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Abstract: Organ volume measurements are a key metric for managing ADPKD (the most common
inherited renal disease). However, measuring organ volumes is tedious and involves manually
contouring organ outlines on multiple cross-sectional MRI or CT images. The automation of kidney
contouring using deep learning has been proposed, as it has small errors compared to manual
contouring. Here, a deployed open-source deep learning ADPKD kidney segmentation pipeline is
extended to also measure liver and spleen volumes, which are also important. This 2D U-net deep
learning approach was developed with radiologist labeled T2-weighted images from 215 ADPKD
subjects (70% training = 151, 30% validation = 64). Additional ADPKD subjects were utilized for
prospective (n = 30) and external (n = 30) validations for a total of 275 subjects. Image cropping
previously optimized for kidneys was included in training but removed for the validation and
inference to accommodate the liver which is closer to the image border. An effective algorithm was
developed to adjudicate overlap voxels that are labeled as more than one organ. Left kidney, right
kidney, liver and spleen labels had average errors of 3%, 7%, 3%, and 1%, respectively, on external
validation and 5%, 6%, 5%, and 1% on prospective validation. Dice scores also showed that the deep
learning model was close to the radiologist contouring, measuring 0.98, 0.96, 0.97 and 0.96 on external
validation and 0.96, 0.96, 0.96 and 0.95 on prospective validation for left kidney, right kidney, liver and
spleen, respectively. The time required for manual correction of deep learning segmentation errors
was only 19:17 min compared to 33:04 min for manual segmentations, a 42% time saving (p = 0.004).
Standard deviation of model assisted segmentations was reduced to 7, 5, 11, 5 mL for right kidney,
left kidney, liver and spleen respectively from 14, 10, 55 and 14 mL for manual segmentations. Thus,
deep learning reduces the radiologist time required to perform multiorgan segmentations in ADPKD
and reduces measurement variability.

Keywords: liver volume; kidney volume; spleen volume; ADPKD; artificial intelligence; interobserver
variability; machine learning

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inher-
ited cause of chronic kidney disease (CKD), affecting over 10 million people worldwide [1].
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The ADPKD phenotype is characterized by the enlargement of kidney cysts, tubulointersti-
tial fibrosis, and progression to end stage kidney disease (ESKD). Extrarenal manifestations
include cystic involvement of the liver, pancreas [2], prostate [3] and arachnoid [4], as well
as seminal megavesicles [5], splenomegaly [6] and cardiovascular effects including pericar-
dial effusions [7], aortic ectasia, dolichoectasia and saccular intracranial aneurysms [8]. In
particular, the liver can be enlarged by cysts compressing hepatic veins and bile ducts, re-
quiring cyst fenestration, partial hepatic resection or liver transplantation [9]. Splenomegaly,
without associated spleen cysts, is a common feature. Although its cause and clinical sig-
nificance are not established, it can contribute to mass effects in the left upper abdomen,
potentially causing early satiety and the challenge of differentiating among other causes of
splenomegaly [6].

Standard biomarkers for renal function, such as creatinine-based estimates of the
glomerular filtration rate, are imprecise for tracking ADPKD progression because glomeru-
lar hyperfiltration and other compensatory mechanisms obscure the loss of functioning
renal mass [10–15]. Similarly, routine blood tests for liver and spleen function do not
correlate with ADPKD changes in those organs.

Several large studies have demonstrated that total kidney volume (TKV), indexed
to patient height (ht-TKV), identifies ADPKD patients at highest risk for progression to
ESKD [10]. In clinical trials of tolvaptan, the only drug approved for the treatment of
ADPKD, the rate of increase in TKV was attenuated in patients treated with tolvaptan
compared with control groups. Accordingly, MRI TKV has become an important ADPKD
biomarker that is now considered the standard for evaluating ADPKD [16].

Total kidney volume (TKV) can be approximated as an ellipsoidal solid with kidney
length, width and depth measurements, with stereology [17] or measured more accu-
rately with laborious manual contouring of kidney outlines on every slice of CT or MRI
scans [18–21]. Recently, deep learning-based methods have semi-automated TKV measure-
ment [18–21] by producing an initial prediction of renal contours on CT or MRI that can be
rapidly refined by an expert observer. This eliminates the need to manually draw every
contour of the cystic kidneys, [22] thereby increasing the efficiency of accurate TKV mea-
surement. Table 1 summarizes the existing literature for deep learning-based organ volume
measurements in ADPKD using CT [23–27], ultrasound [28] and MRI [22,29–35]. MRI has
the advantage over CT of not requiring ionizing radiation, which is particularly important,
for these organ volume measurements are repeated many times over the patient’s lifetime,
and MRI has higher resolution compared to ultrasound. Only one prior study using MRI
extends beyond the kidneys to also cover the liver, but not the spleen, using a 2D U-net
trained with coronal T2 fat-suppressed images acquired from 2007–2015 from 145 patients.
Currently, T2-weighted fast spin echo images are more routinely acquired in the axial plane
and generally without fat saturation when using the single shot technique.

Herein, an open-source deep learning method for segmenting kidneys on axial T2-
weighted abdominal MRI as deployed in Goel et al. [22] is extended to include liver
and spleen segmentation automatically for a more comprehensive assessment of ADPKD.
Segmentation accuracy was evaluated with both external and prospective validations using
radiologist-corrected contours as the standard of reference. Interobserver reproducibility
and time required for model assisted organ volume measurements were compared to
manual contouring on a subset of prospective cases.
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Table 1. Literature on deep learning methods for organ volume measurements in ADPKD.

First
Author Modality Year ADPKD

subjects
Segmentation
Methodology Dice Score Other Metrics Organ

Sharma [26] CT 2017 125 2D VGG-16 FCN 0.86 7.8% Kidney

Keshwani
[24] CT 2018 203 CT

scans **
Multi-task
3D FCN 0.95 3.86% Kidney

Shin [27] CT 2020 214 3D V-net 0.961 * 95% within 3% Kidney +
Liver

Onthoni [25] CT 2020 97
2D SSD

Inception
Network V2

-
Images: mAP:

94%
Subjects: mAP:

82%
Kidney

Hsiao [23] CT 2022 210 FPN +
EfficientNet 0.969 - Kidney

Jagtap [28] US 2022 22 2D U-Net 0.80 4.12% Kidney

Kim [29] MRI
Cor T2 fatsat 2016 60 SPPM + PSC 0.88 MCC: 0.97 Kidney

Kline [30] MRI
Cor T2 2017 2000 scans **

2D U-Net +
ResNet-like

encoder
0.97 0.68% Kidney

Guangrui
[31]

MRI
Axial + Cor

T1
2019 305 3D VB-Net *** RK-0.958

LK-0.965 - Kidney

Van Gastel
[32]

MRI
Cor T2 fatsat 2019 145 2D U-Net -

LK: 0.96
RK: 0.95

TKV: 0.96
Liver: 0.95

Kidney +
Liver

Kline [33]
MRI

Cor T2
+/−fatsat

2020 60
2D U-Net +
ResNet-like

encoder

1st Reader:
0.86

2nd Reader:
0.84

1st Reader: 3.9%
2nd Reader: 8% Kidney cysts

Goel [22] MRI
Axial T2 2022 173

2D U-Net +
EfficientNet

encoder

External:
0.98

Prospective:
0.97

External: 2.6%
Prospective:

3.6%
Kidney

Raj [34] MRI
Cor T1 2022 100 2D Attention

U-Net 0.922 MSSD: 0.922 and
1.09 mm Kidney

Taylor [35] MRI 2022 227 Scans 3D U-Net 0.96
each kidney

LK:1.8%
RK:1.79% Kidney

FPN = Feature Pyramid Network; FCN = Fully Convolutional Network; SSD = Single Shot Detector;
MSSD = Mean Symmetric Surface Distance; RK= right kidney; LK = left kidney; Cor = Coronal; MAPE= Mean
absolute percentage error; mAP= mean Average Precision; MCC = mean correlation coefficient. * DSC corresponds
to combination of TKV and liver volume. ** number of subjects is unknown. *** customization of V-Net.

2. Materials and Methods
2.1. Patients

This HIPAA compliant study was approved by the Institutional Review Board of Weill
Cornell Medicine. Subjects (n = 215) enrolled in the Rogosin Polycystic Kidney Disease Data
Repository signed informed consent and their MRIs were used for algorithm development
and training. Thirty additional subjects with ADPKD who had abdominal MRI performed
at outside institutions, but whose images were stored in Weill Cornell Picture Archiving
and Communication System (PACS), were used for external validation. An additional
30 subjects who were consecutively imaged after deployment of the algorithm into the
MRI workflow were used for prospective evaluation. The retrospective review of these
images and clinical data was approved by the Weill Cornell Institutional Review Board
(IRB); the requirement for informed consent was waived. Clinical information from these
subjects was obtained from the Rogosin PKD Repository, including serum creatinine,
height, weight, age, gender, and race. Estimated glomerular filtration rate (eGFR) was
determined based upon the CKD-EPI method [36]. Mayo classification of ADPKD subjects
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was determined using https://www.mayo.edu/research/documents/pkd-center-adpkd-
classification/doc-20094754 (accessed on 5 April 2022). All images, clinical and laboratory
data were coded to maintain subject confidentiality.

2.2. MR Imaging

Imaging data used for training were acquired with the routine clinical protocol without
any special preparation at 1.5T or 3T using body array coils on multiple MRI scanners
(Architect, Artist, MR450, MR750, HDXT, GE Healthcare, Waukesha WI and Aera, Skyra,
Vita, Siemens Healthineers, Erlangen, Germany). Pulse sequences acquired on the patients
included axial T2, coronal T2, axial 3D spoiled gradient echo with either fat suppression or
Dixon fat water separation, axial steady state free precession (SSFP), coronal SSFP and axial
diffusion weighted imaging from mid-chest to below the bottom edge of kidneys. Because
the axial T2 weighted images provided the best contrast between the organs and the back-
ground, they were routinely used at our institution for deriving organ volumes by manual
contouring and have been used in prior deep learning studies of kidney segmentation [22];
this sequence was selected for the multiorgan segmentation. Axial T2 DICOM tag details
are provided in Table S1.

2.3. Labeling Training Data

All labeling was performed on ITK-SNAP (version 3.8.0, Paul A. Yushkevich, Philadel-
phia, PI, USA) by four observers (AG, HD, SR, AS) with at least one year of labeling
experience with all labeling reviewed and further refined by a board-certified radiologist
(MRP) with >25 years’ experience. For 260 axial T2 weighted scans from 215 patients,
the right kidney was labelled 1 (red), the left kidney was labelled 2 (green), the liver was
labelled 4 (yellow), and the spleen was labelled 3 (blue). Since model performance on the
kidneys was better without distinguishing right from left [22], the green left kidney label
was changed to match the red left kidney label prior to model training.

2.4. Data Preparation

Axial T2 weighted DICOM images were converted into the NIfTI (Neuroimaging
Informatics Technology Initiative) file format using the NiBabel package [37]. Min-max
normalization was applied with the value of minimum pixel on the image transformed to 0.0
and the maximum value transformed to 1.0. Each image was mapped to 640 × 640 voxels
and cropped down to 512 × 512 to focus on the anatomy of interest. The data was then
augmented using affine and computer vision based augmentation transforms using the
Python albumentations library [38].

2.5. Stratification

Images from subjects who were scanned more than once were grouped together so that
stratifications could be performed on a per-subject basis. ADPKD subjects were split into a
training data set (n = 151 subjects, 6392 images prior to albumentation) and a validation
data set (n = 64 subjects, 3148 images) stratified by TKV and pulse sequence name (an
indicator of the scanner utilized). Cross validation was not practical on our computer
due to time constraints. A hold out test set was not necessary because both external and
prospective validations were performed.

2.6. Deep Learning Model Training

Training was performed on a workstation with 4 GeForce GTX TITAN X 12GB GDDR5
GPUs. Our 2D model utilized a CNN architecture based on a semantic segmentation
approach written in Python, with Pytorch segmentation libraries [22]. A U-net model was
trained over a pretrained EfficientNet encoder using soft dice loss and cross entropy loss.
For model encoder, efficient net was used within the Pytorch segmentation libraries [39].
The model decoder was composed of five up sampling layers after using the default
SIMP library [39]. After each epoch, validation was performed, saving the best model

https://www.mayo.edu/research/documents/pkd-center-adpkd-classification/doc-20094754
https://www.mayo.edu/research/documents/pkd-center-adpkd-classification/doc-20094754
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checkpoints until convergence (Figure 1). Ongoing validations with each epoch visualized
in TensorBoard were used to determine convergence.
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Figure 1. DICOMs of prospective and external cases are pushed to a root input directory from PACS.
Checkpoints of each organ are then used to perform organ-specific inference. Once all inferences
are complete, the algorithm combines the organs and adjudicates the model overlaps to create a
multi-organ ensemble.

2.7. Resolving Conflicts between Different Organs

The model output for each organ was a probability map indicating the likelihood
that each voxel was from that organ. A threshold 50% probability was used as the cutoff
to define positive voxels for each organ. Conflicts arose when a voxel was above the
50% probability threshold for more than one organ. For example, voxels on the border
between the kidney and liver might be above the 50% threshold for both kidney and liver.
Initially, these conflicts were resolved by assigning a new color defined by the sum of the
two colors, which is automatically allocated in applications such as ITK-SNAP, Figure 2.
For example, in the case of right kidney and liver overlap, the right kidney (red = 1) added
with the liver (yellow = 4) was assigned to pink (5). This choice was implemented to
allow the radiologist to adjudicate the overlap. However, single voxels of an overlap color
could be difficult to find and cumbersome to replace with their correct color, based upon
expert visual inspection. With experience adjudicating overlap voxels, it was apparent
that most kidney/liver overlapping voxels were assigned to the kidney. Consequently,
the algorithm was adjusted to assign right kidney/liver overlaps to default to the right
kidney mask. Likewise, overlapping voxels between the left kidney, spleen and liver were
satisfactorily resolved by assigning first choice to the left kidney, then the spleen and, finally,
the liver. Since right/left kidneys were grouped together to improve model performance,
both kidneys were labeled red on the model output. This was corrected by assigning green
to all kidney voxels left of the midline.
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Figure 2. Axial T2 weighted image of a 67-year-old male with ADPKD showing: (A) pink voxels
between liver (yellow) and right kidney (red) because they met the 2D model criteria for both kidney
and liver. (B) same image as (A) but with increased transparency of labels to show that the pink
overlap voxels correspond to a right renal cyst. (C) corrected image with overlap voxels now assigned
to red corresponding to the right kidney.
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2.8. Image Cropping

For a few cases in which massively enlarged organs were close to the image boundary
(within 64 voxels), there were cropping artifacts. Figure 3 illustrates an example of crop-
ping artifact observed for liver segmentation utilizing the same cropping optimized for
kidneys. Training the model without cropping, however, was associated with decreased
model performance. After experimenting with using less cropping, a robust outcome with
excellent model performance over a wide spectrum of cases was achieved using standard
symmetrical cropping during training but without expansion and cropping on validation.
This may have decreased model performance slightly but was overall better for model
assisted annotations because it eliminated the need to manually correct cropping artifacts.
Replacing the validation expansion and cropping with generalized resizing also eliminated
the need for complex inference transformations.
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Figure 3. Axial T2 weighted image from a 59-year-old male with ADPKD showing: (A) model
correctly labeling right kidney (red), left kidney (green), spleen (blue) and liver (yellow) except that
inference cropping causes an incorrectly straight liver label border (white arrow). (B) with partial
label transparency, the underlying organs are visualized with numerous cysts in both right and left
kidneys (red and green), including the incorrectly straight liver label border (white arrow). (C) after
removing the cropping step from the inference input, the liver border is correctly labeled without
cropping (white arrow).

2.9. External and Prospective Validation

Abdominal MRI (n = 30) from outside hospitals on ADPKD subjects, stored in the
Weill Cornell PACS, including axial T2 weighted images, were used for external validation.
After running the model inference, the contours were corrected using ITK-SNAP by an
expert observer (AS) and checked by a board-certified radiologist (MRP) with over 20 years
of experience measuring kidney volumes on MRI. The corrected contours were utilized as
the gold standard truth for calculating root mean squared error, mean percent error and
DICE scores.

After the training was complete and the model inference became operational, this
model was implemented into the routine analysis of research registry patients using the
same GPU server utilized for training, which was located within the PACS firewall to
maintain cybersecurity. As subjects were scanned, their axial T2 weighted images were
pushed to the GPU server to run the model inference. After running the inference, the
contours were manually corrected by a board-certified radiologist (MRP) as necessary and
were saved on the deep learning server within the PACS firewall for future reference, review,
display at clinical conferences and sharing with referring physicians. Organ volumes
calculated from manually corrected model segmentations were included in the MRI reports.
The corrected contours were considered to be ground truth to calculate the Dice score.
The first consecutive 30 ADPKD subjects imaged by abdominal MRI were utilized for this
prospective validation.

2.10. Time Savings and Reproducibility with Model Assisted Contouring

For the first 10 prospective cases, three expert observers (AS, HD, SR), with experience
contouring more than 50 cases each both contoured manually and with model assistance to
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assess the potential time savings and improvement in inter-observer agreement. Manual
and model assisted contouring was performed in random order with one week in between
to eliminate the potential for confounding effects of operator memory of the organ bound-
aries. Reproducibility among the three observers was assessed for the manual and model
assisted contouring to determine if the model improved reproducibility.

2.11. Statistical Analysis

Continuous variables were reported as mean (±SD) or median (inter quartile range
[IQR]) in case of violation of normal distribution. Categorical variables were reported as fre-
quency (%). Manual contouring (ground truth) was compared to automated segmentations
by calculating the Dice similarity coefficient (DSC) between mask sets A and B as

DSC =
2|A∩ B|
|A|+ |B| (1)

where ∩ is the intersection operator, A is the ground truth, B is the model output, and |S|
is the cardinality, or size, of a set. From the definition, DSC ranges from 0 to 1; perfect
agreement results in DSC = 1.0 [40]. Root mean square error, average percent error and
concordance coefficient [41] were also calculated on external and prospective test sets
between the ground truth and model output. Reproducibility among the three observers
for manual contouring and model assisted contouring was assessed by calculating the
standard deviation of the values of the three observers. A Bland-Altman analysis was
performed to evaluate for the percent error of TKV between the reference standard and the
automated method [42].

3. Results

Demographic details of the 215 patients used for training/validation as well as the
30 ADPKD external validation and 30 consecutive ADPKD prospective validation cases
were similar, as shown in Table 2. For the training data, ADPKD subjects were 54% female
and 46% male. The mean GFR was 68 mL/min (Table 2). The distribution of Mayo
Classifications [10] was A-13%, B-27%, C-33%, D-16% and E-11%.

Table 2. Demographic data.

Parameter Training/Validation
Data

External
Test Set

Prospective
Test Set

Number of Patients 215 30 30

Number of MR exams 260 30 30

DICOM images 9540 1368 2137

Male:Female (%male) 98:117 (46%) 17:13 (57%) 11:19 (37%)

Age at scan (years) 49 ± 14 49 ± 16 46 ± 15

eGFR (mL/min/1.73 m2) 68 ± 28 85 ± 30 72 ± 34

Total Kidney Volume (mL) * 1287 (669–2213) 1334 (693–2376) 1444 (885–2020)

Ht-TKV (mL/m) * 757 (415–1275) 777 (393–1297) 837 (550–1234)

Mayo class ** -Report N and %
A 29 (13%) 4 (13%) 1 (3%)
B 58 (27%) 8 (27%) 6 (20%)
C 70 (33%) 7 (24%) 13 (44%)
D 34 (16%) 10 (33%) 7 (23%)
E 24 (11%) 1 (3%) 3 (10%)

Race-Report N and %
Asian 10 (5%) 1 (3%) 4 (13%)
White 148 (69%) 23 (77%) 16 (53%)
Black 14 (6%) 1 (3%) 2 (67%)

Unknown 43 (20%) 5 (17%) 8 (27%)

* median (interquartile range), ** Calculated based upon the first exam for subjects with multiple MRIs. Ht-TKV:
height-adjusted total kidney volume.
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3.1. Model Accuracy

A 2D U-net model was trained with an EfficientNet as its backbone pretrained on
the ImageNet. During the training, the rectified Adam (RAdam) and the Lookahead
optimizers were utilized to optimize the convergence. With a batch size of 8, convergence
was achieved over about 100 epochs for training on each organ. Initial analysis of model
performance on training data showed DSC = 0.94 for the left kidney, 0.93 for the right
kidney, 0.94 for the liver and 0.91 for the spleen, indicating no issue with underfitting.
There was also no evidence of overfitting with favorable DSC, concordance coefficients,
root mean square error and average percent error. The number of cases with zero error
for kidneys, liver and spleen are shown in Table 3 for (A) external validation and (B)
prospective validation. Notably, the performance on external validation is similar to
the performance on prospective cases, suggesting that there is good generalizability of
model performance beyond the training cases. These kidney segmentation results with
DSC of 0.95 to 0.98 are superior to most prior studies which range from 0.80 to 0.98,
and these kidney results are comparable to Goel et al. [22], on which this work is based,
see Table 1. For liver segmentations the 0.96 to 0.97 DSC reported here is slightly better than
the DSC of 0.95–0.96 reported in the only MRI paper analyzing liver in addition to kidneys
(van Gastel et al.) [32]. The especially impressive spleen results where DSC = 0.98–0.99 had
not been previously reported for ADPKD.

Bland-Altman plots for the external validation, Figure 4, and prospective validation,
Figure 5, show that most ADPKD subjects had excellent model performance that was better
than the Table 3 average values. However, a few outlier cases, where the model performed
poorly, had large errors. These outliers tended to have larger volumes compared to ground
truth, which created bias that was prominent at the lower organ volumes, especially for
kidneys. This may be a limitation of this methodology for patients with smaller TKV.
Examples of model performance and typical errors are illustrated in Figure 6.

Table 3. (A) Model accuracy on external validation (n = 30), median (interquartile range). (B) Model
accuracy on prospective validation (n = 30), median (IQR).

(A)

External Test Set Right Kidney Left Kidney Liver Spleen

Model volume (mL)
Corrected model volume (mL)

617 (327–1009)
608 (316–1041)

582 (416–1289)
582 (365–1285)

1706 (1292–2087)
1684 (1287–2076)

220 (145–274)
222 (157–280)

DSC 0.96 0.98 0.97 0.96

Concordance Coefficient >0.99 >0.99 0.98 0.99

RMS error (mL) 42 39 258 17

Average % error 7% 3% 3% 1%

Number with zero error 5 (17%) 6 (20%) 1 (3%) 7 (23%)

(B)
Prospective Test Set Right Kidney Left Kidney Liver Spleen

Model volume (mL)
Corrected model volume (mL)

625 (370–1000)
650 (394–998)

729 (481–1039)
768 (485–1043)

1711 (1489–2065)
1727 (1495–2051)

244 (177–315)
241 (175–318)

DSC 0.96 0.96 0.96 0.95

Concordance Coefficient >0.99 >0.99 >0.99 0.98

RMS error (mL) 112 65 112 37

Average % error 6% 5% 5% 1%

# with zero error 2 (7%) 3 (20%) 2 (7%) 2 (7%)
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Figure 6. Examples of model error on axial T2. (A) Axial T2 weighted image from a 51-year-old male
with ADPKD showing an unlabeled cystic region (red arrow) between liver (yellow) and right kidney
(red) reflecting the challenge of finding the boundary between the right kidney from the liver, with
both being very cystic. Also note that the fluid filled stomach (white arrow) is incorrectly labelled as
left kidney (green). (B) Axial T2 weighted image from a 59-year-old male with ADPKD demonstrating
correct labeling of the left kidney (green), incorrectly labelled abdominal wall mistaken for liver
(yellow arrow), and an unlabeled anterior right renal cyst (red arrow) which should be red for right
kidney but is in a location which can be mistaken as gallbladder. (C) Axial T2 weighted image from a
51-year-old male with ADPKD demonstrating (A) correct labeling of the spleen (blue) but incomplete
labeling (yellow arrow) of the left edge of a massively enlarged liver which does not commonly
extend this far to the left side of the patient. (D) Axial T2 weighted image from a 62-year-old male
with ADPKD showing near perfect labeling of the spleen (blue). The gallbladder (yellow arrow) is
partially incorrectly labeled as liver (yellow).

3.2. Time Savings with Model-Assisted Annotation

The mean times for manual segmentations and model assisted segmentations for liver,
kidneys and spleen are shown in Table 4. Overall, using the model reduced the radiologist
time required for segmentations by 42% from 33:04 to 19:17 min (p = 0.001).

Table 4. Mean time (minutes) for manual organ segmentation and model assisted segmentations for
the first 10 prospective cases averaged over four trained observers.

Manual
Segmentation

Model Assisted
Segmentation Time Savings p-Value

Right Kidney 7:39 ± 2:26 4:31 ± 1:34 3:08 (41%) 0.004
Left Kidney 7:34 ± 3:44 4:16 ± 1:35 3:19 (44%) 0.01

Liver 12:49 ± 6:10 8:49 ± 3:52 3:59 (31%) 0.007
Spleen 4:13 ± 0:48 2:04 ± 0:59 2:09 (51%) 0.0003
Total 33:04 ± 8:05 19:17 ± 7:19 13:47 (42%) 0.001
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3.3. Interobserver Variability Improvement with Model Assisted Annotations

The mean organ segmentation values were nearly identical for the manual and model
assisted annotation groups, indicating that both methods were on average producing
similar results. To determine if interobserver variability of the segmentation was reduced
with model assisted segmentations, standard deviations were calculated, (see Table 5),
as well as interclass correlation coefficients among the three observers for the manual
and model assisted segmentations. The smaller mean standard deviations and higher
ICCs = 1.000, 1.000, 1.000, 0.999 (for right kidney, left kidney, liver and spleen, respectively)
for model assisted, compared to manual, 0.999, 0.999, 0.995 and 0.994, respectively indicate
an improvement in reproducibility of the measurement (p < 0.05) for all organs with
model assistance.

Interestingly, even though the algorithm was trained on axial T2 images it also worked
well on coronal images (see Figure 7), further supporting the generalization of the model.

Table 5. Standard deviations of organ volumes measured by three trained observers for segmentations
performed manually or with model assistance.

Volume Measurement Standard Deviations

Manual
Segmentation (mL)

Model Assisted
Segmentation (mL) p-Value

Right Kidney
Left Kidney

14
10

7
5

0.02
0.07

Liver 55 11 0.001
Spleen 14 5 0.001
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Figure 7. Coronal T2 weighted image from a 61-year-old male with ADPKD showing correctly
labeled liver (yellow) and left kidney (green). Right kidney (red) is mostly correct but has a thin
vertical sliver (red arrow) that crossed the midline and became labeled as left kidney (green).
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4. Discussion

These data from 275 ADPKD patients (151 training, 64 internal validation, 30 external
validation, 30 prospective validation) and a total of 318 MRI exams show that a simple
2D deep learning U-net model facilitates accurate organ volume measurements and re-
duces the time for model assisted segmentations. Final ground truth results were similar
between manual and model assisted segmentations, with substantially improved interob-
server agreement with model assisted annotations. Accordingly, measurements by a single
observer are likely to be more accurate and more rapid with model-assisted segmentation.
This improvement in reproducibility is especially useful when monitoring slowly progres-
sive diseases, such as ADPKD where organs enlarge by only 5% per year [43], reducing
measurement variability from 10% to 5% enables meaningful measurements to be made at
annual rather than biennial intervals. This work builds on prior models measuring only
kidney [22] or combined kidney and liver [32] for a more comprehensive assessment of
ADPKD disease progression.

Radiologists and image post-processing specialists will prefer this model assisted
annotation methodology because it allows for gold standard of reference, manual segmen-
tations to be performed in substantially less time. Since the deep learning segmentation is
doing the bulk of the work, the radiologist can focus on the fine details when correcting the
model output to ensure a perfect segmentation. Indeed, model assisted segmentations by
multiple observers in this study had substantially reduced standard deviations, indicating
an improvement in measurement reproducibility over manual contouring without model
assistance. These corrected studies can be used to further train the model for constant,
never-ending improvement in the methodology. This is especially important for MRI where
minor improvements in the imaging technology are periodically implemented and need to
be incorporated into the model. Unlike prior reports attempting to fully automate organ
volume measurements into ADPKD with accuracy approaching manual contouring [22–35],
this research demonstrates superior measurement reproducibility over manual contouring
that can readily adapt to technological advances. Since the deep learning server is within
the PACS firewall, technologists can rapidly transfer images to the server for running the
inference. All the annotations are saved in a cyber-secure environment for later review as
necessary and for use in further model training. Although the reports contain only the
final volume measurements, access is possible for sharing with referring physicians and
displaying the annotations at clinical case management conferences.

Most prior deep learning approaches to ADPKD focused only on measuring kidney
volumes. The one study using MRI data to measure both kidney and liver volumes was
based upon coronal T2 fat suppressed images obtained in the 2007 to 2015 timeframe, which
are not currently acquired at many institutions including the Weill Cornell and Columbia
University Medical Centers. This study utilizes the more ubiquitous axial T2 weighted
single shot fast spin echo type images without requiring fat suppression, and analyzes all
abdominal organs enlarged in ADPKD, kidneys, liver and spleen.

Time saving was greatest for the spleen (50%), most likely due to the homogeneous
signal intensity of the spleen and the absence of indistinct organ boundaries. The least time
saving was for the liver (31%) reflecting the challenge of defining its boundaries abutting
the stomach, heart, pancreas, lung, chest wall vasculature (IVC, aorta, portal vein) and
especially the right kidney. The slightly greater time saving for the left kidney compared
to right kidney likely reflects the relatively high degree of difficulty defining the border
between the right kidney and the liver (Figure 6), which is especially difficult when both
organs have numerous cysts.

Since each organ was segmented independently with its own binary 2D U-net, adjudi-
cating overlap voxels involving more than one organ was essential. Our initial approach
of highlighting overlap voxels for manual adjudication by assigning new colors was cum-
bersome. Defaulting to the most common overlap corrections became an effective, time
efficient solution. Another strategy would be to utilize a multi-class model implementa-
tion via softmax adjudication. Our attempts at multiclass modeling were not successfully
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converging. Similarly, one might expect 3D models to perform better than our simple 2D
model. However, 3D models require greater computer memory and more data. If each
MRI exam was a single 3D model data point, we would have an N of 260 instead of 9540
individual 2D images before augmentation. Adding additional tissues and organs to the
ensemble, as well as subsegmenting organs to measure cyst fraction or cyst volumes, is
easier with the 2D method, which does not require every tissue/organ to be labeled on
every case used for training

Measuring organ volumes is important in ADPKD for determining prognosis (e.g., age
of onset of ESKD). Other potential benefits that might accrue by improving the accuracy and
efficiency of TKV measurement includes the assessment of indications for and responses to
treatment with tolvaptan to slow progression of CKD and for assessing other therapies [44].
Monitoring liver and spleen volumes may be similarly useful in those ADPKD subjects
where those organs are most affected.

The main strength of this study is the large number of ADPKD subjects used for
training with contours verified with two trained observers including a board-certified
radiologist experienced with the radiographic evaluation of ADPKD patients. A limitation
is the predominant enrollment of patients with more advanced cystic disease with high total
kidney volumes. Another limitation is that the 2D methodology does not allow the deep
learning model to consider 3D features, especially information on adjacent slices, which has
been useful during manual contouring. Yet another limitation is the challenge of separating
right and left kidneys when they are really large and cross the midline (Figure 7). The
excellent performance on training, prospective and external data sets indicates that there is
no problem with underfitting or overfitting the training data. However the Bland-Altman
analysis shows outliers with large errors for the subjects with smaller TKV, presumably
earlier in the disease process. This raises the possibility of reduced accuracy for smaller
TKV, and large errors were also seen for small spleens. This algorithm is not considered
fully automatic since we are routinely correcting the model output. However, these model-
assisted annotations for calculating organ volumes are more reproducible and likely more
accurate compared to manual only annotations of the past. Finally, it only works on axial
T2 weighted images.

Future work will extend segmentations to more pulse sequences and imaging planes
as well as more tissues including peritoneal fat, pancreas, pleural effusions as well as
including sub-segmentations of cyst factions, exophytic cysts [17], and simple versus
complex cysts [45]. Extending this ensemble methodology to additional organs is facilitated
by the 2D approach which does not require training data to have every structure labeled
for every patient. However, extending it to 3D may improve performance by incorporating
of 3D information into the deep learning model. Plans are also underway to extend it
to CT data to determine which modality provides the most accurate and reproducible
measurements. Ongoing clinical, model assisted segmentations will continue to expand
the database of training cases, likely further improving model performance and potentially
obviating the need for model segmentation corrections. The automated segmentation of
more pulse sequences may allow for better quality control and further improvements in
interobserver variability.
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Table of Abbreviations

ADPKD Autosomal Dominant Polycystic Kidney Disease
CKD Chronic Kidney Disease
CKD-EPI Chronic Kidney Disease Epidemiology Collaboration
CNN Convolutional Neural Network
CT Computerized Tomography
DICOM Digital Imaging and Communications in Medicine
DSC Dice Similarity Coefficient
eGFR Estimated Glomerular Filtration Rate (based on CKD-EPI method)
ESKD End Stage Kidney Disease
HASTE Half Fourier Single-shot Turbo Spin-Echo
MRI Magnetic Resonance Imaging
NIfTI Neuroimaging Informatics Technology Initiative
PACS Picture Archiving and Communication System
SSFP Steady State Free Precession
SSFSE Single-Shot Fast Spin Echo
TE Time to Echo
TKV Total Kidney Volume
ht-TKV Height Adjusted Total Kidney Volume
TR Time to Repeat
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