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Abstract. The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017.
For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this
devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1)
and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided
further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged
mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated,
multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have
already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of
familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality
control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and
downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed
mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications
for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies
that are based on a detailed understanding of the PINK1/Parkin pathway.
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THE ROLE OF MITOCHONDRIAL
DYSFUNCTION IN PD PATHOGENESIS

Mitochondria are energy producing organelles that
are enclosed by a double membrane and form a
complex and highly dynamic network regulated by
constant fission and fusion [1]. An electrochemi-
cal gradient (��m) across the inner mitochondrial
membrane (IMM) is important for ATP production
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[2, 3]. Other important functions of mitochondria
include Ca2+ buffering and the regulation of cel-
lular apoptosis [4, 5]. While mitochondria harbor
their own genome, it only encodes few subunits of
the mitochondrial respiratory chain complexes [6].
The majority of mitochondrial proteins are encoded
by the nuclear genome, thus requiring a coordinated
transcription, translation, import into, and protein
complex assembly inside mitochondria [7]. The
importance of intact, functional mitochondria is evi-
dent by a variety of symptoms that are associated with
classical mitochondrial diseases [1]. Especially vul-
nerable are tissues with a high energy demand such as
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brain, muscle, heart, kidney, and liver. Neurological
symptoms include developmental delays, declining
mental abilities, seizures, blindness, and loss of motor
skills.

In addition, an increasing body of evidence sug-
gests that mitochondrial dysfunction is associated
with several age-related diseases and the aging pro-
cess itself. Initial studies showed that dysfunctional
mitochondria accumulate during aging [8], which
is a major risk factor for many neurodegenerative
diseases including PD [9]. The characteristic motor
and non-motor symptoms of PD result from striatal
depletion of the neurotransmitter dopamine (DA),
secondary to the relatively selective degeneration of
DA neurons in the substantia nigra pars compacta
(SNpc). DA neurons are characterized by distinctive
physiological features that could contribute to their
vulnerability and sensitivity toward mitochondrial
dysfunction [10–12]. One of the theories explaining
the susceptibility of DA neurons is based on their high
metabolic activities resulting in the increased produc-
tion of harmful reactive oxygen species (ROS), which
subsequently induce mitochondrial damage [13]. The
deleterious effects could then spread within the entire
mitochondrial network, eventually resulting in neu-
ronal cell death [14].

The first direct evidence linking mitochondrial
dysfunction to PD appeared with the observation that
accidental exposure to 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) caused parkinsonism and
DA neuron degeneration in patients [15]. The product
of MPTP oxidation, MPP+, was shown to selectively
inhibit complex I, a component of the mitochon-
drial respiratory chain, which subsequently induces
DA neuronal death [16, 17]. Later, reduced activity
of complex I was also observed in different tissues
of sporadic PD patients, such as the SNpc, skele-
tal muscle and platelets [18–20]. The exposure to
other toxins such as the pesticide rotenone and the
herbicide paraquat that inhibit complex I or induce
ROS, respectively, also result in loss of nigrostriatal
DA neurons and have been linked to parkinsonian
phenotypes in humans and in animal models [21].

THE RECESSIVE PD GENES PINK1
AND PARKIN

Among others, the identification of the two genes
associated with PD, PINK1 (PARK6) [22] and Parkin
(PARK2) [23], became milestones in PD research.
Homozygous or compound heterozygous mutations

in both genes are the most common causes of reces-
sive early-onset PD (usually below age of 40) [24].
Though both genes are ubiquitously expressed, com-
plete loss of either function results in selective loss of
DA neurons and manifestation of tremor, bradykine-
sia, and rigidity. Besides earlier disease onset, PINK1
and Parkin associated PD develops generally more
benign than idiopathic disease, with a slower disease
progression as well as a good and sustained response
to levodopa treatment [25, 26]. Aside from the cardi-
nal symptoms of PD, PINK1 patients more frequently
show psychiatric symptoms (depression, anxiety, and
psychosis) [27]. Neuropathological examination has
casted some doubts as to whether Parkin-related PD
has the same disease mechanism as sporadic disease,
since several studies described the absence of Lewy
bodies, the pathognomonic sign of PD. However, to
date, at least five studies reported the presence of
Lewy bodies in Parkin cases [28–32]. In addition,
two out of three PINK1 cases that were studied so
far reported Lewy bodies [33–35]. The reason for
the neuropathological heterogeneity is unclear but
might relate to some specific mutations within PINK1
or Parkin and/or the age of the patients when they
decease.

While a mitochondrial function had been sug-
gested for PINK1 from the beginning simply based
on its mitochondrial targeting sequence (MTS), a
mitochondrial role for Parkin remained elusive for
several years. The first studies supporting the involve-
ment of both in regulating mitochondrial function
were performed in Drosophila [36–38]. PINK1−/−
and Parkin−/− mutant flies exhibited similar mito-
chondrial morphological abnormalities, locomotor
deficits, muscle degeneration, male sterility as well
as neuronal loss [37, 38]. The PINK1−/− pheno-
type was rescued by Parkin overexpression, but not
vice versa, suggesting that PINK1 acts upstream of
Parkin in a common, linear pathway [37–39]. Mito-
chondrial abnormalities and rescue of PINK1 loss
by Parkin, but not PD-associated mutations were
confirmed in human cell lines and primary fibrob-
lasts [40]. However, PINK1 or Parkin knockout mice
showed only subtle phenotypes with some mito-
chondrial dysfunction, yet without overt pathological
changes in ultrastructure [41, 42].

In a breakthrough study in 2008, massive Parkin
translocation from the cytosol to damaged mitochon-
dria was observed after treatment with the uncou-
pler carbonyl cyanide m-chlorophenylhydrazone
(CCCP), a chemical that dissipates ��m [43].
Strikingly, Parkin recruitment to mitochondria was
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demonstrated shortly after to depend on the presence
of catalytically active PINK1 by several laborato-
ries [44–47]. Since PINK1 and Parkin were shown
to coordinate the selective clearance of damaged
mitochondria via the autophagy/lysosome pathway
(mitophagy), this also provided a link between the
two major cellular dysfunctions implicated in PD
pathogenesis, namely alterations in mitochondria
and in cellular degradation [48]. Importantly, PD-
associated mutations in either gene abrogated this
sequential process at different steps and through dis-
tinct pathomechanisms, underscoring the etiological
importance of this pathway [44, 49, 50].

THE MITOCHONDRIAL KINASE PINK1

PINK1 was initially identified in an expression
analysis of genes that were upregulated upon intro-
duction of the tumor growth suppressor phosphatase
and tensin homolog (PTEN) and was named accord-
ingly (PTEN-induced putative kinase 1) [51]. PINK1,
a 581 amino acid protein, contains an N-terminal
MTS, a transmembrane domain (TM), a highly
conserved serine/threonine kinase domain, and a
C-terminal auto-regulatory domain (Fig. 1A). The
overall frequency of PINK1 mutations in early-onset
PD ranges between 1–9% depending on the ethnicity
of the subjects [52]. Although crystal structures of
PINK1 are currently unavailable, in silico analysis
and structural modeling indicated some similari-
ties between its kinase domain and members of the
calmodulin-dependent kinase family [53–56].

Two critical regulatory regions within PINK1 are
the cleavage sites of the mitochondrial process-
ing peptidase (MPP) and the presenilin-associated
rhomboid-like protease (PARL) [57–59]. PINK1
activity is determined by autophosphorylation on
three residues (Ser228, Thr257, and Ser402) in the
activation loop [60–62]. While a complete loss of
kinase activity is unequivocally linked to early-onset
PD, as seen in, for instance, homozygous p.Q456X
carriers [63], a single PINK1 mutation that only
causes partial reduction in enzymatic activity could
also result in a milder phenotype or contribute to
disease vulnerability later in life. While this is a
matter of debate, mild PD symptoms were observed
in heterozygous individuals carrying the p.W437X
or p.Q456X mutation [64–66]. In addition, data
from our laboratory suggested that the heterozygous
PINK1 p.G411S mutation increases risk for PD by
a dominant-negative mechanism [67]. Though not

all PINK1 mutations appear to be alike, these stud-
ies highlight the disease effects of particular variants
and encourage a more detailed genetic and functional
analysis of heterozygous mutations in recessive PD
genes.

THE CYTOSOLIC E3 UBIQUITIN LIGASE
PARKIN

Parkin, a 465 amino acid protein, is a RING-
in-between-RING (RBR)-type E3 ubiquitin (Ub)
ligase [68] that catalyzes (multi-) mono- and
poly-ubiquitylation of numerous substrates that are
structurally and functionally divers, including itself
[68, 69]. Together with specific co-enzymes, Parkin
adds the small modifier protein Ub (76 amino acids)
to lysine residues of substrate proteins including Ub
that itself contains seven internal lysines. Consecutive
rounds of conjugation result in growth of poly-Ub
chains that, depending on the linkage type, present
with distinct topologies and thus biological functions.
Structurally, Parkin consists of an N-terminal Ub-like
(UBL) domain followed by a flexible linker and four
cysteine-rich regions that each coordinate two Zn2+
atoms (Fig. 1B). Of those, three are really interest-
ing new gene (RING) domains (RING0, RING1 and
RING2), the last two of which are separated by an
in-between-RING (IBR) domain. Parkin mutations
are the primary cause of familial early-onset PD that
are found in nearly 50% of all young PD patients
(≤40 years old) [70, 71]. To date, over 150 PD-related
Parkin mutations have been identified across various
ethnic groups [24]. In addition to genetic mutations in
familial PD, Parkin inactivation by post-translational
modifications in sporadic disease has been suggested
[72].

Initially Parkin was identified as a classical RING-
type E3 Ub ligase [73] that bridges the interaction
between the E2 Ub-conjugating enzyme and a sub-
strate without physically receiving Ub. More recently
it was shown that Parkin has a catalytic cysteine
residue (Cys431) in its RING2 domain that forms
a transient thioester with Ub before further trans-
fer onto substrate protein, similar to E6-AP carboxyl
terminus (HECT)-type enzymes [74]. Indeed, the PD-
associated mutation p.C431F abolishes the E3 Ub
ligase activity of Parkin as it can no longer bind the
Ub moiety [75, 76]. This novel RING/HECT-hybrid
mechanism lead to its re-classification as a mem-
ber of the RBR-type family of E3 Ub ligases that
are auto-inhibited through several intra-molecular
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Fig. 1. PINK1 and Parkin domain structures and PD-related mutations. (A-B) Given are schematic, color-coded domain representations
of PINK1 and Parkin. PD-associated missense and nonsense mutations from the PD Mutation Database (http://www.molgen.vib-
ua.be/PDMutDB/) are displayed on top of each structure with their respective locations. Mutations in red have been experimentally verified
as loss-of-function mutations and are considered pathogenic, while functional defects for variants shown in black remain unclear. Underlined
mutations are common variants based on the ExAC database (http://exac.broadinstitute.org) with allele frequencies greater than 1:10 000.
(A) Domain structure of PINK1 (581 amino acids): mitochondrial targeting sequence (MTS, orange), transmembrane region (TM, red),
N-terminal regulatory region (NT, gray), N-lobe of the kinase domain (cyan), C-lobe of the kinase domain (purple) and the C-terminal
domain (CTD, blue). PD-associated mutations are listed on the top. Mitochondrial protease (MPP and PARL) cleavage sites and PINK1
auto-phosphorylation sites are displayed at the bottom. (B) Domain structure of Parkin (465 amino acids): ubiquitin-like domain (UBL,
red), linker (gray), really-interesting-new-gene (RING)/unique Parkin domain (R0/UPD, green), RING1 (R1, cyan), in-between-RING (IBR,
purple), repressor element of Parkin (REP, yellow), and RING2 (R2, pink). E2 co-enzyme and p-Ser65-Ub binding sites as well as Ser65
phosphorylation and Cys431 catalytic sites are displayed at the bottom. (C) Closed, inactive conformation of full-length human Parkin (left:
front view and right: back view). The structure is shown in colored ribbons that correspond to the respective domain colors. The solvent-
accessible surface area of each domain is shown in semi-transparent rendering in the same color. Ser65 is highlighted in Van der Waal
representation with standard atom coloring (hydrogen: white, oxygen: red, nitrogen: blue). The zinc-finger motifs of Parkin are rendered in
licorice stick with standard atom coloring and the corresponding zinc ions as spheres (cyan).

interactions [68]. While a role of the UBL domain
was already suggested earlier [77], elucidation of
Parkin’s inactive structure provided a complete pic-
ture of the auto-inhibitory mode [78–82]. In addition

to the N-terminus that keeps Parkin in a closed con-
formation, its activity is further repressed by the
REP (repressor of Parkin) region that blocks the
E2 binding site in its canonical RING1 (Fig. 1C).

http://www.molgen.vib-ua.be/PDMutDB/
http://exac.broadinstitute.org


D. Truban et al. / PINK1, Parkin, and Mitochondrial Quality Control 17

Moreover, RING0 intersects between RING1 and
RING2 and thereby buries Cys431 resulting in a
spatial separation between the active sites of E2
and Parkin, which disrupts Ub transfer. Targeted
mutations in the auto-inhibitory regions indeed acti-
vated Parkin and increased its auto-ubiquitylation
activity [79]. Based on the closed structure, it has
become apparent that Parkin must get activated
and has to undergo major structural rearrangements
in order to gain enzymatic E3 Ub ligase activity
[82, 83].

THE LIFE CYCLE OF PINK1 – A SENSOR
FOR MITOCHONDRIAL DAMAGE

PINK1 is imported into healthy mitochondria
through the general import machinery, the translo-
case of the outer membrane (TOM) and translocase of
the inner membrane (TIM) [84]. Inside mitochondria,
PINK1 undergoes consecutive cleavages by the mito-
chondrial proteases MPP that removes the MTS in the
matrix and by PARL that cleaves the TM domain in
the IMM [57–59]. As a result of both events, cleaved
PINK1 is re-exported and subsequently degraded by
the N-end rule pathway through the Ub/proteasome
system resulting in low levels of endogenous PINK1
in healthy mitochondria [85] (Fig. 2A). However,
inside mitochondria, PINK1 has been implicated in
the phosphorylation of different proteins, although
for some of them it is unclear whether this occurs
directly. PINK1-mediated phosphorylation of inner
mitochondrial proteins is generally thought to be pro-
tective. Among the reported PINK1 substrates are the
PD-linked serine protease HTRA2/Omi (PARK13)
[86], the chaperone TRAP1 [87] in the intermem-
brane space and the complex I subunit NDUFA10
[88] located on the IMM. In flies, overexpression
of TRAP1, for which direct phosphorylation by
PINK1 has been shown, completely rescued pheno-
types of PINK1, but not Parkin, deficiency [89, 90].
The phospho-mimetic version of NDUFA10 reversed
PINK1 loss-of-function induced deficits in mouse
cells and fly models [88].

Import of proteins, including PINK1, into mito-
chondria requires an active proton gradient and
is inhibited upon mitochondrial damage induced
by mitochondrial depolarizing agents (e.g. CCCP)
[91]. Consequently, full-length PINK1 accumulates
on the outer mitochondrial membrane (OMM) [91]
(Fig. 2B), where it is stabilized by autophospho-
rylation [61] and the formation of a large 700kDa

multimeric protein complex with the TOM machin-
ery [84, 92]. Components of the TOM complex are
essential for the alternative insertion of PINK1 into
the OMM [93, 94]. The dynamic nature of PINK1
protein levels and its dual mitochondrial localization
explain how PINK1 serves as a sensor of mitochon-
drial impairment and initiates the degradation of
selectively damaged mitochondria.

PINK1-MEDIATED PARKIN ACTIVATION

When full-length PINK1 is stabilized on the OMM
of damaged mitochondria, its kinase domain is fac-
ing the cytosol. Several cytosolic and OMM proteins
that modulate mitochondrial dynamics or apoptotic
signaling have also been suggested as candidate sub-
strates for PINK1 [95–97]. PINK1 was demonstrated
to phosphorylate Parkin at serine-65 (Ser65) in the N-
terminal UBL domain [60, 98, 99]. PINK1-mediated
phosphorylation of Parkin was shown to activate its
enzymatic functions and to induce its translocation
to damaged mitochondria (Fig. 2B) [98, 99]. Using
molecular modeling and dynamics simulation, we
suggested that phosphorylation of Parkin releases its
auto-inhibited structure and initiates opening confor-
mations that could lead to its enzymatic activation
[82]. Second, PINK1 was recently identified as the
first Ub kinase, which phosphorylates not only the
E3 Ub ligase Parkin but also the Ub itself at this con-
served residue (p-Ser65-Ub) [100–103]. Binding of
p-Ser65-Ub to the RING1 domain of Parkin leads to
straightening of a helix that results in an initial release
of the auto-inhibitory UBL domain [104–106]. In
turn, this facilitates phosphorylation of Parkin, which
causes further major structural rearrangements, de-
repression of enzymatic activity, and maintenance of
an active conformation [107–109]. While p-Ser65-
Ub also serves as the receptor for Parkin on damaged
mitochondria [106], both PINK1-mediated phospho-
rylation events together fully activate its enzymatic
functions.

Recruitment of Parkin to damaged mitochondria
then initiates a feedforward loop (Fig. 2B), wherein
activated Parkin further conjugates Ub moieties onto
OMM proteins and thereby provides more Ub sub-
strates for PINK1-dependent phosphorylation, which
in turn amplifies Parkin activation, recruitment, and
E3 Ub ligase activity [101, 102, 110]. As a result of
the concerted action of PINK1 and Parkin, damaged
mitochondria are coated with p-Ser65-Ub chains.
While the detection of endogenous, activated PINK1
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Fig. 2. PINK1/Parkin-directed mitochondria quality control. Shown is a cartoon of the PINK1/Parkin pathway(s). (A) In healthy mitochon-
dria, PINK1 is imported and it undergoes cleavage by the mitochondrial proteases MPP and PARL. N-terminally cleaved PINK1 is then
subsequently degraded by the Ub/proteasome system. Parkin remains inactive in the cytosol. (B) Upon mitochondrial damage, PINK1 is no
longer imported, but accumulates on the outer mitochondrial membrane (OMM) to activate Parkin. PINK1-mediated phosphorylation of Ub
and Parkin enable its E3 Ub ligase functions in concert with E2 Ub-conjugating enzymes. p-Ser65-Ub on OMM substrates acts as the Parkin
receptor for its recruitment from the cytosol. Together, PINK1 and Parkin then engage a feed-forward loop amplification. Formed poly-Ub
chains can be cleaved by DUBs to reverse PINK1/Parkin functions. (C) Individual OMM proteins decorated with poly-Ub can be extracted
from the membrane and degraded by the 26 S proteasome (mitochondria-associated degradation; MAD). Greater, but localized mitochondrial
damage is sequestered by the formation of mitochondria-derived vesicles (MDV). Severely damaged mitochondria are decorated with high
levels of p-Ser65-Ub that serves as the mitophagy tag for autophagy receptors that direct their degradation in lysosomes.

and Parkin has long been hampered by lack of sen-
sitive tools, especially in primary cells, we have
recently developed phospho-specific Ub antibod-
ies that allow the detection of the PINK1/Parkin
pathway in patients’ fibroblasts, neurons, and post-
mortem brains [111, 112]. The observed increase
of p-Ser65-Ub signal with mitochondrial stress,
age, and disease, highlights its potential as an
important disease biomarker and a therapeutic
target.

PINK1/PARKIN-DIRECTED
MITOCHONDRIAL QUALITY CONTROL

The PINK1/Parkin pathway is a complex reg-
ulated, sequential process that coordinates several
aspects of mitochondrial quality control, likely
dependent on the extent of mitochondrial damage
(Fig. 2C). Thereby, PINK1 and Parkin modify a wide
range of substrate proteins and mediate their clear-
ance [69, 113, 114]. The best characterized ones
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include the mitochondrial fusion proteins Mitofusin-
1 and Mitofusin-2 that are targeted to prevent refusion
of damaged mitochondria with the healthy network.
Mitofusins are eliminated by valosin-containing
protein (VCP/p97) through mitochondria-associated
degradation (MAD) via the 26 S proteasome [115,
116]. This process further leads to fragmentation of
damaged mitochondria [117], which also facilitates
their later engulfment by autophagosomes [118, 119].
Other substrates involved in mitochondrial dynam-
ics are the OMM proteins Miro-1 and Miro-2, which
anchor mitochondria to microtubules via the kinesin
motor protein and thus play significant roles in their
trafficking. Degradation of these transporter proteins
leads to inhibition of mitochondrial movement and
further promotes segregation of damaged mitochon-
dria [95]. In addition, numerous other proteins from
all mitochondrial subcompartments have been iden-
tified as targets for PINK1 and Parkin [69, 115], but
additional functional roles other than their pure elim-
ination remain unclear. Intriguingly, distinct poly-Ub
chains linkages have been identified on substrates
suggesting a more complex regulation of fates medi-
ated by those topologically diverse chains [120].

Intriguingly, recent studies identified an additional
role for the PINK1/Parkin pathway in the formation
of so-called mitochondria-derived vesicles (MDVs)
that appear to mediate an alternative route for degra-
dation (Fig. 2C). Mass spectrometry in Drosophila
showed a slower turnover of mitochondrial respi-
ratory chain proteins in PINK1–/– and Parkin–/–

mutants compared to autophagy mutant Atg7–/– flies
[121]. While this suggested a mechanism of mito-
chondrial proteins turnover dependent on PINK1
and Parkin, but independent from autophagy, mito-
chondrial components were shown to be degraded
through an MDV pathway [122]. MDVs selectively
transport oxidized protein and lipid cargo to perox-
isomes [123] or other specific cargos to lysosomes
via multi-vesicular bodies [124]. The so far identi-
fied cargoes and destinations of MDVs might only
represent the tip of the iceberg and it is conceiv-
able that other routes such as exosome-mediated
secretion are yet to be discovered [125]. Of note,
at least some of these MDVs are generated by the
vacuolar protein sorting 35 homolog gene (VPS35)
[123], which is linked to late-onset autosomal dom-
inant PD (PARK17) [126, 127]. This component of
the retromer complex, which guides retrograde pro-
tein sorting from the endosome-lysosome pathway
[128], has also been found localized on mitochon-
dria. Interestingly, VPS35 expression in flies rescued

phenotypes associated with loss of Parkin, but not
PINK1 [129].

While these additional roles of PINK1 and
Parkin are just beginning to emerge, the best
characterized functions of the pathway relate to
mitophagy (Fig. 2C). Here, accumulated p-Ser65-
Ub on the mitochondrial surface appears to act
as the mitophagy tag that leads to recruitment
of autophagy receptors. Five Ub-binding pro-
teins, including Optineurin (OPTN), nuclear dot
protein 52 (NDP52), p62/SQSTM1, neighbor of
BRCA1 gene 1 (NBR1) and Tax1-binding protein
1 (TAX1BP1) [130], bind to poly-Ub chains and
to the microtubule-associated proteins 1A/1B light
chain 3 (LC3)/GABAA receptor-associated protein.
Autophagosomal membrane attachment is mediated
through the LC3-interacting region, which targets
damaged mitochondria to phagophores for clear-
ance in the lysosome [131]. It has been suggested
that Optineurin and NDP52 are primary receptors
in this pathway [130, 132], at least in HeLa cells,
possibly due to preferential binding to p-Ser65-
Ub [130, 133]. Recent studies have shown that the
tank binding kinase 1 (TBK1) enhances Optineurin
binding through phosphorylation during mitophagy
[133, 134].

MITOCHONDRIAL HEALTH
AND CELLULAR DEATH

In addition to the clearance of individual compo-
nent and whole mitochondria, Parkin also plays a
role in mitochondrial biogenesis that counteracts its
degradative functions. For instance, Parkin has been
shown to ubiquitylate the transcriptional repressor
PARIS (ZNF746) in vitro, and the low basal activity
of Parkin (i.e. in the absence of CCCP) was reported
sufficient to target it for proteasomal degradation
[135]. Elimination of PARIS facilitates the expres-
sion of the transcriptional coactivator PGC-1�, one
of the major transcriptional regulators of mitochon-
drial biogenesis [136]. Therefore, loss of Parkin may
contribute to cell death by impairing mitochondrial
biogenesis and consequently mitochondrial health
[137].

Parkin protects cells against a variety of stim-
uli when overexpressed and renders them sensitive
when knocked down/out. Following stress, it has
been shown that Parkin opposes the translocation
of the pro-apoptotic Bax protein to mitochon-
dria [138–142]. This might be facilitated by direct
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ubiquitylation of Bax by Parkin [138]. As a con-
sequence, Parkin inhibits cytochrome c release
into the cytosol and the induction of apoptosis
[138–142]. Depending on the stressor, Parkin-
mediated induction of mitochondrial quality control
and Bax-dependent inhibition of apotosis might act
together to prevent cell death [140–142].

MODIFIERS OF MITOCHONDRIAL
QUALITY CONTROL

Along the multiple steps and aspects of mito-
chondrial quality control, a variety of processes
and modifiers have been identified that collab-
oratively regulate the PINK1/Parkin pathway in
either positive or negative manner. Genome-wide
RNAi screens have uncovered numerous regula-
tors of Parkin translocation and/or mitophagy [94,
143–145]. For instance, Parkin is controlled by sev-
eral different enzymes of the Ub system. Distinct
E2 Ub-conjugating enzymes were shown to regu-
late the activation and translocation of Parkin as
well as its enzymatic activity on damaged mitochon-
dria [146–148]. UBE2D and UBE2L3 directly charge
Parkin with Ub on its catalytic center; UBE2N medi-
ates clustering of damaged mitochondria at a later
step and through different Ub linkages; UBE2R1,
on the other hand, negatively modifies Parkin acti-
vation [146]. In addition to E2 enzymes, Parkin
is also regulated through other E3 Ub ligases. For
instance, F-box only protein 7 (FBXO7), a compo-
nent of a multimeric E3 Ub ligase complex, interacts
with both PINK1 and Parkin and contributes to
Parkin recruitment to dysfunctional mitochondria
[149]. The association of FBXO7 with familial PD
(PARK15) thus ties in a third recessive disease gene
and further underlines the disease relevance of the
pathway.

Parkin’s enzymatic functions are antagonized by
de-ubiquitylation enzymes (DUBs) including USP30
[150] and USP15 [151] that cleave poly-Ub chains on
mitochondrial substrates. In contrast, another DUB,
USP8, selectively removes K6-linked Ub chains
on Parkin and thereby facilitates its recruitment
[152]. Together with the opposing roles of some
E2 enzymes, this further highlights the complex
regulation of Parkin and mitochondrial quality con-
trol mediated by different members within the same
enzyme family. Moreover, some of the PINK1/Parkin
substrates have been suggested to regulate the
activation of and/or the progression through the

pathway [49, 91, 144, 153]. Other modifiers of
the PINK1/Parkin pathway are related to autophagy
and apoptosis. Ambra1 binds to Parkin and pro-
motes mitophagy [154], while Beclin1 binds to
PINK1 to promote autophagy [155]. Members of the
anti-apoptotic Bcl-2 family, Bcl-xL and Mcl-1, are
localized in the OMM, inhibit Parkin translocation
and thereby suppress mitophagy [156]. In addition
to protein modifiers, we recently also found certain
microRNAs to be significantly induced under chronic
mitophagic flux and to act as molecular suppressors
of PINK1 expression, suggesting further negative
feedback regulation [157]. In summary, numerous
molecules and cellular processes appear to impact
PINK1/Parkin, the mitochondrial quality control as
well as several other PD genes.

CROSS-TALK OF PINK1/PARKIN WITH
OTHER PD GENES

In addition to PINK1, Parkin and FBXO7, mito-
chondrial and/or autophagic/lysosomal dysfunctions
have also been associated with further familial PD
genes. Loss of DJ-1 (PARK7) in primary cortical
neurons and mouse embryonic fibroblast resulted in
fragmented mitochondria and increased ROS pro-
duction [158]. DJ-1 deficiency is associated with
reduced mitochondrial membrane potential, ATP pro-
duction and aberrant complex I assembly [159]. The
regulation of DJ-1 on mitochondrial function and
autophagy was suggested to operate in a pathway
parallel to PINK1/Parkin [160]. In addition, phospho-
lipase A2 group VI (PLA2G6, PARK14) knockout
flies and mice display swollen mitochondria with
disrupted morphology [161] and autophagic dysfunc-
tion [162]. ATPase type 13A2 (ATP13A2, PARK9)
deficiency results in the fragmentation of the mito-
chondrial network, increased ROS production and a
decrease in the autophagic events [163]. Mutations
in the MTS of the coiled-coil-helix-coiled-coil-helix
domain containing protein 2 (CHCHD2, PARK22)
further support mitochondrial dysfunctions in PD
[164]. Most recently, VPS13C (PARK23) was added
to that list, however, its loss-of-function resulted
in exacerbated PINK1/Parkin-dependent mitophagy
[165].

A mitochondrial function of LRRK2 (PARK8),
which plays a role in familial and sporadic PD,
has been described as well, although the mito-
chondrial localization of LRRK2 is contradictory
[166–169]. Two reports showed that endogenous
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LRRK2 interacts with and phosphorylates the fis-
sion regulator dynamin related protein 1 (Drp1)
at the OMM in murine primary neurons and
human neuroblastoma cells [170, 171]. Overexpres-
sion of LRRK2 wild-type or expression of kinase
hyper-active G2019S LRRK2 mutation enhanced
mitochondrial fragmentation and could be rescued
by Drp1 inhibition [171, 172]. In contrast with
previous models overexpressing LRRK2 G2019S,
LRRK2 G2019S knock-in mice showed deformed
mitochondria, an increase of swollen mitochondria
with abnormal cristae and less Drp1 phosphorylation,
which could be explained by compensatory effects to
restore mitochondrial imbalance in this preclinical
model [173]. In dopamine neurons and fibroblasts
of PD patients harboring LRRK2 G2019S mutation,
LRRK2 was shown to induce fragmentation of mito-
chondria, which increased vulnerability of cells to
stressors and impaired mitochondrial and cellular
health [174–176]. A recent phosphoproteomic study
on LRRK2 G2019S or A2016T mutant knock-in mice
identified several LRRK2 substrates belonging to
the Rab GTPase family, which are involved in pro-
tein transport and regulate the intracellular trafficking
[177]. Mitochondrial members of the Rab family
were not among the identified substrates. This finding
may support an indirect role of LRRK2 on mitochon-
dria through the endosome-mitochondria transport
pathway.

Importantly, alpha-synuclein (SNCA, PARK1/4)
was also shown to bind to mitochondrial mem-
branes and to inhibit complex I function. Such effect
was more pronounced in the presence of the PD-
associated A53T mutation and was also observed
in the SNpc of PD patients [178]. Additionally,
mitochondrial abnormalities were observed in trans-
genic mouse models overexpressing mutant SNCA.
Expression of SNCA A53T induced mtDNA dam-
age and increased sensitivity towards MPTP and
paraquat [179]. In cultured cells, nematode and fly
models, expression of SNCA caused prominent mito-
chondrial fragmentation, which could be rescued by
co-expression of PINK1, Parkin, or DJ-1 [180–182].
In line with this, downregulation or deletion of
either PINK1 or Parkin significantly increased mito-
chondrial pathologies and enhanced the sensitivity
towards SNCA-induced neurotoxicity [183, 184].
Intriguingly, a recent study showed direct binding of
SNCA to TOM20, which resulted in impaired pro-
tein import into mitochondria and thus could possibly
alter PINK1/Parkin signaling, thereby providing a
link to sporadic disease [185].

CONCLUDING REMARKS

Since the initial identification of PINK1/Parkin-
directed mitophagy, many details of this complex
pathway have been worked out with enormous
pace. While the clearance of terminally damaged
organelles seems to be the last resort, it has become
evident that PINK1 and Parkin regulate many aspects
of a stress-activated, mitochondrial quality control
including MAD, MDVs and organelle biogenesis.
However, more research is required to fully under-
stand all facets of this signaling on the structural,
molecular and cellular levels. It is important to men-
tion that most of the pathway has been worked
out in vitro and in cell culture and that transla-
tion of this knowledge into model organisms is
needed. While fly models generally seem to sup-
port the findings [121], a limited number of studies
using mouse models report ambiguous findings on
PINK1/Parkin-dependent mitochondrial quality con-
trol [186, 187]. Yet, dysfunctions in mitochondrial
quality control have already advanced to the center
stage in PD pathogenesis. Indeed, mitochondrial dys-
function is emerging as a common feature suggesting
a great pathogenic overlap among the individual
familial, environmental and even sporadic disease
pathways with a potential convergence at the level of
PINK1/Parkin [188]. Many, if not all, PD genes have
already been directly linked to impairments either of
mitochondria and/or of lysosomal/autophagic path-
ways. Regardless of the exact disturbance, each of
those would impact mitochondrial quality control,
though at different steps of the sequential process.

Along those thoughts, sporadic disease could result
from a complex interaction of exposure to environ-
mental mitochondrial toxins and genetic factors that
impinges on activation, progression or execution of
mitochondrial quality control. Given the direct link
of a few PD genes and the involvement of numer-
ous proteins along the pathway, genetic variants with
weaker effects could play in concert to diminish
protection through PINK1/Parkin signaling. In such
context, it is important to mention that even carri-
ers of heterozygous mutations in PINK1 or Parkin
are at an increased risk for PD [67, 189]. How-
ever, the detection of multigenic forms of disease is
further complicated by individual stress levels that
will vary, depending on genetic pre-disposition and
environmental mitochondrial toxins exposure, from
patient to patient. Nevertheless, future genetic stud-
ies that analyze the synergistic effects of variants in
PINK1/Parkin-related functional assays should lead
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to nomination of additional disease genes, which may
help, at least in part, to further understand idiopathic
disease.

Despite the exquisite sensitivity of DA neurons and
the great relevance to PD, PINK1/Parkin signaling
appears as a fundamental, cell biological mecha-
nism and could have more far-reaching implications.
This is supported by the involvement of several other
disease genes including, but not limited to, factors
involved in Ub binding and substrate degradation.
For instance, VCP/p97, p62/SQSTM1, OPTN1 and
TBK1 have all been genetically linked to the dis-
ease continuum of amyotrophic lateral sclerosis and
frontotemporal dementia [190, 191]. This is further
consistent with the broad neuroprotective roles of
PINK1 and Parkin, whose overexpression in cell and
animal models provided protection against various
genetic and toxic insults [192]. Furthermore, mito-
chondrial quality control appears to play a role not
only in age-related diseases, but potentially the aging
process itself. While PINK1 and Parkin mutant flies
showed decreased life span [36, 39], overexpression
of Parkin was found to extend life span [193] as was
induction of mitophagy in C. elegans [194]. This is
in line with increased accumulation of cellular dam-
age and concomitant decline in degradative capacities
with age in general.

Many breakthroughs in the field have provided
novel opportunities towards the development of tar-
geted therapeutics and selective biomarkers over the
past few years. Amongst those are the identification
of PINK1 as the first Ub kinase and the establish-
ment of p-Ser65-Ub as a highly selective label for
mitochondrial quality control. Using novel antibod-
ies, we have demonstrated PINK1/Parkin signaling
under endogenous conditions in primary neurons and
in post-mortem brains [111, 112]. Detection of acti-
vated PINK1 or Parkin had been hampered thus far
by the unavailability of sensitive tools, however, p-
Ser65-Ub is amplified through the concerted actions
of both enzymes upon stress, age, and disease. Yet,
as a specific label of damaged mitochondria targeted
for destruction, p-Ser65-Ub levels can be expected to
increase with impairments at either end of this qual-
ity control pathway. In addition to further exploiting
this mitophagy tag, modifying the activity or abun-
dance of other proteins involved in the Ub pathway
may represent promising strategies to modulate the
PINK1/Parkin pathway. First small molecule DUB
inhibitors as well as Parkin activators are already
under development and could furnish the next gener-
ation drugs for disease-modifying therapies.
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