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1 | INTRODUCTION
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Abstract

This study aims to reveal the regulatory mechanism of IncRNAs-miRNAs-mRNAs
network during the proliferative phase of liver regeneration (LR). High-throughput
sequencing technology was performed, and a total of 1,738 differentially expressed
IncRNAs (DE IncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and
2,727 differentially expressed mRNAs were identified. Then, the target DE IncRNAs
and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory
network containing 32 miRNAs, 107 IncRNAs, and 270 mRNAs was constructed.
Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate
digestion and absorption, and pyruvate metabolism were significantly enriched in the
network. Through literature review and the regulatory relationship between IncRNAs
and miRNAs, nine core IncRNAs were identified, which might play important roles
during the proliferative phase of rat LR. This study analyzed IncRNA-miRNA-mRNA
regulatory network for the first time during the proliferative phase of rat LR, providing

clues for exploring the mechanism of LR and the treatment of liver diseases.
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factors and inflammatory cytokines. Long noncoding RNA (IncRNA\) is

a class of RNA molecules with a length of more than 200 nucleotides

The liver is one of the important organs in human and animal, which
is responsible for a variety of physiological functions. It has a strong
ability of regeneration after liver loss or toxic injury. Liver
regeneration is a highly organized tissue growth process of restoring
the original framework structure and tissue specific function after
liver injury (Jeon et al., 2013). It was usually divided into three phases
including initiation, proliferation, and termination. In the proliferative
phase, the main process is the proliferation of hepatocyte, which

replicate once or twice under the synergistic action of various growth

*Bai and Guo contributed have equally to this study.

(nt) and lacking an open reading frame that plays crucial roles in
epigenetics, transcriptional regulation, and posttranscriptional reg-
ulation (Maruyama & Suzuki, 2012). Studies have shown that
IncRNAs were not only involved in normal physiological activities
but also related to the occurrence and development of various
tumors (Chen et al., 2013). MicroRNA (miRNA) is a class of
endogenous noncoding single-stranded RNA molecules with a length
of approximately 22 nt. It plays important roles in regulating the
expression of messenger RNAs (mRNAs) through specifically binding
to the 3’-untranslated region (3'-UTR) of the encoding gene. There is
evidence that miRNAs can regulate a variety of cell processes and
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developmental processes (Krol, Loedige, & Filipowicz, 2010).
Salmena, Poliseno, Tay, Kats & Pandolfi (2011) proposed a competi-
tion endogenous RNA (ceRNA) hypothesis, which pointed that
mRNA, transcriptional pseudogenes and long noncoding RNA could
communicate to each other through their ability to compete for
microRNA binding using microRNA response elements (MREs)
(Wang, Zhang, He, & Gou, 2018; Salmena et al., 2011). Subsequently,
increasing evidence indicated that IncRNAs, as ceRNA, were
associated with a variety of cancers, including hepatocellular
carcinoma (HCC)( Wang et al., 2015). Accordingly, it is necessary to
explore the regulatory network of IncRNA-miRNA-mRNA during the
proliferative phase of liver regeneration (LR). In present study, high-
throughput sequencing technology was performed to obtain the
miRNA, mRNA, and IncRNAs expression data during the proliferative
phase of rat LR and IncRNAs-miRNAs-mRNAs regulatory network
was established. Our findings might lay the foundation for further
investigate the IncRNAs-miRNAs-mRNAs interaction network dur-

ing LR and liver-associated diseases.

2 | MATERIALS AND METHODS

2.1 | Preparation of rat LR model after 2/3
hepatectomy

The healthy adult male Sprague-Dawley (SD) rats weighing 210-250 g
were provided by Laboratory Animal Center of Zhengzhou University
(Zhengzhou, China). These rats were raised in a controlled temperature
room 19-23°C with a relative humidity 50-70% and illumination time
12 hr/day (8:00-20:00), and permitted to freely have water and food. A
total of 36 rats were randomly divided into six groups with six rats per
group: Five partial hepatectomy (PH) groups and one normal group
(CG). The rats in PH group were subjected to 2/3 PH in accordance with
the method of Xu C. et al. (2010). They were anesthetized and killed at
0, 12, 24, 30, 36, and 72 hr after surgery. The right liver lobe was mixed
each time point of six rats and restored in -80°C. All operations
conformed to the Animal Protection Law of China and Animal Ethics.

2.2 | Sequencing of IncRNA and mRNA and
identification of DE IncRNA and DE mRNA

The mirVana miRNA Isolation Kit (Ambion) was used to extract total
RNA and the TruSeq Stranded Total RNA with Ribo-Zero Gold was
used to construct the complementary DNA (cDNA) libraries. In brief,
after total RNA extracted and ribosomal RNA digested, the RNA was
broken into short fragments by the interrupt reagent. The first cDNA
chain was synthesized using these short fragments as template and a
random six-base as primer. Then the second cDNA chain was
synthesized using the first cDNA as template and the dTTP was
replaced with dUTP. After repairing the end, jointing adenylate
3’ ends and sequence adapters, the second cDNA chain was digested
by UNG (Uracil-N-Glycosylase) enzyme, and the first cDNA with

different joints was retained. Agarose gel electrophoresis was used to

select the fragment size. Finally, polymerase chain reaction (PCR)
amplification was performed. After the constructed library passed
the quality inspection with Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara), lllumina sequencing platform (Hiseq X
Ten) was used for sequencing.

Raw reads of fastq format were performed quality preprocessing
by using Trimmomatic (0.36). After wiping off the adapter and low-
quality reads, the clean reads were obtained. The hisat2 (2.2.1.0) was
use to align the clean reads with the rat reference genome. For
unmapped reads, transcripts were reconstructed based on the
probability model based on the comparison results of each sample
by using StringTie (1.3.3b). Finally, the candidate IncRNAs were
identified with software CPC (0.9-r2), CNCI (1.0), PFAM (v30), and
PLEK (1.2), which were used to predict the coding capacity of the
transcripts. The expression abundance of IncRNAs and mRNAs were
measured by FPKM. The differentially expressed mRNAs (DE
mRNAs) and differentially expressed IncRNAs (DE IncRNAs) were
detected by the negative binomial distribution test based on the
DESeq package (1.18.0). The fold change 2 2 or fold change < 0.5, and

p value < 0.05 were used as the cut-off criteria.

23 |
miRNA

Sequencing of miRNA and identification of DE

The mirVana miRNA Isolation Kit (Ambion) and TruSeq Small RNA
Sample Prep Kits were used to extract total RNA and construct the
cDNA libraries. The whole process was carried out in strict
accordance with the reagent instructions. First, T4 ligase was used
to ligate a 5’ adapter and a 3’ adapter to the RNA molecules. Then a
SuperScript Il Reverse Transcription Kit (Invitrogen) was used to
reverse-transcribed 5’ and 3’ adapter-ligated RNA to cDNA and PCR
amplification was performed. Finally, the cDNA product was purified
by RNA Gel Electrophoresis and gel recovery. The size and purity of
the sample were determined using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara). The Illumina sequencing platform
was used for sequencing analysis.

Raw reads of fastq format were processed consisting of removing
adapter and low-quality reads including sequences with quality score
less than 20 and sequences with N base to obtain high-quality clean
reads. The Bowtie2 was use to map the clean reads to mature
miRNAs in miRBase 21.0 database. These consistent sequences were
considered as the known miRNAs. The expression level of miRNAs
was measured by TPM. The p value was calculated by Audic-Claverie
statistic. The fold change 2 2 or fold change < 0.5, and p value < 0.05

were used as the cut-off criteria.

2.4 | Function enrichment analysis

To analysis the biological function of IncRNAs, Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were performed on the DE mRNAs and
predicted target genes of DE miRNA and DE IncRNAs using

GeneCodis3 bioinformatics resources (http://genecodis.cnb.csic.es)
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and DAVID Bioinformatics Resources 6.8 ((https://david.ncifcrf.gov/).
GO enrichment analysis included biological process (BP), molecular
function (MF), and cellular component (CC). The p values have been
obtained through hypergeometric analysis corrected by the false
discovery rate (FDR) method. Both GO terms and KEGG pathways
were considered to be significantly enriched with FDR < 0.05.

2.5 | Construction of the ceRNAs regulatory
network

Candidate mRNAs, an IncRNAs regulated by the DE miRNAs, were
predicted by Shanghai OE biotech Co., Ltd using miRanda v3.3a. The
Miranda algorithm was based on dynamic programming to compre-
hensively evaluate the target genes through miRNA-3'-UTR sequen-
cing matching and energy stability. The threshold parameter was set
as described previously: S = 150, AG < -30 kcal/mol and strict 5’ seed
pairing (Zhao et al., 2018). S refers to single residue pair match scores
in the matching area, and AG refers to free energy when the double
chains combine. Among these predicted DE miRNA-DE mRNA pairs,
DE mRNAs opposite with their corresponding DE miRNAs in this
study were defined as the targets of DE miRNA with high accuracy.
Based on the DE miRNA-DE mRNA interaction analysis and DE
miRNA-DE IncRNA interaction analysis, an IncRNA-miRNA-mRNA
regulatory network was constructed and visualized by Cytoscape
(v3.6.1) software.

2.6 | Construction of TF-miRNA-IncRNA
regulatory network

The mRNAs in the IncRNA-miRNA-mRNA interaction network was
analyzed by AnimalTFDB database (http://bioinfo.life.hust.edu.cn/
AnimalTFDB/#!/) to identify transcription factors (TF). Then a
TF-miRNA-IncRNA regulatory network was constructed based on
TF-miRNA and miRNA-IncRNAs interaction pairs and visualized by
Cytoscape (v3.6.1) software.

3 | RESULTS

3.1 | DE mRNAs, DE miRNA, and DE IncRNAs
during the proliferative phase of rat LR

The expression profiles of IncRNAs, miRNAs, and mRNAs during the
proliferative phase of rat LR were detected by high-throughput
sequencing technique. Compared with normal group (CG, Ohr), a
total of 1,738 DE IncRNAs were identified, with 1,069 upregulated,
653 downregulated, and 16 up/downregulated (p < 0.05) at 12, 24,
30, 36, and 72 hr after PH (Figure 1a; Additional file 1). Among them,
637 IncRNAs were detected at 12 hr after PH, 688 at 24 hr, 602
at 30hr, 610 at 36hr, and 561 at 72hr (Figure 1d). A total of
167 known DE miRNAs was identified, with 113 upregulated, and
54 downregulated at 12, 24, 30, 36, and 72 hr after PH (p < 0.05;
Figure 1b; Additional file 2). Among them, 52 miRNAs were detected
at 12 hr after PH, 58 at 24 hr, 44 at 30 hr, 46 at 36 hr, and 84 at 72 hr
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(Figure 1e). A total of 2,727 DE mRNAs were identified, with 1,515
upregulated, 1,186 downregulated and 26 up/downregulated at 12,
24, 30, 36, and 72 hr after PH (p < 0.05; Figure 1c; Additional file 3).
Among them, 1,143 mRNAs were detected at 12 hr after PH, 1,143
at 24 hr, 1,107 at 30 hr, 1,108 at 36 hr, and 1,110 at 72 hr (Figure 1f).

3.2 | Function analysis of DE miRNAs, DE IncRNAs,
and DE mRNAs during rat LR

Of the 167 DE miRNA, 20 miRNAs have been studied to be
correlation with LR, such as miR-127 (Pan et al., 2012), miR-21
(Castro et al., 2010), miR-34a (X. P. Wang et al,, 2017), miR-429
(C. Zhang et al., 2018), miR-376b (Lu et al., 2015), miR-382 (Bei et al.,
2016), miR-378 (Song et al., 2010), miR-155 (Lin et al., 2018), miR-25
(X. Xu et al., 2016), miR-106b (X. Xu et al, 2016), miR-133b
(Gjymishka et al., 2016), miR-125b (Hyun, Wang, Kim, Kim, & Jung,
2015), miR-144 (Chaveles et al., 2012), miR-451 (Chaveles et al.,
2012), miR-582-3p (Chaveles et al., 2012), miR-181c (Geng et al,,
2016), miR-183 (Geng et al.,, 2016), miR-429 (Geng et al., 2016), miR-
27a (Ji et al,, 2009), and miR-30e (Ling et al., 2018). Unlike the DE
miRNAs, most of the 1,738 DE IncRNAs were with unknown function.
Functional analysis of DE mRNAs indicated that the most significant
enriched BP were cell division, chromosome segregation, mitotic
nuclear division, DNA replication, and oxidation-reduction process,
and so forth. Pathways in cell cycle, metabolic pathways, extracellular
matrix (ECM)-receptor interaction, focal adhesion, p53 signaling
pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, and
insulin signaling pathway may be closely enriched during the

proliferative phase of rat LR.

3.3 | Construction of INcRNA-miRNA-mRNA
regulatory network during the proliferative phase of
rat LR

The DE mRNAs targeted by DE miRNAs were predicted using
miRanda algorithm according to the miRNA-mRNA binding data.
Totally, 373 miRNA-mRNA target pairs removing duplicates were
obtained which were consisted of 54 miRNAs and 307 mRNAs
(Additional file 4). Five significant miRNAs, rno-miR-370-3p (degree =
53), rno-miR-324-3p (degree = 35), rno-miR-6315 (degree = 27), rno-
miR-1956-5p (degree = 25), and rno-miR-484 (degree = 25) had the
most target mRNAs.

In the next step, the DE IncRNAs regulated by DE miRNAs were
analyzed by miRanda algorithm. Totally, 116 miRNA-IncRNA
regulatory pairs were identified including 34 miRNAs and 108
IncRNAs (Additional file 5). In the miRNA-IncRNA network, rno-miR-
296-3p (degree = 12), rno-miR-324-3p (degree = 11), rno-miR-370-3p
(degree = 11), rno-miR-331-3p (degree =8), and rno-miR-6315 (de-
gree = 8) had the most target IncRNAs.

Based on the regulatory pairs of miRNA-mRNA and miRNA-
IncRNA, a IncRNA-miRNA-mRNA network was constructed, con-
sisted of 32 miRNAs, 107 IncRNAs, and 270 mRNAs (Figure 2).
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FIGURE 1 Expression pattern of IncRNAs, miRNAs, and mRNAs during the proliferative phase of rat LR. (a-c) Heatmap of DE IncRNAs, DE
miRNAs, and DE mRNAs during the proliferative phase of rat LR. (d-f) Venn analysis of DE IncRNAs, DE miRNAs, and DE mRNAs detected at
each time points. DE: differently expressed; IncRNAs: long noncoding RNAs; miRNAs: microRNAs; mRNAs: messenger RNAs [Color figure can

be viewed at wileyonlinelibrary.com]

Of these mRNAs, 63 were upregulated, and 207 were down-
regulated. Each mRNA or IncRNA could be regulated by one or
more miRNA and vice versa.

3.4 | Function annotation of candidate genes
during proliferative phase of rat LR

First, gene ontology (GO) enrichment analysis of the 270 mRNAs was
conducted to reveal their functions. The result showed that 86 BP
terms, 19 MF terms, and 34 CC terms were enriched (Additional file
6). The most enriched BP terms were multicellular organismal
development, anatomical structure development, cellular component
organization, nitrogen compound metabolic process, and cellular
metabolic process. As for MF, the most enriched GO terms were
protein binding, nucleotide binding, sequence-specific DNA binding
transcription factor activity, transferase activity, and nucleic acid

binding. The most enrichment CC terms were intracellular, cell part,

intracellular part, intracellular organelle, and membrane-bounded
organelle. Then Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of the 270 mRNAs was performed to explore the
signaling pathways involved. A total of nine significant pathways were
enriched including insulin signaling pathway, pyrimidine metabolism,

carbohydrate digestion and absorption, and pyruvate metabolism.

3.5 | The screening of core IncRNAs during the
proliferative phase of rat LR

The IncRNAs-miRNA-mRNA network was consisted with 107
IncRNAs, 32 miRNAs, and 270 mRNAs. Of these miRNAs, five were
reported to play an important role during LR, including miR-21, miR-
127, miR-34a, miR-378, and miR-125b, and they were regarded as
the core miRNAs. The core IncRNAs were selected with a differently
expression, and they were associated with the five miRNAs. Finally,

nine core IncRNAs were correspondingly identified (Figure 3).
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FIGURE 2 DE IncRNA-DE miRNA-DE mRNA interaction networks during the proliferative phase of rat LR. Rectangles, triangle, and ellipses

represented DE IncRNAs, DE miRNAs, and DE mRNAs, respectively. Pink, light blue, and purple color represented upregulation,
downregulation, and up/downregulation, respectively. DE: differently expressed; IncRNAs: long noncoding RNAs; miRNAs: microRNAs;
mRNAs: messenger RNAs [Color figure can be viewed at wileyonlinelibrary.com]

3.6 | TF-miRNA-IncRNA regulatory network

TFs in the IncRNA-miRNA-mRNA network were analyzed using
AnimalTFDB database. The result showed that 21 TFs (CSRNP1,
MYBL2, TEAD4, EGR2, ESRRA, ARID1B, ZBTB20, NFYC, SREBF2,
HNF4A, PRKAG1, NFAT5, SREBF1, ERG, ZFP384, CLOCK, RORC,
MAFB, GPBP1L1, ZBTB7C, and ADNP) were identified to be
involved, and then a TF-miRNA-IncRNA regulatory network was
constructed (Figure 4).

4 | DISCUSSION

Previous studies have shown that LR was regulated by a number of

biological molecules including hormones, growth factors, and

limited to the
protein-coding genes, and it is still largely unknown how these genes

cytokines. However, most of these studies are

are regulated during LR. Therefore, it is necessary to find new

regulators involved in LR for better understanding the mechanism.
Recent studies have shown that IncRNAs were important regulators
of gene expression and associated with many important cellular
physiological activities such as cell proliferation and differentiation
(Ma et al., 2015; Zhu & Xu, 2013). LncRNAs could act as miRNA
sponges to regulate the target mRNAs. The role of IncRNAs has been
studied in a variety of cancer-related diseases including HCC. Staff
et al. identified two miRNAs (miR-192 and miR204) could directly
suppress INcRNA HOTTIP expression and interrupt GLS1-mediated
glutaminolysis in HCC (Staff, 2016). Chen et al. indicated that IncRNA
PTENP1 could modulate cell proliferation, migration, autophagy, and
apoptosis by decoying miR-17, miR-19b, and miR-20a in HCC cell
(C. L. Chen et al., 2015). However, the role of INcRNA-miRNA-mRNA
network remains largely unknown during the proliferative phase of
rat LR.

In this study, high-throughput sequencing was conducted to analyze
the expression changes of IncRNAs, miRNAs, and mRNAs during the
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proliferative phase of rat LR. Based on the RNA sequence data, 286 DE
miRNAs, 1,738 DE IncRNAs, and 2,727 DE mRNAs were identified
during the proliferative phase of LR compared with the normal group.
Some DE miRNAs have been reported to be associated with LR.
However, the function of most INcRNAs has not been studied. Then, an
INcRNA-miRNA-mRNA interaction network was constructed during
the proliferative phase of rat LR involving 107 IncRNAs, 32 miRNAs,
and 270 mRNAs. To study the underlying role of IncRNAs during the
proliferative phase of rat LR, GO enrichment analysis of the target
mRNAs was performed. The result indicated that a large amount of
significant GO terms were related to cellular metabolic process, cell
adhesion, cellular response to stimulus, cell communication, and cell
cycle, which had been reported as important physiological activities
during the proliferative phase of rat LR (Erickson, Thompson, & Hixson,
2006; Kotsis et al., 2018; Loyer et al,, 1994; Qin, Zhao, Chen, & Xu,
2006; Zheng, Weng, & Yu, 2009). KEGG pathway analysis identified
nine signaling pathways including insulin signaling pathway and
substance metabolism including pyrimidine metabolism, carbohydrate
digestion and absorption, and pyruvate metabolism. Sasaki et al.
indicated that insulin transmitted signal to intracellular regulators
involved in hepatocyte growth through insulin receptor substrate 1
(IRS-1) during rat LR (Sasaki, Zhang, Nishiyama, Avruch, & Wands,
1993). The substance metabolism could supply energy and materials for
the synthesis of DNA and proteins during the proliferative phase of rat
LR (Yin, Chang, & Xu, 2017). In the IncRNA-miRNA-mRNA interaction
network, five core miRNAs (miR-21-3p, miR-34a-5p, miR-127-3p, miR-
378a-5p, and miR-125b-5p) and IncRNAs  (NON-
RATT026569.2, NONRATT030768.2, NONRATT012812.2, NONR
ATT000367.2, NONRATT021024.2, NONRATT007218.2, TCONS_
00008697, TCONS_00008701, and NONRATT001051.2) were identi-
fied according to the literature and regulation relationship between
IncRNAs and miRNAs.

Some studies indicated that miR-21 was upregulated and played a

nine core

significant role in modulating cell cycle progression and hepatocyte
proliferation by targeting PTEN, FASLG, CCND1, BTG2, and PELI1 during
LR (Castro et al.,, 2010; X. Chen et al., 2016; Li, Chan, Leung, Wang, & Xu,
2015; Marquez, Wendlandt, Galle, Keck, & McCaffrey, 2010; Ng, Song,
Roll, Frandsen, & Willenbring, 2012; Song et al, 2010). Thus,
NONRATT026569.2 and NONRATT030768.2 might regulate cell cycle
progression and hepatocyte proliferation to contribute to rat LR by
interacting with miR-21-3p. A few studies demonstrated that miR-34a
was upregulated and was associated with the suppression of hepatocyte
proliferation and cell apoptosis by targeting Notch receptors, BCL-2, BCL-
XL, INHBB, and MET during LR (H. Chen et al., 2011; X. P. Wang et al.,
2017). Therefore, NONRATT012812.2 might regulate hepatocyte pro-
liferation and cell apoptosis to control rat LR by targeting miR-34a-5p.
Pan et al. suggested that miR-127 was downregulated and might facilitate
hepatocyte proliferation by releasing BCL6 and SETD8 during rat LR (Pan
et al, 2012). Hence, NONRATT000367.2 and NONRATT021024.2 might
accelerate hepatocyte proliferation by regulating miR-127-3p. Song et al.
discovered that miR-378 directly inhibits ornithine decarboxylase (Odc1),
which is known to promote DNA synthesis in hepatocytes after 2/3 PH
(Song et al, 2010). So NONRATT007218.2, TCONS_00008697 and

Journal-of 18903
Cellular Physiology WI LEYJ—

TCONS_00008701 might control hepatocyte proliferation during rat LR
by interacting with miR-378a-5p. In this study, miR-127-3p was also
predicted to target ENSRNOT00000079185 (ODC1), which was
consisted with previous study. Hyun et al. showed that miR-125b could
contribute to liver regeneration by mediating Hedgehog signaling (Hyun
et al,, 2015). It suggested that NONRATT001051.2 might be conducive
to liver regeneration by targeting miR-125b-5p.

Many TFs have been reported during rat LR including E2F2, KLF2,
STAT3, NFkappaB, AP-1, C/EBPbeta, and Nrf2. In this study, 21
transcription factors (CSRNP1, MYBL2, TEAD4, EGR2, ESRRA, ARID1B,
ZBTB20, NFYC, SREBF2, HNF4A, PRKAG1, NFAT5, SREBF1, ERG,
ZFP384, CLOCK, RORC, MAFB, GPBP1L1, ZBTB7C, and ADNP) were
found to be involved in TF-miRNAs regulation network during the
proliferative phase of rat LR. Zinc-finger protein ZBTB20, also named
DPZF, HOF, and ZNF288, was a critical regulator of EGFR expression
and hepatocyte proliferation in mouse liver regeneration (H. Zhang
et al., 2018). HNF4«, a member of the nuclear receptor family of
transcription factors, could maintain hepatocyte differentiation in the
adult healthy liver, and its loss may directly contribute to hepatocellular
carcinoma development (Bonzo, Ferry, Matsubara, Kim, & Gonzalez,
2012). CLOCK, belonging to the bHLH-PAS family, located in the cell
nucleus, played an important role in the regulation of liver gene
expression (Malatesta, Baldelli, Marcheggiani, & Gazzanelli, 2003). The
nuclear factor of activated T-cells (NFAT) transcription factors
represented a family of gene transcription signaling intermediates that
translate receptor-dependent signaling events into specific transcrip-
tional responses using the Ras/Raf pathway, and NFAT4 played an
important role in liver regeneration (Pierre et al., 2009). However, the
function of most TFs was still unclear.

Some limitations were existed in this study. LncRNAs have a
variety of functions. However, only the role of IncRNAs as miRNA
sponges was analyzed through building the regulatory network of
InNcRNA-mMiRNA-mRNA and IncRNA-miRNA-TF. In addition, key
IncRNAs predicted by bioinformatics analysis were not experimen-
tally verified during the proliferative phase of rat LR.

5 | CONCLUSIONS

First, DE IncRNA, DE miRNA, and DE mRNA were analyzed by high-
throughput sequencing technology, and then the IncRNA-miRNA-
mRNA regulatory network was constructed according to the
regulation mechanism of IncRNAs. Finally, through literature review
and IncRNA-miRNA regulatory pairs, nine key IncRNAs, and five key
miRNAs were screened out, which may play an important role during
the proliferative phase of rat LR. This study provided clues for
revealing the mechanism of LR and offered new ideas for the
treatment of liver-associated diseases
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