time, i.e., AVs share the roads

with human-driven vehicles (Hancock et al., 2019).

Availability of V2VC

V2VC empowers AVs to accurately perceive surrounding vehicle dynamics and intentions in real time, facil-

itating the decision-making of the ego vehicle.

Computing resource

Due to limited onboard computing resources, nonnegligible computational time delays can significantly

threaten the quality of AV decisions, especially for the critical time window (generally in sub-seconds)

before a collision. However, utilizing large-scale cloud computing platforms based on real-time communi-

cations is a promising solution.

Optimization target

Regarding the IRM algorithm’s optimization target, we define the minimization of the OISS for a specific

vehicle or the average OISS for all vehicles to differentiate the decision principle of ‘‘egoism’’ or

‘‘utilitarianism’’.
QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analysis and plots were performed with python.
iScience 25, 104703, August 19, 2022 17
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