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Abstract

Neurological symptoms following cerebellar stroke can range from motor to cognitive-affective 

impairments. Topographic imaging studies from patients with lesions confined to the cerebellum 

have shown evidence linking anterior cerebellar lobules with motor function and posterior 

lobules with cognitive function. Damage to the cerebellum can disrupt functional connectivity 

in cerebellar stroke patients, as it is highly interconnected with forebrain motor and cognitive 

areas. The hippocampus plays a key role in memory acquisition, a cognitive domain that is 

negatively impacted by posterior cerebellar stroke, and there is increasing evidence that the 
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cerebellum can affect hippocampal function in health and disease. To study these topographical 

dissociations, we developed a mouse photo-thrombosis model to produce unilateral strokes in 

anterior (lobules III-V) or posterior (lobules VI-VIII) cerebellar cortex to examine hippocampal 

plasticity and behavior. Histological and MRI data demonstrate reproducible injury that is 

confined to the targeted lobules. We then measured hippocampal long-term potentiation (LTP) 

ex-vivo with extracellular field recording experiments in acute brain slices obtained from mice 

7 days post-cerebellar stroke. Interestingly, we found that a unilateral posterior stroke resulted 

in a contralateral hippocampal impairment, matching the cerebellothalamic pathway trajectory, 

while LTP was intact in both hippocampi of mice with anterior strokes. We also assessed motor 

coordination and memory function at 7 days post-stroke using a balance beam, contextual and 

delay fear conditioning (CFC and DFC), and novel object recognition (NOR) tasks. Mice with 

anterior strokes showed lack of coordination evaluated as an increased number of missteps, 

while mice with posterior strokes did not. Mice with anterior or posterior cerebellar strokes 

demonstrated similar freezing behavior to shams in CFC and DFC, while only posterior stroke 

mice displayed a reduced discrimination index in the NOR task. These data suggest that a 

unilateral LTP impairment observed in mice with posterior strokes produces a mild memory 

impairment. Our results demonstrate that our model recapitulates aspects of clinical lesion-

symptom mapping, with anterior cerebellar strokes producing impaired motor coordination and 

posterior cerebellar strokes producing an object-recognition memory impairment. Further studies 

are warranted to interrogate other motor and cognitive-affective behaviors and brain region 

specific alterations following focal cerebellar stroke. The novel model presented herein will allow 

for future preclinical translational studies to improve neurological deficits after cerebellar stroke.
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1. Introduction

Stroke is a leading cause of death and disability worldwide. In the United States over 

795,000 cases are reported annually and approximately 85% of these cases are the 

result of vessel occlusion (Guzik and Bushnell, 2017). The risk factors include advanced 

age, diabetes mellitus, hypertension, coronary artery disease, elevated lipids and smoking 

(Hankey, 2017). Although occlusion of forebrain arteries is most common, cerebellar strokes 

account for nearly 25,000 strokes every year and have a disproportionally high mortality 

rate when compared to other strokes (Macdonell et al., 1987). The cerebellum receives an 

arterial blood supply from the superior, posterior-inferior and anterior-inferior cerebellar 

arteries. Occlusion of any of these arteries due to ischemia, particularly of the superior 

cerebellar arteries (SCA), can have an impact on motor and cognitive function (Kim et 

al., 2016). Acute clinical symptomatology can be non-specific and resemble many other 

disorders (Edlow et al., 2008) making cerebellar stroke difficult to diagnose within the 

therapeutic window for anti-thrombolytics and endovascular therapy. If cerebellar stroke 

therapies are to be developed, an understanding of long-term mechanisms of motor and 
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cognitive impairments is needed. Currently, there are no studies that have investigated the 

behavioral and network alterations that occur after cerebellar stroke.

Motor and vestibular symptoms after cerebellar stroke have been long recognized in clinical 

cases, but it is only within the last two decades that cognitive deficits associated with 

cerebellar stroke have become appreciated (Schmahmann, 1996; Schmahmann et al., 2009; 

Stoodley et al., 2012; Koziol et al., 2014; Bodranghien et al., 2016; Stoodley et al., 2016; 

Stoodley and Schmahmann, 2018). Clinical research (symptomatology and fMRI lesion-

mapping) performed on patients with either stroke or tumorigenic lesions confined to the 

cerebellum, have revealed a difference between processes regulated by anterior and posterior 

lobules of the cerebellum. These studies show that patients with an injury to anterior 

lobules of the cerebellum display ataxia, dysmetria, vertigo, and other motor coordination 

and motor learning impairments, while patients with lesions to posterior lobules display 

memory, language, visual-spatial, emotional and executive dysfunctions (Schmahmann, 

1996; Stoodley and Schmahmann, 2018). Despite well-documented data of the cerebellar 

involvement in cognitive-affective processes (Schmahmann, 1996; Desmond and Fiez, 1998; 

Strick et al., 2009; Stoodley et al., 2012; Buckner, 2013; Rochefort et al., 2013; Koziol et al., 

2014; Kim et al., 2016; Stoodley and Schmahmann, 2018), the precise functional networks 

and anatomical pathways the cerebellum uses to modulate cognition are far less understood.

The hippocampus plays a key role in memory formation and synaptic plasticity in the 

hippocampus is a cellular mechanism that underlies this function. Damage to the posterior 

region of the cerebellum can impair memory function (Stoodley et al., 2016), but it is still 

not well understood how disruptions in the hippocampal network contribute to cognitive 

dysfunction. Functional topography studies in the human cerebellum have established 

reciprocal connectivity of the cerebellum with sensory-motor and associative cortices (Strick 

et al., 2009; Stoodley et al., 2012). Optogenetic fMRI, electrophysiological identification 

and multiple tracing studies in animal models have shown indirect connectivity and 

anatomical correlates of cerebellar-hippocampal connectivity (Krook-Magnuson et al., 2014; 

Igloi et al., 2015; Choe et al., 2018; McAfee et al., 2019; Zeidler et al., 2020). Therefore, 

we hypothesize that cerebellar-induced changes in hippocampal function may contribute to 

memory deficits observed in cerebellar stroke patients with posterior localized cerebellar 

strokes. To test this hypothesis, we performed photo-thrombosis to induce focal cerebellar 

strokes in anterior or posterior lobules of the mouse cerebellar cortex and evaluated 

hippocampal plasticity, memory and motor coordination.

2. Materials and methods

2.1. Animals

All experimental protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Colorado and adhered to the National Institute 

of Health guidelines for the care and use of animals in research. Male and female, 8–12 

weeks-old, C57BL/6 mice were purchased from Charles River Laboratories (CRL). All mice 

were permitted access to water and standard lab chow ad libitum with a 14/10-h light/dark 

cycles.
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2.2. Photo-thrombotic surgery

Animals were anesthetized and kept at 2% isoflurane (20% oxygen/80% room air) and 

placed on a stereotaxic frame with a rectal temperature controller (36.5° ± 0.3 °C) and eye 

lubrication. The scalp was properly disinfected and treated with bupivacaine at 10 mg/mL 

prior to incision. A scalp incision was performed at the level of lambda and trapezius muscle 

was gently detached from the interparietal bone and lowered to visualize the left superior 

cerebellar artery (SCA). The bone overlying the SCA was thinned out with micromotor drill 

(Foredom) with a 2-mm rounded-head drill bit. Different lobules were targeted by changing 

the angle and position of the fiberoptic cold LED white source (diameter: 1.5 mm, Thorlabs) 

(Fig. 1c and Supplementary Fig. IIa). To generate a posterior cerebellar stroke the light 

was positioned above the SCA covering portions of lobules VI-VIII. For anterior cerebellar 

strokes the light was positioned at lobules IV-V (See Supplementary Figure Ia). Rose Bengal 

(RB) (Sigma-Aldrich) was administered intraperitoneally (150 μg/g) prior to illumination. 

Illumination was localized at the bone thinning location (touching the skull) and turned on 

5 min post-RB injection and was maintained for 15 min. The scalp was glued closed and 

treated with a topical triple antibiotic ointment and lidocaine, followed by a subcutaneous 

injection of 500 μL of 0.9% saline after the surgery was completed. Mice were housed 

individually over a heating pad at 35 °C overnight and allowed to recover for 1 or 7 days. 

Sham animals underwent the same procedure as our stroke animals except for administration 

of RB, ruling out any possible damage due to light exposure alone. Mice with anterior and 

posterior strokes had similar mortality rates, 14 out of 126 (11.11%) animals with posterior 

strokes and 5 out of 51 (9.8%) animals with anterior strokes died within 1–3 days after 

surgery.

2.3. Vasculature visualization

For vasculature visualization, naïve animals were perfused with black India ink (Pelikan 

Black Fountain Ink) diluted at a 1:1 ratio with 1× phosphate buffered saline (PBS) at a rate 

of 5 mL/s for 2mins (Supplementary Fig. Ia). The brain was collected and imaged with a 

light microscope to allow for visualization of the SCA.

2.4. Histology

Mice were transcardially perfused at 1- or 7-days post-surgery with 1× PBS followed 

by 4% paraformaldehyde (PFA) for tissue fixation, sectioning and staining. Cerebellums 

were paraffin embedded and 6 μm sections were prepared. A total of approximately 240 

slides were obtained and 4 slide sets were generated, each set with 24 sections at 30 um 

intervals mounted onto 4 slides. One slide set (4 slides total) was stained with hematoxylin 

and eosin (H&E), while the other 3 slides of the set (12 slides total) were used for 

immunohistochemistry (IHC).

2.5. Stereology

For quantification of infarct volume, one set of H&E stained 6-μm paraffin sections 

was used for stereological analysis. A Leica photomicroscope (Leica Microsystems) and 

StereoInvestigator program (Stereologer 2000, SRC) were used for this analysis. A total of 
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12 standardized sections were analyzed per animal. Infarcted tissue was traced onto a point 

grid at 1.25× magnification, and tissue depth was calculated at 40× magnification.

Stereologer software calculated global infarct volume in cubic micrometers according to the 

Cavalieri principle and volumes were converted into cubic microns.

2.6. Blood-brain barrier permeability

Evans blue was used at a concentration of 2% in 0.9% saline solution and injected 

intraperitoneally 4 h before perfusion of sham and stroke animals. Mice were perfused 

with 1 × PBS and cerebellums were collected for qualitative analysis and visualization of 

the cerebellar cortex. For quantitative analysis of BBB disruption, ovalbumin conjugated to 

Alexa Fluor-647 (Molecular Probes by Life Technologies) was retro-orbitally injected into 

sham and cerebellar stroke animals at a concentration of 1% in 0.9% saline 4 h before 

perfusion with 1× PBS/4% PFA. Cerebellums were then collected and post-fixed in 4% 

PFA for 1 day and then transferred to a cryo-protection solution containing 30% sucrose. 

Cerebellums were cryo-sectioned at a 30-μm thickness and prepared for a free-floating 

section IHC protocol. To visualize ovalbumin extravasation, sections were co-stained with 

a rabbit anti-Glut1 antibody (ThermoScientific RB-9052-P) at a concentration of 1:500 to 

label endothelial cells followed by an anti-rabbit secondary antibody conjugated with Alexa 

Fluor-488. Sections were then mounted and imaged at 647 nm (ovalbumin) and 488 nm 

(Glut-1) wavelengths with a 40× objective using epifluorescent microscope with Qcapture 

Pro software. Percent area of positive pixels was averaged from 4 images per side per animal 

for shams and from 5 images per side (ipsilateral and contralateral) per stroke animals. 

Images with merged channels were used for representative ovalbumin visualization while 

only 647 channel images were processed for ovalbumin quantification. The ovalbumin signal 

was quantified based on area percentage of ROI (entire image) after applying a standard 

intensity threshold filter (triangle white) across images with a Fiji macro.

2.7. Immunohistochemistry

An immunohistochemistry (IHC) protocol was performed as previously described by 

(Dingman et al., 2019; Orfila et al., 2019) to evaluate the cerebellum and hippocampus. 

Neuronal nuclei and reactive microglia and astrocytes were evaluated with NeuN (Millipore, 

MAB377, 1:500), glial fibrillary acidic protein (GFAP, Santa Cruz SC33673, 1:500) and 

Iba-1 (Wako, 019–19,741, 1:500), respectively. Secondary antibodies raised in donkey and 

conjugated to Alexa Fluor-488, 594 or 647 (Jackson Immunoresearch) were used at a 

dilution of 1:600. For cerebellum, 6 sections per animal were stained. Images were acquired 

from the peri-infarct area (molecular layer), 3 images at 40× were obtained per side for each 

cerebellar slice for a total of 12 images per animal. For hippocampus, images were acquired 

in the CA1 region from 3 sections per animal. Percentage of positive pixels was analyzed 

based on area percentage of ROI (entire image) after applying a standard intensity threshold 

filter (triangle white) across images with a Fiji macro.

2.8. Laser speckle imaging

Images of SCA blood flow were acquired in a small subset of posterior and anterior 

cerebellar strokes using a laser speckle imager (RWD Life Sciences). Animals underwent 
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standard photothrombotic procedure. The skull was moistened with saline to facilitate 

imaging and the laser speckle camera was positioned approximately 6 in. above the skull. 

Static images were acquired immediately before and 5 min after photoillumination of the 

targeted portions of the SCA.

2.9. Behavioral testing

Testing was performed 7 days after sham or stroke surgery. Mice were transported in their 

home cages to a behavioral suite and allowed to habituate for 30 min prior to testing. 

Motor coordination was tested with a balance beam and memory with a contextual fear and 

delay fear conditioning (CFC/DFC) assay and novel object recognition (NOR). Open field, 

balance beam and CFC were performed in the same cohorts while separate cohorts were 

used for DFC and NOR tasks.

Motor testing (balance beam).—A tapered, elevated balance beam (165 cm) was used 

to assess motor coordination. The beam is tapered in width from 1.2 cm at the start point 

to 0.5 cm at the stop point with a ledge running the length of either side of the beam that 

is 2 cm below the level of the beam and 1.5 cm wide (Carter et al., 2001). A dark goal box 

(10.5 × 10.5 × 10.5 cm) positioned at one end of the beam. Mice were trained to cross the 

balance beam without turning around or pausing to explore (5–10 trials). Once trained, 3 

sessions were recorded and videos were analyzed for number of missteps or slips onto the 

ledge (Schaar et al., 2010).

CFC.—Memory performance was evaluated by using a CFC assay. Mice are placed in a 

silent behavioral room for habituation for 30 min in their own home cage prior to the testing. 

Mice were then taken out of their home cage into an empty bucket for 2 mins and then 

placed into a chamber with a metal-based platform for another 2 mins for habituation and 

development of associative memory. A 1 mA current was then delivered through the metal-

based platform for 1 s. The current produces a mild electric shock to their paws, perceived 

as an aversive stimulus. Mice were then re-introduced to the same context (environment) 24 

h later. Freezing behavior was evaluated over the first 5 min by observing mouse behavior 

every 10 s and scored as freezing or not freezing. Freezing behavior is a sign of intact 

memory association between environmental cues and an aversive stimulus experienced the 

day before. CFC was performed prior to balance beam motor testing.

DFC.—A fear conditioning apparatus was used consisting of a sound attenuating chamber 

(24”L × 14”W × 14”H), which contained a grid-shock floor (Coulbourn Instruments, P/N 

H10–11 M-TC) onto which a Plexiglas cube (6 × 6 × 6) was placed to contain the 

mice during the experiments (Context A). The shock floor was connected to an animal 

shocker that was automatically triggered by an Arduino control board. The conditioned 

stimulus (CS) was a 15 s tone (60 dB) delivered by a piezo buzzer (McMaster-Carr) that co-

terminated with foot-shock (0.5 mA, 1 s) (unconditioned stimulus – US). For all procedures 

carried out in Context A, the apparatus was cleaned with a 70% isopropanol solution before 

and after each animal, and each animal was transported to the conditioning room in their 

home-cage. Context B consisted of a white bucket (7″ diameter, 7″ tall) loosely covered 

by a clear Plexiglas sheet and placed into the sound attenuating chamber. A small vial 
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containing vanilla extract was placed in the corner of the sound attenuating chamber and 

the apparatus was cleaned with a 70% ethanol solution before and after each animal. For 

all procedures carried out in Context B, the animals were individually transported to the 

conditioning room in small, empty, white square containers. Any-maze software (Stoelting) 

was used to record and assess freezing behavior during every stage of the procedure. On 

the first day of the procedure, animals were habituated to the conditioning room while in 

their home cage for one hour. Animals were also habituated to Context A for 5-min without 

presentation of the CS or the US. 24-h later, animals were re-exposed to Context A to obtain 

a 2-min baseline before CS/US pairing. After the baseline period, three CS/US pairings 

were delivered with 1-min separating each pairing. After the last CS/US pairing, mice were 

allowed to remain in the chamber for 1 min and 45 s before being returned to their home 

cage. The next day, animals were returned to context A for 2-min without presentation of 

CS or US to assess contextual fear. The following day, animals were transported to the 

conditioning room in novel containers and exposed to the novel context B for 2-min. After 

this baseline period, the CS was delivered to assess cued fear. Mice were allowed to remain 

in context B for an additional 1.5 min after CS presentation before being returned to their 

home cage.

NOR.—NOR was performed in a 3-chamber apparatus (24.75”W × 16.75″ L × 8.75”H; 

each chamber was 7″ in length) with open doorways between chambers. Mice were 

habituated to the room for 1 h. Mice were then placed into the center chamber of the 

apparatus with identical objects placed in the outer chambers and allowed to explore the box 

and objects for 10 min. Mice were returned to their home cage for 30 min before undergoing 

a second trial. The second trial consisted of placing an object from trial one on one end of 

the three-chamber box, and a new object on the opposite end. Mice explored these objects 

and environment for another 10 min before being returned to their home cage. Data was 

recorded and analyzed in Any-Maze and time spent exploring each box is converted into 

a discrimination index for: (Novel object - Familiar Object) / (Novel object + Familiar 

Object). Data are reported as the difference in discrimination index between trial 1 and trial 

2.

2.10. In vivo MRI

All non-invasive MRI protocols were developed at the Colorado Animal Imaging Shared 

Resource (AISR) on an ultra-high field Bruker 9.4 Tesla BioSpec MR scanner (Bruker 

Medical) equipped with a mouse head-array RF cryo-coil. Briefly, the mouse was 

anesthetized with 2% isoflurane and placed on a temperature-controlled animal bed. Non-

gadolinium multi-sequential MRI protocol was applied to acquire (i) high-resolution T2-

weighted turboRARE (Rapid Acquisition with Relaxation Enhancement, 52 μm in-plane 

resolution); and (ii) axial fast spin echo DWI (Diffusion Weighted Imaging) with six 

b-values for tumor cellularity and edema. All MRI acquisitions and image analysis were 

performed using Bruker ParaVision 360NEO software. For volumetric assessments, free-

hand drawn regions of interests (ROIs) were placed over the injury or edema region on each 

sagittal slice. The total injury or edema volume was reported in mm3 as the sum of all ROIs 

from individual slices multiplied by a slice thickness (0.7 mm, no slice gap). Oval or circular 
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ROI were used for DWI analysis and calculations of the apparent diffusion coefficients 

(ADCs) in the injured regions.

2.11. Hippocampal electrophysiology

Acute hippocampal slice preparation.—Hippocampal slices were prepared at 7 days 

after recovery from cerebellar stroke or sham surgeries. Mice were anesthetized with 3% 

isoflurane in an O2-enriched chamber. Mice were transcardially perfused with ice-cold (2–5 

°C) oxygenated (95% O2/5% CO2) artificial cerebral spinal fluid (aCSF) for 2 min prior 

to decapitation. The brains were then extracted and sectioned in aCSF. The composition of 

aCSF was the following (in mmol/L): 126 NaCl, 2.5 KCl, 25 NaHCO3, 1.3 NaH2PO4, 2.5 

CaCl2, 1.2 MgCl2, and 12 glucose. Horizontal hippocampal slices (300 μm thick) were cut 

with a Vibratome VT1200S (Leica) and transferred to a holding chamber containing room 

temperature aCSF for at least 1 h before recording (Dietz et al., 2018).

Extracellular field potential recordings.—Synaptically evoked field potentials were 

recorded from hippocampal CA1 slices that were placed on a temperature controlled (31 

± 0.5 °C) interface chamber perfused with aCSF at a rate of 1.5 mL/min. Field excitatory 

post-synaptic potentials (fEPSP) were produced by stimulating the Schaffer collaterals (CA3 

axons) and recording in the stratum radiatum of the CA1 region. Analog fEPSPs were 

amplified (1000×) and filtered through a preamplifier (Model LP511 AC, Grass Instruments) 

at 1.0 kHz, digitized at 10 kHz and stored on a computer for later off-line analysis (Clampfit 

10.4, Axon Instruments). The derivative (dV/dT) of the fEPSP rise slope was measured. 

The fEPSPs were adjusted to 50% of the maximum slope and test pulses were evoked 

every 20 s. Paired pulse responses were recorded using a 50-ms interpulse interval (20 Hz) 

and expressed as a ratio of the slopes of the second pulse over the first pulse. A 20-min 

stable baseline was established before delivering a theta burst stimulation (TBS) train of 

four pulses delivered at 100 Hz in 30-ms bursts repeated 10 times with 200-ms interburst 

intervals. Following TBS, the fEPSP was recorded for 60 min. The averaged 10-min slope 

from 50 to 60 min after TBS was divided by the average of the 10-min baseline (set 

to 100%) prior to TBS to determine the amount of potentiation. For time course graphs, 

normalized fEPSP slope values were averaged and plotted as the percent change from 

baseline.

2.12. Rigor and statistics

Experiments were performed in accordance to the ARRIVE 2.0 guidelines (Kilkenny et 

al., 2010; Percie du Sert et al., 2020). All animals were given a blinded code before 

behavior or electrophysiology was performed. Animals were excluded from behavioral or 

electrophysiological analysis if there was no detectable infarct on histological assessment 

or if baseline freezing of greater than 20%, indicative of increased generalized fear, was 

observed on day 1 of CFC task. All graphs and statistics were generated on Graphpad 

Prism 9. Normality criteria was determined per group and data set using the Shapiro-Wilks’ 

test. Two group comparisons were performed using unpaired student t-test or the Mann-

Whitney, 2 T method. Data consisting of three or more groups were evaluated by a one-way 

or two-way ANOVA (parametric) or the Kruskal-Wallis test (non-parametric). Multiple 

comparisons correction test was run for applicable data sets, indicated in Supplementary 
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Table I. For all data sets, no differences were observed between sexes; therefore, males and 

females were combined. We determined significance at the threshold of at least 80% power 

and a p-value = 0.05 or less. Data are reported as the mean ± SEM (parametric) or median 

and range (non-parametric) with individual animals as points within the bar graph. Detailed 

descriptive statistics and comparisons for every figure are reported in SupplementaryTable I.

3. Results

3.1. Infarct characterization and BBB disruption

This is the first study to evaluate functional outcomes in a cerebellar stroke model, 

therefore our initial goal was to validate that we could achieve cerebellar infarction that was 

reproducible and showed characteristic signs of histopathological and pathophysiological 

injury after stroke (Paz et al., 2010). The cellular architecture is highly conserved throughout 

the cerebellum; therefore, injury progression, glial reactivity and BBB disruption were 

evaluated using a single SCA coordinate.

Infarcts.—To assess injury progression and size we performed infarct quantification 

after photo-thrombotic surgery (Fig. 1a and b) with stereology analysis of H&E stained 

coronal sections at 1 and 7 days after posterior strokes (Fig. 1c). Results demonstrate 

infarct production with a significantly greater volume size was observed 1 day after stroke 

compared to sham [sham: 0.01231 ± mm3 vs. posterior stroke 1 day: 1.377mm3, p < 0.0001] 

(Fig. 1d). Infarct size was also measured at 7 days after stroke, and remained significantly 

different from sham [sham: 0.01231 vs. posterior stroke 7 days: 0.6462mm3, p < 0.0001] 

(Fig. 1d). No significant differences in infarct volume were found between 1- and 7-day time 

points after stroke [stroke 1 day: 1.377 vs. stroke 7 days: 0.53877, p = 0.5387] (Fig. 1d). Our 

infarct data are consistent with a previous report demonstrating rapid infarct progression in 

the cerebellum following photo-thrombotic stroke (Gorlamandala et al., 2018). In addition, 

an estimated volume of healthy tissue, excluding the infarcted area, was also evaluated with 

a one-way ANOVA. A trending, but not significant difference, was found between healthy 

tissue from sham and 1-day animals [sham: 16.25 ± 0.5188 mm3; vs. 1 day: 14.09 ± 0.9927 

mm3, p = 0.0690]. No significant differences were found between sham and 7 days [sham: 

14.09 ± 0.9927 mm3 vs. 7 days: 15.03 ± 0.4683 mm3, p = 0.188], or 1 and 7 days [1 day: 

14.09 ± 0.9927 mm3 vs. 7 days: 15.03 ± 0.4683 mm3, p = 0.6342] (Fig. 1e).Total tissue 

(healthy plus infarcted) was also calculated to show even representative cerebellar tissue 

volume across groups [sham: 16.25 ± 0.5188 mm3 vs. stroke 1 day: 16.04 ± 1.116 mm3, p 
= 0.9778 vs. stroke 7 days: 15.78 ± 0.4464, p = 0.8879] and between time points [stroke 

1 day: 16.04 ± 1.116 vs. stroke 7 days: 15.78 ± 0.4464 mm3 p = 0.9664] (Fig. 1f). These 

results provide good evidence of reproducibility in producing cerebellar infarction using 

photo-thrombosis, allowing us to further evaluate pathophysiological changes in our model.

Blood Brain Barrier (BBB).—Vascular occlusion due to stroke causes damage to local 

vasculature compromising the integrity of the blood brain barrier (BBB) and allowing for 

permeation of molecules, such as albumin, that are normally restricted from the parenchyma, 

(Radu and Chernoff, 2013). To assess if our cerebellar stroke model caused BBB disruption, 

we used Evans blue, a dye known for binding strongly to albumin (Radu and Chernoff, 
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2013) and injected our mice intraperitoneally 1 day after posterior stroke or sham surgery. 

Brains were perfused collected 4 h post-injection and Evans blue extravasation was present 

in the ipsilateral cerebellar cortex of stroke mice but not in the contralateral hemisphere or in 

shams (Fig. 2a). Evans blue concentration could not be quantified from cerebellar tissue as 

the presence of Rose Bengal dye used for inducing the stroke also leaks through BBB and 

interfered with Evans blue absorbance wavelength in the spectrophotometer. Therefore, for 

quantitative analysis of BBB disruption, we injected ovalbumin-Alexa647, also at 1 day after 

posterior stroke or posterior sham surgery, and collected brains 4 h post-injection. Sections 

were co-stained with endothelial cell marker, Glut-1 to visualize cerebral vasculature 

(Fig. 2b). Peri-vascular ovalbumin, was visible in ipsilateral cerebellar sections of stroke 

animals compared to sham. Our analysis also showed ovalbumin fluorescence (percentage of 

positive pixels) was >20-fold higher in the ipsilateral cerebellum compared to shams [sham: 

0.0624% vs. posterior stroke 1 day (ipsilateral): 1.45%, p = 0.0112] (Fig. 2c). Results also 

show a significant difference between ipsilateral and contralateral hemispheres within the 

cerebellar stroke group [posterior stroke 1-day (contralateral): 0.0652%, p = 0.0486] (Fig. 

2c). No significant differences were found between the contralateral hemisphere at 1-day 

post-stroke and sham (p > 0.9999).

Astrogliosis.—We then interrogated whether our cerebellar stroke model showed injury-

induced astrogliosis at 1 and 7 days after a posterior stroke. To assess glial reactivity, 

cerebellar sections from sham and stroke animals were stained for glial fibrillary acidic 

protein (GFAP) (Fig. 2d). We observed a significant increase in % of positive pixels of 

GFAP immunoreactivity in the ipsilateral side of animals at 7 days after stroke compared 

to control [sham: 0.6070% vs. stroke 7 days (ipsilateral): 20.74%, p = 0.0049], while no 

significant differences were found between sham and stroke 7 days (contralateral) [stroke 7 

days (contralateral): 1.501%, p = 0.4947]. Similarly, no significant differences were found 

when comparing sham to 1 day stroke (ipsilateral) [stroke 1 day (ipsilateral): 3.460%, p = 

0.4237] or to 1 day stroke (contralateral) [stroke 1 day (contralateral): 0.2460%, p > 0.9999] 

(Fig. 2e). No differences in BBB or gliosis were observed between posterior and anterior 

infarcts at any time point (data not shown).

3.2. Infarct comparison between anterior and posterior strokes at 7 days

Strokes to anterior or posterior regions of the cerebellum have been associated with motor 

and/or cognitive deficits, respectively (Stoodley et al., 2016). We investigated whether our 

mouse model could also dissociate these deficits based on injury location by restricting 

illumination to either anterior or posterior lobules of the cerebellar cortex. Laser speckle 

imaging confirmed a loss of blood flow in the targeted portions of the SCA (Supplementary 

Figure Ic). To determine the reproducibility of both types of infarcts at 7 days, we first 

assessed lesion volume via MRI scanning and stereology analysis (Fig. 3). Representative 

images from anterior and posterior strokes within cerebellar cortex are shown at 7 days. 

Infarct volumes and water content in the cerebellum of live mice 7 days after either type 

of stroke were also quantified via MRI diffusion-weighted imaging (Fig. 3b and c). Results 

show presence of infarction in both groups compared to control [sham: 0 mm3; vs. anterior: 

1.070 mm3, p = 0.0204; and vs. posterior: 2.430mm3, p = 0.0322] (Fig. 3b). Water content 

as a result of edema (Fluri et al., 2015) was significantly greater than shams for both anterior 
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and posterior infarcts [sham: 0.8240 ± 0.0128 mm2/s vs. anterior: 1.022 ± 0.06010128 

mm2/s, p = 0.0238; and vs. posterior: 1.038 ± 0.081380128 mm2/s, p = 0.0369] (Fig. 

3c). Stereological analysis of infarct volume in H&E stained sections was also performed 

[sham: 0.0123mm3 vs. posterior stroke 7 days: 0.642mm3, p < 0.0001; and vs. anterior 

stroke 7 days: 0.2670mm3, p = 0.0227] (as shown in Supplementary Figure Ib). While 

posterior strokes appeared to produce slightly larger infarct sizes than anterior strokes, these 

differences were not significant (MRI: p > 0.9999, H&E: p = 0.0889). H&E stained sections 

were also used to determine range and extent of damage between the types of infarction. 

Infarcted tissue was identified and recorded per lobule across animals, anterior (Fig. 3d and 

f, n = 8) and posterior lesions (Fig. 3e and g, n = 7) with percentages indicating number of 

animals per group that show presence of injury. For anterior lesions, although only lobules 

IV-V were primarily targeted, the damage extended slightly towards a portion of lobule VI 

due to light dispersion in tissue. For posterior lesions, the damage was confined to portions 

of the targeted lobules VI-VII and Crus II (cII), extending into lobule VIII. The degree of 

damage in each lobule (mild, moderate and severe) is described in Supplementary Figure Ia 

and Supplementary Figs. IIa and IIb.

3.3. Hippocampal plasticity following cerebellar stroke

The cerebellum has direct and indirect reciprocal projections to various areas of the 

forebrain such as motor, parietal and prefrontal cortices. These anatomical projections 

from the cerebellum to forebrain are known to decussate contralaterally, including indirect 

projections to hippocampus, which have just begun to be elucidated (Bohne et al., 

2019; Watson et al., 2019). Many higher order memory processes occur within the 

hippocampus. Given clinical symptoms related to learning and memory dysfunction, we 

sought to investigate whether cerebellar strokes in mice could impair hippocampal function. 

Hippocampal plasticity or long-term potentiation (LTP) is a well-known molecular and 

cellular correlate for learning and memory ex-vivo. Therefore, we evaluated synaptic 

plasticity in both hippocampi—ipsilateral and contralateral to our unilateral cerebellar 

stroke (Fig. 4a). Acute hippocampal slices were prepared for field recording experiments 

from mice subjected to anterior stroke, posterior stroke, or sham surgery. Baseline field 

excitatory post-synaptic potentials (fEPSPs, normalized to 100%) were recorded from the 

CA1 region while stimulating CA3 Schaffer collaterals (purple fibers) (Fig. 4b). LTP was 

evaluated for 60 mins after theta burst stimulation (TBS). The time course of changes 

in EPSP slopes resulting from TBS are shown for all three groups (anterior, posterior 

and sham animals) (Fig. 4c and e). Slope values over the last 10 min of every recording 

were normalized to their own baseline to perform statistical comparisons for ipsilateral, 

contralateral, and sham hippocampi for anterior (Fig. 4d) and posterior cerebellar strokes 

(Fig. 4f). Animals with anterior cerebellar strokes exhibited LTP comparable to sham in both 

hippocampi [sham anterior: 176.7% ± 9.9%; vs. anterior ipsilateral: 194.3% ± 14.7%, p = 

0.7618; vs. anterior stroke contralateral: 179.0% ± 14.6%, p = 0.91] (Fig. 4d). Interestingly, 

only contralateral hippocampi from mice subjected to posterior cerebellar strokes, show a 

significant deficit in synaptic potentiation compared to ipsilateral hippocampus and sham 

[sham posterior: 176.7% ± 9.9% vs. posterior contralateral: 118.5% ± 6.7%, p = 0.002; 

vs. posterior ipsilateral: 155.0% ± 6.3%, p = 0.05] (Fig. 4e and f). Linear regression of 

input/output curves and paired pulse facilitation values show no difference among groups 
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(Table 1), indicating that intrinsic properties of hippocampal excitatory transmission among 

groups is undisturbed following either anterior or posterior cerebellar stroke. We used 

IHC to further investigate if the impairment in synaptic potentiation detected in the CA1 

region of the contralateral hippocampus of mice with posterior strokes could be attributed 

to a reduction in the number of pyramidal neurons or the presence of a microglial or 

astrocytic inflammatory response 7 days post-stroke. Sections from shams, anterior, and 

posterior cerebellar groups were processed and stained with NeuN, Iba1, GFAP, respectively. 

Representative figures of only the contralateral side per group are shown (Fig. 4g). Results 

showed no differences in % of positive pixels when comparing NeuN staining between sham 

and posterior stroke [sham contra: 12.94% ± 1.659% vs. posterior contra: 13.89 ± 1.225%, p 
> 0.9999] (Fig. 4h). Similarly, neither Iba1 [sham contra: 0.5334% ± 0.09886% vs. posterior 

contra: 0.4594% ± 0.0972%, p > 0.9999] (Fig. 4i) nor GFAP [sham contra: 7.736% ± 

0.9348% vs. posterior contra: 7.279% ± 0.3125%, p > 0.9999] (Fig. 4j) expression show 

significant differences from sham. Overall, no significant differences were found across 

groups, regardless of evaluating contralateral or ipsilateral sides (see Supplementary table I) 

suggesting a lack of hippocampal pathophysiology.

3.4. Behavioral assessments after cerebellar stroke

We then asked the question if mice with posterior cerebellar lesions that presented impaired 

LTP in one hippocampus show memory deficits in behavioral studies. To evaluate memory 

function, mice with sham and cerebellar stroke surgeries were subjected to a contextual 

fear conditioning task. Freezing behavior is indicative of the animal’s capacity to remember 

and associate the spatial context with the mild foot shock (Fig. 5a). Our analysis showed 

comparable percentage of freezing behavior between animals with anterior strokes and 

shams [sham: 65.84% ± 6.734% vs. anterior stroke 7 days: 63.88% ± 4.922%, p = 0.9644] 

(Fig. 5b). Also, there were no significant differences displayed by animals with posterior 

strokes when compared to sham [sham: 65.84% ± 6.734%; vs. posterior stroke: 66.97% ± 

4.297%, p = 0.9885]. In addition, no significant differences were found between anterior and 

posterior group (Fig. 5b).

To corroborate these results, a different cohort of mice with posterior strokes and sham 

surgeries were subjected to a delayed fear-conditioning assay using an auditory conditioned 

stimulus (Fig. 5c) which can have a different response to hippocampal perturbations than 

the non-cued fear conditioning and also allows for evaluation of amygdala-function within 

the same paradigm. A plotted line graph shows an overview of the results between groups 

(Fig. 5d). Statistical group comparisons showed no differences in baseline freezing behavior 

between groups during habituation time in the home cage [sham: 0% vs. posterior: 0%, p = 

0.7093] (Fig. 5e). Mice were then introduced into context A and similar baseline freezing 

was observed in this new context [sham: 0% vs. posterior stroke: 0%, p = 0.8531] (Fig. 5f). 

After 2 min in context A, mice received 3 cycles of a conditioned stimulus (CS-auditory 

cue), paired with an unconditioned stimulus (US-a mild foot shock), triggered at the end of 

the CS. During this training period, freezing behavior was also evaluated with an unpaired 

t-test and no significant differences were found [sham: 35.65 ± 8.110% vs. posterior: 45.42 

± 4.974%, p = 0.3247] (Fig. 5g). The following day mice were introduced back to context 

A for testing, and no significant differences were found between groups [sham: 64.83 ± 
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5.162% vs. posterior stroke: 58.94 ± 8.318%, p = 0.5584] (Fig. 5h). On the third day 

mice were introduced to a different environment, context B, where another initial freezing 

baseline for generalized fear was obtained in this new context. We observed a trending 

increase in generalized fear in posterior stroke mice [sham: 5.952 ± 1.881 vs. posterior: 

12.13 ± 2.774, p = 0.0901] (Fig. 5i). Lastly, the same CS delivered in day one was triggered 

again after 2 mins in context B, and no significant differences were found [sham: 54.64 

± 6.388 vs. 41.82 ± 8.903, p = 0.2647] (Fig. 5j). Overall, these data suggest no effect of 

anterior or posterior stroke on hippocampal- or amygdala- dependent fear memory.

We further evaluated hippocampal function using a recognition memory task, NOR, 

performed in a 3-chamber apparatus (Fig. 5k,l). Time spent exploring a novel and familiar 

object was converted into a discrimination index of 0 to 1, to account for any biased 

preference during the training session. Animals with posterior lesions spent significantly 

less time exploring the novel object compared to the sham [sham: 0.7865 ± 0.0397 vs. 

posterior: 0.4118 ± 0.0788, p = 0.0059] (Fig. 5m). While there was a trending decrease, 

no significant differences were found between sham and the anterior stroke group [sham: 

0.7865 ± 0.0397 vs. anterior: 0.5408 ± 0.0759, p = 0.0869]. No significant differences 

between and anterior and posterior cerebellar stroke were found [p = 0.9950]. These results 

suggest that a posterior cerebellar stroke impairs recognition memory.

Finally, to address whether anterior or posterior cerebellar stroke affected motor function, 

mice were subjected to a motor coordination test on a balance beam (Fig. 5n). Interestingly 

and in contrast with our cognitive evaluation, statistical significance in the number of 

missteps was found between anterior and posterior cerebellar strokes compared to sham, 

indicating a lack of coordination and balance [sham: 0 vs. anterior: 6.5, p < 0.0001] (Fig. 

5o). Significant differences were also found between anterior and posterior stroke groups 

[anterior: 6.6 vs. posterior: 2, p = 0.0258]. In contrast, mice with posterior cerebellar strokes 

show a similar number of missteps as sham [sham: 0 vs. posterior: 2, p = 0.1243] (Fig. 

5o). To rule out a lack of mobility of anterior stroke mice that could interfere with motor 

evaluation, an open field evaluation was done (Fig. 5p) where total distance traveled was 

evaluated across groups and no differences were found [sham: 46.30 ± 1.482 m vs. anterior: 

40.53 ± 4.928 m, p = 0.4728; sham: 46.30 ± 1.482 m vs. posterior: 41 ± 3.145 m, p = 

0.5453; anterior: 40.53 ± 4.928 vs. 41 ± 3.145 m, p = 0.9950] (Fig. 5q). Speed and time 

spent in inner and outer zones was also evaluated and no significant differences were found 

(data not shown). These data show that motor coordination and balance can be affected by 

a unilateral anterior stroke, localized to anterior lobules IV-V and not to posterior lobules 

VI-VIII.

4. Discussion

Our results demonstrate the ability to induce stroke pathophysiology in targeted cerebellar 

lobules to evaluate region-specific symptomatology. We observed a dissociation of anterior 

and posterior functions of the cerebellum that partially mimics the clinical lesion-symptom 

mapping in cerebellar stroke patients. Hippocampal plasticity impairments were only 

observed in the posterior cerebellar stroke group and not the anterior. Furthermore, 

recognition memory was impaired while fear-induced memory was unaffected in posterior 
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cerebellar mice, suggesting a different sensitivity to the functional changes to the network 

initiated at the cerebellar level. Similarly, motor deficits were only observed in mice with 

infarcts in the anterior lobules of the cerebellum. To our knowledge, this is the first report 

of cerebellar perturbations altering hippocampal plasticity impairments that likely contribute 

to the observed memory deficit. However, intact function in the ipsilateral hippocampus is 

likely sufficient to allow for acquisition of fear-induced memory.

4.1. Cerebellar-hippocampal interactions

Our electrophysiological data in posterior cerebellar stroke mice showing a contralateral 

LTP impairment with no evidence of hippocampal pathophysiology, suggest deficits are 

likely associated with changes to the cerebellar projections to the forebrain after cerebellar 

stroke. There is recent evidence of indirect multi-synaptic projections from cerebellum to 

hippocampus via the ventral thalamus, hypothalamus, medial septum, and raphe nucleus 

(Bohne et al., 2019; Watson et al., 2019). Retrograde tracing with a rabies virus from 

injections performed in CA1 of the hippocampus have shown cerebellar labeled cells 

in posterior lobules VI-VII, indicating anatomical connectivity of these areas with the 

hippocampus (Bohne et al., 2019; Watson et al., 2019). In our lesion mapping, we found 

posterior targeting produced mild (damage to granular cell layer) to severe (damage 

to entire lobule including the molecular layer) damage in lobules VI, VII, VIII of 

the vermis and lateral lobules Crus I and Crus II (Supplementary Figure IIa and IIb). 

Functional connectivity of the cerebellum with anterior lobules has also been suggested 

in optogenetic studies where midline stimulation of lobules IV/V altered cFos expression 

and calcium events and impaired object location-memory task (Zeidler et al., 2020).The 

translational significance of cerebellar-hippocampal connectivity has been demonstrated 

in temporal lobe epilepsy models, where opto-genetic stimulation of Purkinje cells and 

inhibitory interneurons decreases output of the cerebellar nuclei and reduce seizures in the 

hippocampus (Krook-Magnuson et al., 2014). While our studies demonstrate a disruption 

in hippocampal function following posterior cerebellar stroke, further studies are needed to 

elucidate the mechanism for unilateral LTP impairment found in our study.

We have previously demonstrated bilateral LTP impairments following global or focal 

forebrain ischemia were associated with impaired fear memory acquisition (Orfila et al., 

2019). The unilateral LTP deficits observed in posterior cerebellar stroke mice correlated 

with an impairment in hippocampal-dependent recognition, but not fear memory. There are 

examples of unilateral inactivation (Cimadevilla et al., 2005) or lesioning (Li et al., 2012) 

of the hippocampus resulting in deficits in a Morris Water Maze spatial memory task while 

others have reported plasticity in one hemisphere is sufficient to support some hippocampal-

dependent behaviors but not others. (Wong et al., 1999). It is possible that fear-memory 

formation may be less sensitive to the unilateral plasticity impairment than the NOR task. 

It is also possible that differences in fear- and recognition-memory outcomes after posterior 

cerebellar stroke are not solely dependent on hippocampal function but also on changes in 

other brain areas that are involved in these tasks. NOR is a non-spatial declarative memory 

task (Antunes and Biala, 2012; Arias et al., 2015) that has been shown to be sensitive 

to hippocampal perturbations when administered with an interval of greater than 10 min 

between training and testing, while shorter intervals are more reflective of perirhinal cortical 

Moreno et al. Page 14

Neurobiol Dis. Author manuscript; available in PMC 2022 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function (Cohen and Stackman Jr., 2015). Here, we used an interval of 30 min to evaluate 

hippocampal-dependent recognition memory, a time period that is more reflective of our 

ex vivo LTP recordings that evaluate plasticity for up to 1 h after stimulation. Further, 

the CFC task is also not a purely hippocampal task and also involves other brain regions, 

including the amygdala. The lack of CFC deficit in our posterior cerebellar stroke model 

was somewhat surprising, and we therefore validated this result using a cued version of 

this task, allowing us to evaluate hippocampal- and amygdala-dependent fear memory. 

Our results suggest that a posterior cerebellar stroke induced alterations to hippocampal 

LTP, but does not alter fear-memory circuits. Given the unilateral impairment and selective 

deficits in object recognition, our data suggest that posterior cerebellar stroke causes a 

mild hippocampal impairment that likely contributes to cognitive disfunction observed in 

cerebellar stroke patients. Certainly, additional behavioral paradigms will be required in 

future studies to more broadly assess other cognitive and affective behaviors following 

cerebellar stroke.

4.2. Motor functions of the cerebellum

Clinical symptomatology related to cerebellar stroke is varied as are the size and locations 

of infarcts. Lesion-symptom mapping studies confine motor function of the cerebellum 

to anterior lobules (III-VI) with anterior infarcts causing ataxia and poor fine motor 

performance. Clinical studies suggest that infarcts localized to lobules VI to X cause 

minimal to no motor impairments in patients (Schmahmann 2009; Stoodley 2016). Our 

targeting of cerebellar lobules with photo-thrombosis was able to replicate the dissociation 

of motor functions to anterior lobules. We did not observe a statistical change in motor 

function in mice with posterior infarct, however there were mice in the posterior cerebellar 

stroke group that exhibited more missteps. It is possible that the larger size of our posterior 

strokes also affected motor regions. Our assessment of motor function was limited to 

gross locomotion and coordination using the open field and balance beam, respectively. 

A more thorough behavioral assessment is needed in the future to evaluate other aspects of 

motor function that may be affected by cerebellar infarct such as skilled reach and motor 

learning. Nonetheless, we have introduced a novel model for investigating motor deficits 

after cerebellar stroke that can be used for pre-clinical translational studies.

4.3. Histopathology and pathophysiology of injury

Very few studies have used the photothrombotic approach to generate ischemic infarcts 

in areas other than sensory-motor cerebral cortex. Our data demonstrate that a cerebellar 

stroke photothrombotic model is consistent with what has been reported in forebrain 

stroke, resulting in a similar time course of injury progression and other pathophysiological 

hallmarks of stroke, including BBB leakage at 24 h (Weber et al., 2020) and astrogliosis 

(Paz et al., 2010; Fluri et al., 2015). While the photo-thrombotic model of stroke lacks 

reperfusion typical in rodent transient middle cerebral artery occlusion models, it provides 

a valuable tool to study long-term functional and network consequences of cerebellar 

infarction. In fact, the subtle and non-specific nature of cerebellar symptoms (vertigo, 

dizziness, nausea, headache) often result in delayed diagnosis of cerebellar stroke (Edlow et 

al., 2008) that would likely exclude them from reperfusion therapies that must be delivered 

within 4–6 h of stroke onset. Therefore, the permanent occlusion produced in our model 
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is more likely to resemble the clinical scenario. All surgical parameters were maintained 

across groups, however, minor differences in infarctions may be attributed to differences in 

bone thickness–thinner on the posterior side under trapezius muscle-—interfering with light 

penetration (See Supplementary Figure Ia).

Altogether, our model shows cognitive and motor deficits based on infarct location along 

with evidence of infarct reproducibility, inflammation in response to injury and blood brain 

barrier disruption. This mouse model could be a resourceful tool to understand the network 

alterations that occur after cerebellar stroke and to identify novel mechanisms that can be 

targeted to improve functional outcomes for patients with this pathology. Future studies will 

aim to determine how cerebellar stroke alters the cerebello-thalamo-cortical pathways, as 

well as assessing other motor and cognitive-affective behaviors.
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Abbrevation:

SCA Superior Cerebellar Artery

CCAS Cerebellar Cognitive-Affective Syndrome

RB Rose Bengal

BBB Blood-Brain Barrier

MRI Magnetic Resonance Imaging

BB Balance Beam

CFC Contextual Fear Conditioning

DFC Delay Fear Conditioning

NOR Novel Object Recognition

fEPSP field Excitatory Post-Synaptic Potential
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Fig. 1. 
Photo-thrombotic stroke of the superior cerebellar artery (SCA) in mice results in infarction 

to cerebellar cortex. a) Cartoon showing surgery on stereotax and b) LED light inducing 

the formation of a thrombus in SCA. c) Representative coronal sections from 1 day and 

7-days post-cerebellar stroke (posterior type of lesion-infarct pointed with black arrow) after 

hematoxylin and eosin (H&E) staining. d) Infarct quantification in mm3 for animals 1 and 

7 days after a posterior stroke. e) Healthy cerebellar tissue was measured across groups. f) 

Total cerebellar volume analyzed for this assay.
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Fig. 2. 
Blood brain barrier disruption and astrogliosis at 1 and 7 days after stroke. a) Evans 

blue extravasation after photo-thrombosis observed in ipsilateral (I) and not contralateral 

(C) side to injury in a posterior stroke animal and not in sham, 1 day after stroke and 

4 h post-injection of Evans blue. b) Representative images from immunohistochemistry 

assay showing expression of Glut1 co-localization with ovalbumin conjugated with Alexa 

Fluor-647. c) Relative quantification of ovalbumin volume extravasation through BBB, dots 

represent averages of multiple images per stroke or sham animals d) Representative images 

of GFAP in sham ipsilateral side at 1 day and 7 days after surgery and ipsilateral and 

contralateral sides of stroke after 1 and 7 days. e) Quantification of positive pixels shows 

significant difference of GFAP expression between stroke ipsilateral, contralateral and sham 

animals. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. 
MRI analysis and identified damaged lobules per infarct type. a) Representative images of 

mice after sham, anterior, and posterior stroke surgeries visualized at 7 days. b) Lesion 

volume (mm3) and c) water content (mm2/s) quantification. d and e) Recurrent vermal and 

lateral lobules damaged after anterior (blue) and posterior (orange) stroke surgeries. f and 

g) Qualitative analysis of lateral and central lobules predominantly damaged in a cohort of 

mice with anterior (n = 8) and posterior (n = 7) strokes. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Plasticity impairments in contralateral hippocampus 1 week after posterior cerebellar stroke. 

Recordings were made in acute hippocampal slices from mice after sham, anterior and 

posterior cerebellar stroke surgeries in a) ipsilateral and contralateral Hp. b) Coronal 

hippocampal cartoon indicating stimulator in CA3 and recording electrode in CA1, fEPSP 

on the left. c and e) TBS was delivered to induce LTP (black arrow) (left) for animals with 

anterior and posterior cerebellar strokes. d and f) Mean normalized fEPSP slope during the 

last 10 min of recording for each group (* indicates p < 0.05). g) Representative images of 

CA1 layer stained with NeuN, Iba1, GFAP and DAPI. h) Quantified percentage of positive 

pixels for NeuN, i) Iba1, and j) GFAP and compared among sham, anterior, and posterior 

groups.
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Fig. 5. 
Behavioral assessment of cognitive and motor performance 7 days after anterior and 

posterior cerebellar strokes. a.) Cartoon showing CFC setup for assay over 2 days. b.) Line 

graph showing results comparing sham, anterior and posterior strokes % time spent freezing. 

c.) Cartoon showing DFC setup for assay over 3 days. d.) Line graph showing results 

comparing sham and posterior strokes at each step of the task. e-j.) Freezing percentage 

quantification for each task. k, l.) Behavioral setup for NOR training and testing. m.) 

Quantified index delta for novel object preference for each group n.) Balance beam setup 

for motor performance assay. o.) Quantified number of missteps compared between mice 
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with sham, anterior, and posterior strokes. p) Representation of an open field trajectory for a 

single mouse. q.) Total distance traveled per animal per group.
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