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Abstract

Assessing material properties from observations of shear wave propagation following an acoustic 

radiation force impulse (ARFI) excitation is difficult in anisotropic materials because of the 

complex relations among the propagation direction, shear wave polarizations, and material 

symmetries. In this paper, we describe a method to calculate shear wave signals using Green’s 

tensor methods in an incompressible, transversely isotropic (TI) material characterized by three 

material parameters. The Green’s tensor is written as the sum of an analytic expression for the SH 

propagation mode, and an integral expression for the SV propagation mode that can be evaluated 

by interpolation within precomputed integral functions with an efficiency comparable to the 

evaluation of a closed-form expression. By using parametrized integral functions, the number of 

requried numerical integrations is reduced by a factor of 102 − 109 depending on the specific 

problem under consideration. Results are presented for the case of a point source positioned at the 

origin and a tall Gaussian source similar to an ARFI excitation. For an experimental configuration 

with a tilted material symmetry axis, results show that shear wave signals exhibit structures that 

are sufficiently complex to allow measurement of all three material parameters that characterize an 

incompressible, TI material.

Keywords

ultrasound; elastography; ARFI excitation; shear wave; Green’s tensor; transversely isotropic 
material

1. Introduction

Elastic properties of materials can be measured by observing shear wave propagation 

following an acoustic radiation force impulse (ARFI) excitation and relating the propagation 

speed to a model of the material. For example, linear, elastic, homogeneous, and isotropic 

materials can be characterized using two elasticity constants such as the Lamé parameters λ 
and μ. For nearly incompressible materials, including many soft biological tissues, these 

parameters differ by a factor on the order of 106, and the corresponding difference in 
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longitudinal and shear wave speeds is on the order of 103. Typically, ultrasonic tracking 

methods observe only shear wave propagation and calculate the shear modulus μ from the 

wave speed c and material density ρ by the relation (Graff 1991, Lai et al 2010)

μ = ρc2 . (1)

The relation between wave speed and material properties is more complicated in anisotropic 

materials because of the complex dependence of the velocity relative to the propagation 

direction, material symmetries, and wave polarizations. For example, in a linear, elastic, 

transversely isotropic (TI) material, a symmetry axis exists and the material can be 

characterized by five elasticity constants (Lai et al 2010). Skeletal muscle is an example of a 

TI material with the symmetry axis defined by the direction of the muscle fibers (Gennisson 

et al 2010, Wang et al 2013). Stretched or compressed polyvinyl alcohol phantoms also have 

TI symmetry with the symmetry axis determined by the axis of deformation (Gennisson et al 

2007, Chatelin et al 2014, Urban et al 2015). Measurements of shear wave propagation in 

these materials are typically performed using the experimental geometry shown in figure 

1(a) (see, also, figure 2 of Chatelin et al (2014)) and observe propagation in the horizontal (Z 
= 0) plane in the n direction at an angle θ relative to the symmetry axis. These measurements 

observe the SH propagation mode with displacements in the Z direction so that the wave 

polarization is perpendicular to the Z = 0 plane. The phase velocity vSH (θ) for this 

propagation mode is given by the relation (Wang et al 2013)

ρ vSH
2 (θ) = μL cos2 θ + μT sin2 θ (2)

where μL and μT are shear moduli for wave propagation in the longitudinal and transverse 

directions relative to the material symmetry axis. The corresponding group velocity V(θ) has 

an elliptical shape (Wang et al 2013),

ρV 2(θ) = μL μT
μL sin2 θ + μT cos2 θ

. (3)

Experimental observations of shear wave propagation typically measure the group shear 

wave speed and determine μL and μT from the axes of the ellipse.

The relation between shear wave speed and propagation direction is even more complicated 

for experimental configurations such as figure 1(b) where the material symmetry axis is not 

oriented perpendicular to the excitation axis, or where waves are tracked in three dimensions 

including axial positions above and below the Z = 0 plane. For example, using finite element 

simulations, Rouze et al (2013) observed complicated shear wave signals for an excitation 

and tracking configuration with a symmetry axis tilted at an angle of 45° relative to the 

horizontal plane. The advantage of these geometries is that they allow experimental 

measurements of both the SH and SV propagation modes and are sensitive to more material 

properties than can be measured from just the SH propagation mode. However, analysis of 

these shear wave signals is difficult because the group propagation speeds do not reduce to 

simple expressions such as (3). Instead, this analysis is typically performed by calculating 
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the shear wave signals using either finite element simulations (Palmeri et al 2005, Rouze et 

al 2013) or Green’s tensor calculations (Bercoff 2004, Chatelin 2015) and comparing the 

calculated and measured signals.

In this paper, we use Green’s tensor calculations to model shear wave propagation in an 

incompressible, TI material. This process calculates the shear wave signal u ( r obs, t) at an 

observation position r obs and time t by dividing the excitation force f ( r s, ts) into spatial 

and temporal source voxels s and summing the contributions from each voxel. The Green’s 

tensor Gin ( r obs − r s, t − ts) gives the relative contribution to the signal from each source 

voxel. Often, these calculations are performed in the temporal frequency domain with 

angular frequency ω = 2π f so that, assuming the force can be factored into a spatial 

function f ( r s) and temporal window W(t), components ui( r obs, ω) of the shear wave 

signal can be written as

ui( r obs, ω) = ∑
s

Gin( r , ω) fn( r s) W (ω) (4)

where r = r obs − r s is the relative position between the source and observation positions, 

the indices i and n take on the values 1, 2, and 3 corresponding to the x, y, and z vector 

components, and summation over the component index n of the force is implied.

One difficulty with Green’s tensor calculations of shear wave signals using (4) is that, for 

typical calculations, Gin( r , ω) must be evaluated for 108 − 1015 combinations of rs, robs, and 

ω. Thus, these calculations have been used primarily for linear, isotropic materials (Bercoff 

2004, Rouze 2018) where the Green’s tensor is given by a closed-form expression (Aki and 

Richards 2002, Kausel 2006). Unfortunately, for more complicated materials, closed-form 

expressions for the Green’s tensor are known only for a few special-case materials 

(Vavryčuk 2001, 2007), and are not known for the case of a TI material, or an 

incompressible TI material. Instead, the Green’s tensor can be evaluated using integral 

expressions (Willis 1980, Wang and Achenbach 1995), including the specific case of a TI 

material (Gridin 2000). However, these expressions must be evaluated using numerical 

integration, and because the integrand in these expressions can oscillate rapidly, it is 

necessary to sample the integrand on a dense mesh. Thus, these calculations are too slow to 

be practical for applications involving a large number of combinations of rs, robs, and ω.

In this paper, we describe a tractable method to perform integral calculations of the Green’s 

tensor for an incompressible, TI material. This process allows the Green’s tensor to be 

expressed as the sum of two terms, each given by the product of multiplicative factors and a 

relatively simple, parametrized integral. Numerical integration can be used to precompute 

the integral factors. Then, when calculating the shear wave signal using the sum (4), 

interpolation can be used to evaluate the integral factors efficiently. This procedure allows 

the Green’s tensor to be evaluated with an efficiency comparable to the evaluation of a 

closed-form expression. Furthermore, the number of numerical integrations required to 

precompute the integral factors is typically reduced by a factor of 102 − 109 depending on 

the number of combinations of rs, robs, and ω that would be required if numerical 
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calculations were used to evaluate the Green’s tensor for each combination. This reduction 

in computational complexity is the key factor that allows tractable calculation of shear wave 

displacements using Green’s tensor methods.

2. Background

2.1. Incompressible, transversely isotropic (TI) materials

In Sections 2 and 3, we use a Cartesian x, y, z coordinate system such as shown in figure 2 

to model the material, wave propagation, and Green’s tensor. This coordinate system is 

distinct from the X, Y, Z coordinate system used in figure 1 to describe the experimental 

configuration. The calculation of shear wave signals for a specific experimental 

configuration is described in Section 4.2.

In the limit of small displacements, the stress-strain relationship in an anistropic material is 

linear and can be described by a generalized Hooke’s law as

σij = cijklεkl (5)

where σij and εkl are components of the time-dependent stress and strain tensors, 

respectively, and cijkl are the components of a time-independent, fourth-order stiffness 

tensor. Each index can assume the value 1, 2, or 3, and summation over repeated indices is 

implied. Symmetries of the stress and strain tensors and the existence of a strain energy 

allow the stiffness tensor to be expressed in terms of 21 independent elements (Lai et al 

2010). For the case of a TI material with symmetry axis A, rotation and reflection 

symmetries allow the stiffness tensor to be expressed in terms of five independent elements. 

By orienting the coordinate system so that z = A, the stress strain relation (5) can be 

expressed using Voigt notation as a matrix product with the stiffness matrix C (Lai et al 

2010),

σ11
σ22
σ33
σ23
σ31
σ12

=

C11 C11 − 2C66 C13
C11 − 2C66 C11 C13

C13 C13 C33
C44

C44
C66

ε11
ε22
ε33
2ε23
2ε31
2ε12

(6)

where missing elements are zero.

The stress-strain relation (6) can also be written in terms of the compliance matrix S = C−1 

using Young’s moduli EL and ET, shear moduli μL and μT, and Poisson’s ratios νLT and νTT 

where the longitudinal (L) and transverse (T) directions are defined relative to the material 

symmetry axis (Lai et al 2010),
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ε11
ε22
ε33
2ε23
2ε31
2ε12

=

1 ∕ ET −νTT ∕ ET −νLT ∕ EL
−νTT ∕ ET 1 ∕ ET −νLT ∕ EL
−νLT ∕ EL −νLT ∕ EL 1 ∕ EL

1 ∕ μL
1 ∕ μL

1 ∕ μT

σ11
σ22
σ33
σ23
σ31
σ12

(7)

with the relation

μT = ET
2 (1 + νTT) . (8)

Explicit relations for the elements C11, C13, C33, C44, and C66 in (6) can be expressed in 

terms of EL, ET, μL, μT, νLT, and μTT through the relation S = C−1,

C11 = ET
1 + νTT

1 − νLT
2 ET ∕ EL

1 − νTT − 2νLT
2 ET ∕ EL

, C44 = μL, C66 = μT

C13 = ETνLT
1 − νTT − 2νLT

2 ET ∕ EL
, and C33 = EL (1 − νTT)

1 − νTT − 2νLT
2 ET ∕ EL

.
(9)

For the case of an incompressible TI material, the fractional volume change, or dilation, of 

an infinitesimal volume subjected to stresses is zero. The dilation is given by the trace of the 

strain tensor (Lai et al 2010) so that, using (7)

Tr {ϵ} = 1
ET

1 − νTT − νLT
ET
EL

(σ11 + σ22) + 1
EL

(1 − 2νLT) σ33

= 0 .
(10)

Both terms in this expression must be zero, and the Poisson ratios for an incompressible TI 

material are given by

νLT = 1
2 and νTT = 1 − ET

2EL
. (11)

Thus, three material parameters are required to characterize an incompressible, TI material. 

In this study, we use the parameters μL, μT, and ET/EL as used previously by Rouze et al 

(2013). However, with the relations (8) and (11), these parameters are not unique, and any 

three independent combinations of the parameters μL, μT, ET, and EL can be used. In 

particular, muscle strength, characterized by the longitudinal Young’s modulus EL, can be 

determined from the three material parameters.
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In addition, using the Poisson ratios (11) in expressions (9) indicates that the C11, C33, and 

C13 elements of the stiffness matrix diverge in the limit of an incompressible, TI material. 

However, differences between pairs of these elements remain finite,

C11 − C13
μT
2 1 + 4EL

ET
, C11 − C33 μT ,

and C13 − C33
μT
2 1 − 4EL

ET
.

(12)

As indicated in figure 1, wave propagation in a TI material can be described in terms of the 

P (longitudinal), SH (slow shear), and SV (fast shear) propagation modes identified by their 

polarization relative to the propagation direction n and material symmetry axis A (Tsvankin 

2012, Carcione 2015). Polarization of the P mode is quasi-longitudinal and corresponds to 

the acoustic wave. The SH propagation mode corresponds to shear wave motion with a 

purely transverse polarization perpendicular to the to the A − n plane. The SV propagation 

mode has shear wave propagation with a quasi-transverse polarization in the A − n plane. 

Note that Rouze et al (2013) refer to these modes as the QL, PT, and QT modes, 

respectively. For plane wave propagation in a direction oriented at an angle θ relative to the 

symmetry axis, the phase velocity vSH of the SH propagation mode is given by (2). In the 

limit of an incompressible TI material, the polarization of quasi-longitudinal P mode 

becomes purely longitudinal, and the propagation velocty vP diverges. Similarly, for an 

incompressible TI material, the polarization of the quasi-transverse SV mode is purely 

transverse, and the propagation velocty vSV is given by (Chadwick 1993, Papazoglou et al 

2006, Rouze et al 2013)

ρ vSV
2 = μL cos2 2θ + μT

EL
ET

sin2 2θ = μL + 4 EL
ET

μT − μL sin2 θ cos2 θ . (13)

Thus, all three parameters required to characterize an incompressible TI material can be 

measured by observing SH and SV shear wave propagation in the material.

2.2. Green’s tensors for constrained TI materials

Chatelin et al (2015) analyzed their measurements of shear wave propagation in a 

transversely isotropic material using the “Anisotropy III” special-case Green’s tensor from 

Vavryčuk (2001) and Vavryčuk (2007). The stiffness matrix for this case is given by 

expression (25) of Vavryčuk (2001) and also in the text just above expression (B3) of 

Vavryčuk (2007). This expression indicates that the stiffness matrix for the special-case 

Green’s tensor is similar to the stiffness matrix (6) for a general TI material with two 

additional assumptions,

C33 = C11 and C13 = C11 − 2 C44 . (14)

The explicit expression for the Green’s tensor in this special case is given by expression 

(B3) of Vavryčuk (2007) and expresion (5) of Chatelin et al (2015) and will not be 
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reproduced here. Note that the expressions from Vavryčuk (2007) and Chatelin et al (2015) 

are presented for the case of viscoelastic materials with complex, frequency-dependent 

moduli. We do not consider viscoelastic materials in this paper and will assume the moduli 

are real. However, because our development is presented in the temporal frequency domain, 

it can easily be extended to the case of viscoelastic materials by considering complex, 

frequency-dependent moduli.

The two constraints (14) on elements of the stiffness matrix imply that three parameters 

characterize the TI material for this special case. Chatelin et al (2015) analyzed their 

experimental measurements using the acoustic wave speed and the two wave speeds for 

shear wave propagation along and across the material symmetry axis. These parameters were 

sufficient to analyze the wave speeds for shear wave propagation in their experimental setup 

where the material symmetry axis was oriented perpendicular to the excitation axis, and only 

the SH propagation mode was observed, see figure 1(a) or figure 2 of Chatelin et al (2014). 

However, this analysis is not sensitive to all three material properties that are needed to 

characterize shear wave propagation in an incompressible, TI material because these 

measurements are not sensitive to the ratio ET/EL in the phase velocity for the SV 

propagation mode in (13). Thus, in the incompressible limit, the Green’s tensor used by 

Chatelin et al (2015) does not fully characterize an incompressible, TI material specified by 

three independent parameters.

In addition to the special-case Green’s tensors described by Vavryčuk (2007), several studies 

(Payton 1975, 1983, Chadwick and Norris 1990, Burridge et al 1993) have investigated the 

Green’s tensor for a TI material described by a stiffness matrix with four independent 

parameters and the constraint

C44 = C11C33 − C13
2

C11 + C33 + 2 C13
. (15)

For the case of an incompressible, TI material considered in this study, this relation can be 

simplified by substituting the relations (9) for each term Cij and evaluating the result using 

the Poisson ratios (11) for an incompressible, TI material. The result of this process 

demonstates that the constraint (15) is equivalent to the relation

μT
μL

= ET
EL

. (16)

Thus, the ratio ET/EL is not an independent material parameter, and the expression for the 

Green’s tensor based on the relation (15) cannot fully describe shear wave propagation in an 

incompressible, TI material.
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3. Green’s tensor for an incompressible, TI material

3.1. Integral expression for the Green’s tensor

Assuming a stress-strain relation of the form (5), the equation of motion for the Green’s 

tensor Gin( r , t) for the ith component of displacement due to a spatial and temporal Dirac 

delta distribution in the xn direction is given by (Kim et al 1994, Červený 2001)

−cijkl
∂2

∂xj∂xl
Gkn( r , t) + ρ ∂2

∂t2 Gin( r , t) = δ3( r ) δ(t) δin (17)

where δin is the Kronecker delta symbol.

In this paper we define the sign convention for the Fourier transform so that the forward 

transform from the coordinate to frequency domain is given by the relation

f(ω) = ∫
−∞

∞
f(t) e−iωt dt (18)

and the inverse transform is given by

f(t) = 1
2π∫−∞

∞
f(ω) e+iωt dω . (19)

This sign convention agrees with the MATLAB convention for the forward and reverse 

transforms. Also note that we use the symbol i to denote −1 as in (18) and (19), and as an 

index as in (5). The specific meaning should be clear from the context.

Calculating the 4-dimensional Fourier transform of (17) with spatial frequency k  and 

temporal frequency ω = 2πf gives

(cijklkjkl − ρω2δik) Gkn(k , ω) = Lik Gkn(k , ω) = δin (20)

where the matrix L has elements Lik = cijklkj kl − ρω2δik. This expression can be solved for 

Gin ( r , ω) by multiplying by L−1 and calculating the inverse Fourier transform,

Gin( r , ω) = 1
8π3 ∫∫∫ (L−1)in eik ⋅ r d3k . (21)

The inverse matrix L−1 in (21) can be expressed as the sum of three terms using the 

eigenvectors PN and eigenvalues λN of L,

(L−1)in = ∑
N = 1

3 P i
NPn

N

λN
. (22)
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The eigenvectors PN in (22) correspond to the polarization vectors for the SH, SV, and P 

propagation modes. As shown in figure 2(b), for plane wave propagation with wave vector 

k  = kn, the propagation direction is given by

n = k =
sin θk cos ϕk
sin θk sin ϕk

cos θk

(23)

and the polarization vectors are given by

PSH =
− sin ϕk
cos ϕk

0
, PSV =

cos θk cos ϕk
cos θk sin ϕk

− sin θk

, and PP =
sin θk cos ϕk
sin θk sin ϕk

cos θk

. (24)

The eigenvalues λN of L are related to the phase velocities of the SH, SV, and P propagation 

modes. For the case of an incompressible, TI material, the phase velocity vP diverges, and 

λSH and λSV are given by

λN = ρk2vN
2 − ρω2 (25)

with vSH and vSV given by (2) and (13), respectively. Here, we neglect the P propagation 

mode in (21) and (22) due to its large speed and only consider the Green’s tensor describing 

shear wave motion. Then, from (21) and (22), Gin( r , ω) can be written as the sum of two 

terms corresponding to the SH and SV propagation modes,

Gin( r , ω) = Gin
SH( r , ω) + Gin

SV ( r , ω)

= ∑
N = SH, SV

1
8π3 ∫∫∫ P i

NPn
N

ρk2vN
2 − ρω2 eik ⋅ r d3k .

(26)

As shown in the Appendix, Gin
SH( r , ω) in (26) can be evaluated in closed-form using 

tabulated integrals. For indices i = 1, 2 and n = 1, 2,

Gin
SH( r , ω) = 1

4πμT
δin − rirn

r⊥
2

e−ik0r′

r′ − i
4πμL

δin − 2rirn
r⊥

2
e−ik0r′ − e−ik0 ∣ z ∣

k0 r⊥
2 (27)

where r⊥
2 = x2 + y2, r′2 = r⊥

2 μL ∕ μT + z2, k0
2 = ρω2 ∕ μL, and the sign of k0 has been chosen to 

give outgoing waves when combined with the e+iωt time dependence. For i = 3 or n = 3, 

P3
SH = 0 in (24) and Gin

SH( r , ω) = 0. After accounting for the sign convention used in the 

Fourier transform in (18) and (19), this result agrees with expression (4.14) from Gridin 

(2000) that was obtained using a different approach.
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We have not found a closed-form expression similar to (27) for the SV propagation mode in 

(26). Instead, we can obtain an expression for Gin
SV ( r , ω) suitable for numerical integration 

by writing the expression in spherical coordinates,

Gin
SV ( r , ω) = 1

8π3∫0

2π∫
0

π∫
0

∞ P i
SV Pn

SV

ρk2vSV
2 − ρω2 eikr(k ⋅ r ) k2 dk sin θk dθk dϕk (28)

where k  = kk from (23), components of r  are shown in figure 2(a),

r =
r sin θr cos ϕr
r sin θr sin ϕr

r cos θr

, (29)

and

k ⋅ r = cos θk cos θr + sin θk sin θr cos (ϕk − ϕr) . (30)

Following the procedure described by Kim et al (1994), this expression can be simplified by 

extending the k integration to the range −∞ ≤ k ≤ ∞ and performing the θk integration over 

the range 0 ≤ θk ≤ π/2. The same result can be obtained using the θk integration range π/2 ≤ 

θk ≤ π, or as one-half the result using the full range 0 ≤ θk ≤ π. Then, using the full θk range 

and evaluating the k integration using equation (14) of Kim et al (1994), Gin
SV ( r , ω) is given 

by the sum of two terms,

Gin
SV ( r , ω) = −iω

16π2ρ∫0

2π∫
0

π P i
SV Pn

SV

vSV
3 e−iωr ∣ k ⋅ r ∣ ∕ vSV sin θk dθk dϕk

+ 1
8π2ρr∫0

2π∫
0

π P i
SV Pn

SV

vSV
2 δ k ⋅ r sin θk dθk dϕk .

(31)

In this expression, the integral in the first term is over the surface of the unit sphere. The 

delta function in the second term reduces the integration range to a line integral over a great 

circle of the unit sphere in a plane perpendicular to r . Both of these integrals have a finite 

range and can be evaluated using numerical integration. After accounting for the sign 

convention used in the Fourier transform in (18) and (19), the result (31) is equivalent to the 

results from Gridin (2000), Willis (1980), and Wang and Achenbach (1995) that were 

obtained using forward and inverse Radon transformations instead of the Fourier transforms 

used here. Expression (31) is also equivalent to equation (15) of Kim et al (1994) which 

involves integrals over a hemisphere of the unit sphere.

3.2. Efficient calculation of the Green’s tensor

Using (26), components of the Green’s tensor are expressed in terms of seven parameters; 

four dynamic variables r, θr, ϕr, and ω, and three variables which characterize the material, 
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μL, μT, and ET/EL. Here, we assume that Gin
SH( r obs, ω) is evaluated using the closed-form 

expression (27). For the evaluation of Gin
SV ( r obs, ω), only the product μTET/EL appears in 

the phase velocity vSV in (13), and six parameters are needed to evaluate the integral 

expression (31). To reduce this number further, we can orient the coordinate system so that 

ϕr = 0. Also, the phase velocity vSV from (13) can be written as

vSV = v0 1 + ΔSV sin2 2θk (32)

where v0 = μL ∕ ρ is the phase velocity along the symmetry axis at θk = 0, and

ΔSV = μTEL ∕ μLET − 1 . (33)

After inserting this expression in (31), the first integral can be parametrized using the phase 

α = rω/v0 so that Gin
SV ( r , ω) can be written as

Gin
SV ( r , ω) = −iω

16π2ρ v0
3 Iin

S(α, θr, ΔSV ) + 1
8π2ρ r v0

2 Iin
L(θr, ΔSV ) (34)

where the surface and line integrals are given by

Iin
S(α, θr, ΔSV ) = ∫

0

2π∫
0

π P i
SV Pn

SV

(1 + ΔSV sin2 2θk)3 ∕ 2 e−iα ∣ k ⋅ r ∣ ∕ 1 + ΔSV sin2 2θk

sin θk dθk dϕk

(35)

and

Iin
L(θr, ΔSV ) = ∫

0

2π∫
0

π P i
SV Pn

SV

1 + ΔSV sin2 2θk
δ k ⋅ r sin θk dθk dϕk . (36)

These integrals can be precomputed for materials with specific values of ΔSV using a dense 

grid of values of α and θr. Then, when summing over combinations of rs, robs, and ω in (4), 

Iin
S(α, θr, ΔSV) and Iin

L(θr, ΔSV) can be evaluated efficiently by interpolation, and these 

values can easily be combined with the multiplicative factors in (34). With this procedure, 

the Green’s tensor can be calculated with an efficiency comparable to the evaluation of a 

closed-form expression.

4. Methods

4.1. Precomputation of the surface and line integrals

The surface integral (35) was evaluated by tabulating the integrand on a two dimensional 

mesh and using the trapezoidal rule to evaluate the integrals for both θk and ϕk numerically. 

The mesh used a step size of 0.005 rad for both Δθk and Δϕk. This step size was selected 

after varying the size and comparing the calculated Green’s tensor to exact results, see 

section 5.1. The surface integral was evaluated using phase angles α in the range 0 ≤ α ≤ 
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αmax with a step size Δα = 0.2 rad, and angles θr in the range 0° ≤ θr ≤ 180° with a step size 

of Δθr = 0.5°. For negative values of α, the surface integral was evaluated using the relations 

Re [Iin
S(−α, θr, ΔSV)] = Re [Iin

S(α, θr, ΔSV)] and Im [Iin
S(−α, θr, ΔSV)] = −Im [Iin

S(α, θr, 

ΔSV)]. The value of αmax was set to 400 rad based on the maximum values of ω and r and 

the minimum value of v0 for the materials and propagation geometries considered.

The line integral (36) was evaluated using the procedure described by Kim et al (1994). For 

this approach, the kz axis is rotated so that it is oriented in the r  direction with the great 

circle of the unit sphere in a plane perpendicular to r . The integration is performed as a one 

dimensional integral using a single variable ϕ around the rotated kz axis. However, when 

performing this integration, the phase velocity vSV and polarization vectors PSV  in the 

integrand of (36) are evaluated relative to the (unrotated) A axis. This process was performed 

by defining a set of points {xi, yi, zi} distributed around the unit circle in the z = 0 plane, and 

then rotating these points to the positions {xiR, yiR, ziR} using a rotation matrix determined 

from the angles θr and ϕr with the specific value ϕr = 0 from section 3.2,

xiR

yiR

ziR
=

cos θr 0 sin θr
0 1 0

− sin θr 0 cos θr

xi
yi
0

. (37)

These coordinates were used to calculate the polar angle θi
R and azimuthal angle ϕi

R for each 

of the rotated points, and these angles were used to evaluate the phase velocity vSV and 

polarization vectors PSV  in the integrand of (36). The integration was performed using the 

trapezoidal rule for the same values of θr as used to evaluate the surface integral.

Results are presented in section 5 for materials with μL = 25 kPa, μT = 9 kPa, and ET/EL = 

0.16, 0.36, and 0.64. These are the same materials considered by Rouze et al (2013). All 

calculations were performed on a Linux cluster with an average CPU speed of 2.6 GHz 

using Matlab (The MathWorks, Natick, MA). For each material, and for the range of 

variables α and θr described above, the (non-optimized) computation time for the surface 

and line integral data was roughly 128 minutes.

4.2. Calculation of shear wave signals

Shear wave signals were calculated by dividing the excitation force into voxels and 

performing the Green’s tensor sum (4) over the source positions r s for each desired 

observation position r obs. In this sum, the force f (rs), relative position r  = r obs − rs, and 

shear wave displacement u ( r obs, ω) are defined relative to an experimental XYZ 

coordinate as shown in figure 1. However, the Green’s tensors Gin
SH( r , ω) and Gin

SV ( r , ω) 

have been calculated using the xyz coordinate system shown in figure 2. To transform 

between these two coordinate systems, we define a rotation matrix R with components RAi = 

XA · xi so that, for example, the vector r  can be written as
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r XY Z =
X
Y
Z

= R
x
y
z

= R r xyz . (38)

Then, shear wave displacements in the XYZ coordinate system can be calculated using the 

Green’s tensor sum (4) as

uA( r obs, ω) = ∑
s

RAi Gin
SH( r , ω) + Gin

SV ( r , ω) (R−1)nB fB( r s) W (ω) . (39)

The rotation matrix in (38) and (39) can be calculated by expressing x, y, and z in terms of 

the X, Y, Z coordinates as follows. First, in figure 2(a), the z axis is aligned with the material 

symmetry axis so that z = A. Also from figure 2(a), with the xyz coordinate system oriented 

so that ϕr = 0 as in Section 3.2, the y axis is perpendicular to the A − r  plane and 

y = A × r ∕ A × r . Finally, x = y × z. Then, elements RAi of the rotation matrix can be 

calculated using the relation RAi = XA · xi with each unit vector expressed relative to the 

XYZ coordinate system. For the sums in (39), the symmetries of Gin
SH( r , ω) and Gin

SV ( r , 

ω) with respect to the indices i and n, and the choice ϕr = 0 from section 3.2 imply that it is 

only necessary to calculate the (i, n) = (1, 1) and (2, 2) components of Gin
SH( r , ω), and the 

(i, n) = (1, 1), (2, 2), (3, 3), and (1, 3) components Gin
SV ( r , ω). In addition, for the results 

presented in section 5, the ARFI force is assumed to be directed along the Z axis, and only 

the Z component of the shear wave displacement is measured. Thus, the component sums in 

(39) can be simplified to include only these components.

Components of the Green’s tensors in (39) were calculated using (27) for Gin
SH( r , ω) and 

(34) for Gin
SV ( r , ω) using the surface and line integral functions (35) and (36), respectively. 

These integral functions were precomputed for the specific materials described in the last 

paragraph of section 4.1, and the functions were evaluated for specific combinations of r obs, 

r s and ω in the sum (39) by interpolation at the coordinates α = ωr/v0 and θr within these 

functions. For the line integral, a linear interpolation was used to evaluate the function for a 

specific value of θr. For the surface integral, the interpolation was performed in two steps. 

First, a linear interpolation was used for the θr variable to obtain a function of α, and then 

spline interpolation was performed in this function for specific values of α. For this last step, 

the spline interpolation was performed once to find the piecewise interpolation polynomial, 

and then this polynomial was evaluated for all required values of ω.

The excitation window function W(t) was assumed to be a rectangular function with 

duration T = 200 μs so that the Fourier transform W(ω) in (39) is given by

W (ω) = i
ω (e−iωT − 1) . (40)
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Calculations were carried out using frequencies in the range −10 kHz ≤ f ≤ 10 kHz with a 

step size Δf = 20 Hz corresponding to a temporal step size of 50 μs. After calculation of 

uA( r obs, ω) using (39), the time-dependent shear wave signal uA( r obs, t) was calculated 

using a discrete, inverse Fourier transform.

Results are presented in section 5 for the case of two force functions, a point source located 

at the origin, and a tall Gaussian source similar to an ARFI excitation described by the 

relation

f ( r s) = e−X2 ∕ 2σX
2 e−Y 2 ∕ 2σY

2 e−Z2 ∕ 2σZ
2 Z (41)

with σX = 0.4 mm, σY = 0.4 mm, and σZ = 7.5 mm. For the case of the tall Gaussian source, 

the force function was divided into 0.33×0.33×0.33 mm3 voxels, and the Green’s tensor sum 

(39) was truncated to include only the source voxels with an amplitude greater than 5% of 

the maximum force (Rouze et al 2018).

Results are presented in section 5 for the two possible experimental configurations shown in 

figure 1 with the symmetry axis oriented in a plane perpendicular to the excitation axis as in 

figure 1(a), and with the symmetry axis tilted at an angle of 45° in the X − Z plane as in 

figure 1(b). These results show shear wave signals in the X = 0, Y = 0, and Z = 0 planes for 

the case of the three materials described in the last paragraph of section 4.1. These planes 

are divided into 160 × 160 pixels, each with a dimension of 0.25 × 0.25 mm for a total of 

25,600 observation positions r obs in each plane. For the case of the tall Gaussian source, the 

(non-optimized) computation time for the shear wave signals in each plane was roughly 16 

hr.

5. Results

5.1. Validation of the numerical integration procedure

The numerical integration procedure used to calculate the Green’s tensor for the SV 

propagation mode was validated by applying exactly the same procedure to the case of the 

SH propagation mode and comparing the results with the analytic, closed-form expression 

(27) for Gin
SH( r , ω). The surface and line integral functions in (35) and (36) were calculated 

using the same values of α and θr as used for the SV calculations, with the only changes 

being the replacement of the SV polarization vectors by the SH polarization vectors from 

(24), and the replacement of vSV from (32) and (33) with vSH given by (2),

vSH = v0 1 + (μT ∕ μL − 1) sin2 θk . (42)

Interpolation within the tabulated integral functions was performed using exactly the same 

procedure described in section 4.2 for the calculation of shear wave signals.

Figure 3 shows a comparison of the analytic (true) results (black line) using (27) with results 

from the numerical calculation (dashed red line) over the frequency range 0 ≤ f ≤ 5 kHz for 

the specific case of the position r = 10 mm and angle θr = 45°. Comparisons are presented 
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for the real (top row) and imaginary (bottom row) parts of the G11
SH( r , ω), G12

SH( r , ω), and 

G22
SH( r , ω) components. The signals have MKS units of mN−1 or Pa−1 m−1. These results 

show nearly perfect agreement between the numeric and analytic signals. Differences 

between these results can be quantified using the RMS percentage difference ΔRMS defined 

as

ΔRMS =
RMS Gin, numeric

SH ( r , ω) − Gin, analytic
SH ( r , ω)

RMS Gin, analytic
SH ( r , ω)

× 100 % . (43)

This calculation gives ΔRMS = 0.392% and ΔRMS = 0.012% for the real and imaginary parts 

of G11
SH( r , ω), respectively, and ΔRMS = 0.008% and ΔRMS = 0.002% for the real and 

imaginary parts of G22
SH( r , ω), respectively. For the case of G12

SH( r , ω), the choice ϕr = 0 

from section 3.2 requires the analytic result (27) to be zero, and any nonzero signal 

calculated numerically is the result of numerical inaccuracies that result from the use of 

finite step sizes for the angles θk and ϕk in the numerical integrations (35) and (36), or from 

roundoff errors. The results shown in figure 3 indicate that these effects give very small 

errors on the order of 10−15 of the calculated signals.

5.2. Shear wave signals calculated using a point source excitation

Figure 4 shows an example of shear wave signals in the X = 0, Y = 0, and Z = 0 planes 

calculated using a point source excitation located at the origin. The three planes overlap and 

are shown with semi-transparency in the center, and are also duplicated without transparency 

at positions displaced from the center. The excitation configuration is shown in figure 1(a) 

with the material symmetry axis oriented along the X axis and the excitation axis in the Z
direction. The images show the Z component of displacement at time t = 2.2 ms. These 

signals are shown for a material with μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16, and an 

excitation duration T = 200 μs. A movie showing the time evolution of these signals is 

included with supplementary material associated with this paper.

The shear wave signals in the Z = 0 plane of figure 4 are determined only by the SH 

propagation mode and show the expected elliptical shape from (3) with semi-major and 

semi-minor axes determined from the μL = 25 kPa and μT = 9 kPa shear moduli. However, 

for shear wave signals observed at axial positions above and below the Z = 0 plane, the A − 

n plane in figure 1 is tilted, and both the SH and SV propagation modes contribute to the 

shear wave signals.

Figure 5 shows shear wave signals in the X = 0, Y = 0, and Z = 0 planes as shown in figure 4 

for experimental configurations with the symmetry axis oriented (a) along the X axis as in 

figure 1(a), and (b) tilted at an angle of 45° relative to the X axis as in figure 1(b). As in 

figure 4, these signals are shown for the case of a point source excitation located at the 

origin at time t = 2.2 ms. Signals are shown for materials with μL = 25 kPa, μT = 9 kPa, and 

ET/EL = 0.16, 0.36, and 0.64, and an excitation duration T = 200 μs. The top row of figure 5 
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shows the same signals as in figure 4. Movies showing the time evolution of these signals 

are included with supplementary material associated with this paper.

As with figure 4, the signals in the Z = 0 plane in figure 5(a) with the symmetry axis directed 

along the X axis show the expected elliptical shape from (3) with the same semi-major and 

semi-minor axes. However, we note that for the case with ET/EL = 0.64, structure from the 

SV propagation mode contributes to the signals and distorts the elliptical shape near Y = 0. 

For the case of the symmetry axis tilted at an angle of 45° relative to the X axis in figure 

5(b), both the SH and SV propagation modes contribute to the signals and give more 

complicated shapes as compared to figure 5(a).

5.3. Shear wave signals calculated using a tall Gaussian excitation

Figure 6 shows shear wave signals in the X = 0, Y = 0, and Z = 0 planes as shown in figure 4 

for the case of a tall Gaussian excitation source and experimental configurations with the 

symmetry axis oriented (a) along the X axis as in figure 1(a), and (b) tilted at an angle of 45° 

relative to the X axis as in figure 1(b). The size of the source was determined using σX = 0.4 

mm, σY = 0.4 mm, and σZ = 7.5 mm in (41). As described in section 4.2, the source was 

divided into 0.33 × 0.33 × 0.33 mm3 voxels, and the Green’s tensor sum (39) was truncated 

to include only the source voxels with an amplitude greater than 5% of the maximum force. 

As in figures 4 and 5, the signals in figure 6 are shown at time t = 2.2 ms for materials with 

μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16, 0.36, and 0.64, and an excitation duration T = 

200 μs. Movies showing the time evolution of these signals are included with supplementary 

material associated with this paper.

The shear wave signals obtained using the tall Gaussian excitation in figure 6 show two key 

differences compared to the signals from the point source excitation in figures 4 and 5. First, 

the width of the shear wave signals in the Z = 0 plane from the tall source is greater than 

from the point source due to contributions from source points at positions above and below 

the Z = 0 plane that arrive in the Z = 0 plane at times later than contributions from a point 

source at the origin. Second, the Z-dependent structure seen in the point source calculations 

with the tilted excitation in figure 5(b) is washed out in figure 6 due to the tall source. 

Nevertheless, structure remains in the Z = 0 plane of figure 6(b) and can be used to 

distinguish among the signals obtained with different values of ET/EL.

6. Discussion

In this paper, we have described a method for the tractable calculation of the Green’s tensor 

for shear wave propagation in an incompressible, TI material, and have presented sample 

shear wave signals for the case of a point source, and a tall Gaussian source similar to an 

ARFI excitation. The motivation for this work is based on two key factors. First, previous 

applications of the Green’s tensor methods in TI materials have been based on special-case 

solutions of the equation of motion where closed-form expressions were available so that the 

sum over source voxels in (4) or (39) could be performed efficiently. However, these 

solutions only depend on the shear moduli μL and μT, and not on the ratio of Young’s moduli 

ET/EL, and thus, are not sensitive to all three material parameters needed to characterize an 

incompressible, TI material. In the current work, we have described a procedure to calculate 
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the Green’s tensor and shear wave signals that is sensitive to all three of these material 

parameters. Thus, these techniques can be used to analyze shear wave signals in nearly 

incompressible TI materials such as skeletal muscle, and thereby allow the measurement of 

material properties such as the longitudinal Young’s modulus EL which characterizes muscle 

strength.

The second key factor described in this work is a tractable method to calculate the Green’s 

tensor. Integral expressions for Gin( r , ω) have been described previously, but have been 

used sparingly, because of the large computational effort to evaluate the integral numerically 

due, in part, to the rapid oscillation of the integrand in (28). For the case of an 

incompressible, TI material considered here, it is possible to obtain relatively simple 

expressions for the phase velocity vSV in (13) and polarization vectors PSV  in (24). Then, 

the integral expression (34) for Gin
SV ( r , ω) can be written in terms of integral functions Iin

S

(α, θr, ΔSV) and Iin
L(θr, ΔSV) that are parametrized in terms of a small number of variables. 

After precomputing these functions, components of the Green’s tensor can be evaluated by 

interpolation within these functions and combining the results with multiplicative factors as 

in (34). This interpolation can be performed with an efficiency that is comparable to the 

evaluation of a closed-form expression.

Of course, this procedure also requires the numerical computation of the integral functions 

Iin
S(α, θr, ΔSV) and Iin

L(θr, ΔSV). However, because these functions are parametrized, they 

only need to be calculated for a relatively small number of parameter values. For the 

calculations reported here, the integral functions are calculated for 7.2 × 105 combinations of 

α and θr. Without this parametrization, the numerical integration would need to be 

performed for each combination of r obs, r s, and ω used in the Green’s tensor sum (4) or 

(39). For example, a typical ARFI excitation force might be divided into 103 − 104 voxels 

and calculations might be performed using 103 − 104 frequencies. Also, the number of 

observation points might vary from 102 positions along a single axis, to 107 positions 

throughout a volume. Then, it would be necessary to perform numerical integrations for 108 

− 1015 combinations of r obs, r s, and ω depending on the specific problem under 

consideration. Thus, by using parametrized integral functions, the number of required 

numerical integrations is reduced by a factor of 102 − 109. This reduction in computational 

complexity is the key reason that allows the tractable calculation of shear wave displacement 

signal using the Green’s tensor procedure described herein.

Finally, we note that only elastic materials have been considered in this study. However, soft 

biological tissues are typically viscoelastic (Fung 1993), and it is common to model shear 

wave propagation in these materials using viscoelastic materials (Bercoff 2004, Gennisson 

2010, Chatelin 2015). Characterization of viscoelastic materials is often done by working in 

the temporal frequency domain and using a stress-strain model that includes a loss 

mechanism dependent on the viscosity of the material. A common material model is the 

Voigt model with a frequency dependent shear modulus μ(ω) = μ0 + iωη where μ0 is the 

material stiffness and η is the viscosity. Other material models include the fractional Kelvin 

model (Zhang et al 2007) and models with attenuation expressed as a power-law function of 
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frequency (Waters et al 2000, Rouze et al 2018). Because the Green’s tensor model 

considered in this study has been presented in the temporal frequency domain, it would be 

straightforward to extend the model to include viscoelastic materials with frequency-

dependent material properties.

7. Conclusion

This paper describes a method for the tractable calculation of the Green’s tensor for shear 

wave propagation in an incompressible, transversely isotropic (TI) material following an 

acoustic radiation force impulse (ARFI) excitation. Wave propagation is modeled using SH 

and SV propagation modes defined by the wave polarization relative to the plane determined 

by the propagation direction and the material symmetry axis. Components of the Green’s 

tensor are written as the sum of an analytic expression for the SH propagation mode, and an 

expression involving numerically calculated integral functions for the SV propagation mode. 

These integral functions are parametrized in terms of two dynamic parameters and can be 

precomputed for each material under consideration. Then, interpolation within these 

functions allows the Green’s tensor to be calculated with an efficiency comparable to the 

evaluation of a closed-form expression. The numerical integration procedure is validated by 

applying it to the SH propagation mode and comparing the calculations to the known 

analytic results. Parametrization of the integral functions reduces the computational 

complexity by a factor on the order of 102 − 109 depending on the specific problem under 

consideration, and thereby makes the Green’s tensor approach tractable. Results are 

presented for the case of a point source positioned at the origin and a tall Gaussian source 

similar to an ARFI excitation. For an experimental configuration with the material symmetry 

axis tilted relative to the excitation axis, results show that shear wave signals exhibit 

structure that are sufficiently complex to allow measurement of all three material parameters 

that characterize an incompressible, TI material.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

This appendix derives the closed-form expression (27) for Gin
SH( r , ω) using tabulated 

integrals. Using (2) and writing the integral (26) in cylindrical coordinates gives

Gin
SH( r , ω) = 1

8π3∫0

∞∫
0

2π∫
−∞

∞ P i
SHPn

SH

μLkz
2 + μTk⊥

2 − ρω2 eikzz eik⊥r⊥ cos(ϕk − ϕr)

dkz dϕk k⊥ dk⊥

(A.1)
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where k  and r  are given by (23) and (29), k⊥
2 = kx

2 + ky
2 = k2 sin2 θk, and 

r⊥
2 = x2 + y2 = r2 sin2 θk.

The kz integral can be evaluated using 3.354.5 of Gradshteyn and Ryzhik (2015),

∫
−∞

∞ eikzz

μLkz
2 + μTk⊥

2 − ρω2 dkz = π
μL

e− ∣ z ∣ k⊥
2 μT ∕ μL − k0

2 1 ∕ 2

(k⊥
2μT ∕ μL − k0

2)1 ∕ 2 (A.2)

where k0
2 = ρω2 ∕ μL. Even though this result diverges when (k⊥

2 μT ∕ μL − k0
2)1 ∕ 2 = 0, it can 

be used in the integrand for the k⊥ integral in (A.6) below.

The ϕk integral can be evaluated using the substitution ϕk′ = ϕk − ϕr so that PSH in (24) is 

given by

PSH =
− sin (ϕk′ + ϕr)
cos (ϕk′ + ϕr)

0
=

− sin ϕk′ cos ϕr − cos ϕk′ sin ϕr
cos ϕk′ cos ϕr − sin ϕk′ sin ϕr

0
. (A.3)

Also, because the integrand for the ϕk′  integral is periodic in 2π, the integration range can be 

shifted to the range 0 ≤ ϕk′  ≤ 2π. Then, using 3.915.2 and 3.915.5 of Gradshteyn and Ryzhik 

(2015), the ϕk, integral in (A.1) is given by

∫
0

2π
P i

SHPn
SH eik⊥r⊥ cos ϕk′ dϕk′ = AinJ0(k⊥r⊥) + Bin

J1(k⊥r⊥)
k⊥r⊥

(A.4)

where J0 and J1 are Bessel functions of the first kind of order 0 and 1, respectively, and the 

coefficients Ain and Bin are given by

Ain = 2π δin − ri rn
r⊥

2 and Bin = − 2π δin − 2 ri rn
r⊥

2 (A.5)

for indices i = 1, 2 and n = 1, 2, and Ain = 0 and Bin = 0 for i = 3 or n = 3. The components ri 

and rn of r  are given by (29).

Finally, the the k⊥ integral can be evaluated using 8.2(24) and 8.4(10) of Erdélyi et al 

(1954),

Gin
SH( r , ω) = 1

8π3∫0

∞ π
μL

e− ∣ z ∣ k⊥
2 μT ∕ μL − k0

2 1 ∕ 2

(k⊥
2μT ∕ μL − k0

2)1 ∕ 2

AinJ0(k⊥r⊥) + Bin
J1(k⊥r⊥)

k⊥r⊥
k⊥ dk⊥

= 1
8π2μT

Ain
e−ik0r′

r′ + i
8π2μL

Bin
e−ik0r′ − e−ik0 ∣ z ∣

k0 r⊥
2

(A.6)
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where r′2 = r⊥
2 μL ∕ μT + z2 and the sign of k0 has been chosen so that the result gives 

outgoing waves when combined with the e+iωt time dependence in (19). Note that 8.2(24) 

and 8.4(10) of Erdélyi et al (1954) require Re (ik0) > 0. To meet this condition, a positive 

real part can be added to ik0 using the subsitution ik0 ik0′ = η + ik0 with η > 0 to give an 

exponential decay in the result with e−ik0′ r′ = e−ηr′ e−ik0r′ and e−ik0′ ∣ z ∣ = e−η ∣ z ∣ e−ik0 ∣ z ∣ . 

After the integrals are evaluated, the limit η → 0 gives (A.6). Combining (A.5) and (A.6) 

gives (27).
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Figure 1. 
(a) Experimental configuration commonly used for investigations of shear wave propagation 

in an incompressible, TI material (see, also, figure 2 of Chatelin et al 2014). The left side 

shows a sketch of a linear ultrasound transducer and transversely isotropic material with the 

material symmetry indicated by the gray lines respresenting, for example, skeletal muscle 

fibers. The transducer can rotate about a vertical axis to observe shear waves for a range of 

propagation directions. The experimental X, Y, Z coordinate system shows the ARFI 

excitation force F  along the Z axis and the material symmetry axis A and propagation 

direction n in the X − Y (Z = 0) plane. Polarization vectors for the SH (slow shear), SV (fast 

shear), and P (longitudinal) propagation modes are defined relative to the A − n plane shown 

in gray. Ultrasonic tracking measures the Z component of the shear wave displacement 

signal and is sensitive only to the SH propagation mode. (b) A more complicated 

experimental configuration in which the material symmetry axis A and propagation direction 

n are not restricted to the X − Y plane. Measurements of the Z component of shear wave 

displacement are sensitive to both the SH and SV propagation modes.
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Figure 2. 
Coordinate system with x, y, and z axes used for the analysis of the material, wave 

propagation, and Green’s tensor in Sections 2 and 3. This coordinate system is distinct from 

the experimental XYZ coordinate system in figure 1. The relation between the xyz and XYZ 
coordinate systems is described in Section 4.2. (a) The xyz coordinate system is oriented so 

that the z axis is aligned with the material symmetry axis A, and the position vector r  is 

specified by the angles θr and ϕr. To simplify the analysis in Section 3.1, the axes are rotated 

so that ϕr = 0. (b) Wave propagation is in the n direction with wave vector k  = kn at an angle 

θk relative to the material symmetry axis A. The polarization vectors are defined relative to 

the A − n plane shown in gray with the SH polarization perpendicular to the A − n plane, and 

the SV and P polarizations in the A − n plane. Explicit expressions for polarization vectors 

are given in terms of θk and ϕk in (24).
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Figure 3. 
Validation of the numerical integration procedure by comparison of the analytic results 

(black lines) calculated using (27) with results from the numerical calculations (dashed red 

lines) for the real (top row) and imaginary (bottom row) parts of the G11
SH( r , ω), G12

SH( r , 

ω), and G22
SH( r , ω) components of the Green’s tensor for the SH propagation mode. The 

signals have MKS units of mN−1 or Pa−1 m−1. Results are shown for a material with μL = 25 

kPa and μT = 9 kPa for the specific position r = 10 mm and angle θr = 45°. Near perfect 

agreement is observed for the G11
SH( r , ω) and G22

SH( r , ω) components. For the G12
SH( r , ω) 

component, the analytic value is zero, and any nonzero signal from the numerical calculation 

is the result of numerical inaccuracies from the use of finite step sizes in the numerical 

integrations (35) and (36), or from roundoff errors.
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Figure 4. 
Views of shear wave signals in the X = 0, Y = 0, and Z = 0 planes at time t = 2.2 ms from a 

point source excitation located at the origin. The planes overlap and are shown with semi-

transparency in the center, and are also duplicated without transparency at positions 

displaced from the center. The experimental configuration is shown in figure 1(a) with the 

material symmetry axis positioned along the X axis and the excitation force directed along 

the Z direction. The Z component of displacement is shown. Signals are shown for the case 

of a 200 μs excitation duration in a material with μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16. 

A movie showing the time evolution of these signals is included with supplementary 

material associated with this paper.
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Figure 5. 
Normalized shear wave displacement signals in the X = 0, Y = 0, and Z = 0 planes (see 

figure 4) from a point source excitation located at the origin for cases with the material 

symmetry axis oriented (a) along the X axis as in figure 1(a), and (b) tilted at an angle of 45° 

relative to the X axis in the X − Z plane as in figure 1(b). The excitation force is oriented in 

the Z direction, and the Z component of displacement is shown. Signals are shown at a time 

t = 2.2 ms for materials with μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16, 0.36, and 0.64. The 

top row of signals are the same as the signals in figure 4. Movies showing the time evolution 

of these signals are included with supplementary material associated with this paper.
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Figure 6. 
Normalized shear wave displacement signals in the X = 0, Y = 0, and Z = 0 planes (see 

figure 4) from a tall Gaussian source for cases with the material symmetry axis oriented (a) 

along the X axis as in figure 1(a), and (b) tilted at an angle of 45° relative to the X axis in the 

X − Z plane as in figure 1(b). The excitation force is oriented in the Z direction, and the Z
component of displacement is shown. The source had dimensions σX = 0.4 mm, σY = 0.4 

mm, and σZ = 7.5 mm in (41) with an excitation duration of 200 μs. Signals are shown at a 

time t = 2.2 ms for materials with μL = 25 kPa, μT = 9 kPa, and ET/EL = 0.16, 0.36, and 0.64. 
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Movies showing the time evolution of these signals are included with supplementary 

material associated with this paper.
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