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Abstract

This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs

network during the proliferative phase of liver regeneration (LR). High‐throughput
sequencing technology was performed, and a total of 1,738 differentially expressed

lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and

2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs

and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory

network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed.

Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate

digestion and absorption, and pyruvate metabolism were significantly enriched in the

network. Through literature review and the regulatory relationship between lncRNAs

and miRNAs, nine core lncRNAs were identified, which might play important roles

during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA

regulatory network for the first time during the proliferative phase of rat LR, providing

clues for exploring the mechanism of LR and the treatment of liver diseases.
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1 | INTRODUCTION

The liver is one of the important organs in human and animal, which

is responsible for a variety of physiological functions. It has a strong

ability of regeneration after liver loss or toxic injury. Liver

regeneration is a highly organized tissue growth process of restoring

the original framework structure and tissue specific function after

liver injury (Jeon et al., 2013). It was usually divided into three phases

including initiation, proliferation, and termination. In the proliferative

phase, the main process is the proliferation of hepatocyte, which

replicate once or twice under the synergistic action of various growth

factors and inflammatory cytokines. Long noncoding RNA (lncRNA) is

a class of RNA molecules with a length of more than 200 nucleotides

(nt) and lacking an open reading frame that plays crucial roles in

epigenetics, transcriptional regulation, and posttranscriptional reg-

ulation (Maruyama & Suzuki, 2012). Studies have shown that

lncRNAs were not only involved in normal physiological activities

but also related to the occurrence and development of various

tumors (Chen et al., 2013). MicroRNA (miRNA) is a class of

endogenous noncoding single‐stranded RNA molecules with a length

of approximately 22 nt. It plays important roles in regulating the

expression of messenger RNAs (mRNAs) through specifically binding

to the 3′‐untranslated region (3′‐UTR) of the encoding gene. There is

evidence that miRNAs can regulate a variety of cell processes and
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developmental processes (Krol, Loedige, & Filipowicz, 2010).

Salmena, Poliseno, Tay, Kats & Pandolfi (2011) proposed a competi-

tion endogenous RNA (ceRNA) hypothesis, which pointed that

mRNA, transcriptional pseudogenes and long noncoding RNA could

communicate to each other through their ability to compete for

microRNA binding using microRNA response elements (MREs)

(Wang, Zhang, He, & Gou, 2018; Salmena et al., 2011). Subsequently,

increasing evidence indicated that lncRNAs, as ceRNA, were

associated with a variety of cancers, including hepatocellular

carcinoma (HCC)( Wang et al., 2015). Accordingly, it is necessary to

explore the regulatory network of lncRNA–miRNA–mRNA during the

proliferative phase of liver regeneration (LR). In present study, high‐
throughput sequencing technology was performed to obtain the

miRNA, mRNA, and lncRNAs expression data during the proliferative

phase of rat LR and lncRNAs–miRNAs–mRNAs regulatory network

was established. Our findings might lay the foundation for further

investigate the lncRNAs–miRNAs–mRNAs interaction network dur-

ing LR and liver‐associated diseases.

2 | MATERIALS AND METHODS

2.1 | Preparation of rat LR model after 2/3
hepatectomy

The healthy adult male Sprague–Dawley (SD) rats weighing 210–250 g

were provided by Laboratory Animal Center of Zhengzhou University

(Zhengzhou, China). These rats were raised in a controlled temperature

room 19–23℃ with a relative humidity 50–70% and illumination time

12 hr/day (8:00–20:00), and permitted to freely have water and food. A

total of 36 rats were randomly divided into six groups with six rats per

group: Five partial hepatectomy (PH) groups and one normal group

(CG). The rats in PH group were subjected to 2/3 PH in accordance with

the method of Xu C. et al. (2010). They were anesthetized and killed at

0, 12, 24, 30, 36, and 72 hr after surgery. The right liver lobe was mixed

each time point of six rats and restored in −80℃. All operations

conformed to the Animal Protection Law of China and Animal Ethics.

2.2 | Sequencing of lncRNA and mRNA and
identification of DE lncRNA and DE mRNA

The mirVana miRNA Isolation Kit (Ambion) was used to extract total

RNA and the TruSeq Stranded Total RNA with Ribo‐Zero Gold was

used to construct the complementary DNA (cDNA) libraries. In brief,

after total RNA extracted and ribosomal RNA digested, the RNA was

broken into short fragments by the interrupt reagent. The first cDNA

chain was synthesized using these short fragments as template and a

random six‐base as primer. Then the second cDNA chain was

synthesized using the first cDNA as template and the dTTP was

replaced with dUTP. After repairing the end, jointing adenylate

3′ ends and sequence adapters, the second cDNA chain was digested

by UNG (Uracil‐N‐Glycosylase) enzyme, and the first cDNA with

different joints was retained. Agarose gel electrophoresis was used to

select the fragment size. Finally, polymerase chain reaction (PCR)

amplification was performed. After the constructed library passed

the quality inspection with Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara), Illumina sequencing platform (Hiseq X

Ten) was used for sequencing.

Raw reads of fastq format were performed quality preprocessing

by using Trimmomatic (0.36). After wiping off the adapter and low‐
quality reads, the clean reads were obtained. The hisat2 (2.2.1.0) was

use to align the clean reads with the rat reference genome. For

unmapped reads, transcripts were reconstructed based on the

probability model based on the comparison results of each sample

by using StringTie (1.3.3b). Finally, the candidate lncRNAs were

identified with software CPC (0.9‐r2), CNCI (1.0), PFAM (v30), and

PLEK (1.2), which were used to predict the coding capacity of the

transcripts. The expression abundance of lncRNAs and mRNAs were

measured by FPKM. The differentially expressed mRNAs (DE

mRNAs) and differentially expressed lncRNAs (DE lncRNAs) were

detected by the negative binomial distribution test based on the

DESeq package (1.18.0). The fold change ≥ 2 or fold change ≤ 0.5, and

p value < 0.05 were used as the cut‐off criteria.

2.3 | Sequencing of miRNA and identification of DE
miRNA

The mirVana miRNA Isolation Kit (Ambion) and TruSeq Small RNA

Sample Prep Kits were used to extract total RNA and construct the

cDNA libraries. The whole process was carried out in strict

accordance with the reagent instructions. First, T4 ligase was used

to ligate a 5′ adapter and a 3′ adapter to the RNA molecules. Then a

SuperScript II Reverse Transcription Kit (Invitrogen) was used to

reverse‐transcribed 5′ and 3′ adapter‐ligated RNA to cDNA and PCR

amplification was performed. Finally, the cDNA product was purified

by RNA Gel Electrophoresis and gel recovery. The size and purity of

the sample were determined using an Agilent 2100 Bioanalyzer

(Agilent Technologies, Santa Clara). The Illumina sequencing platform

was used for sequencing analysis.

Raw reads of fastq format were processed consisting of removing

adapter and low‐quality reads including sequences with quality score

less than 20 and sequences with N base to obtain high‐quality clean

reads. The Bowtie2 was use to map the clean reads to mature

miRNAs in miRBase 21.0 database. These consistent sequences were

considered as the known miRNAs. The expression level of miRNAs

was measured by TPM. The p value was calculated by Audic–Claverie

statistic. The fold change ≥ 2 or fold change ≤ 0.5, and p value < 0.05

were used as the cut‐off criteria.

2.4 | Function enrichment analysis

To analysis the biological function of lncRNAs, Gene Ontology (GO)

enrichment analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses were performed on the DE mRNAs and

predicted target genes of DE miRNA and DE lncRNAs using

GeneCodis3 bioinformatics resources (http://genecodis.cnb.csic.es)

18898 | BAI ET AL.

http://genecodis.cnb.csic.es


and DAVID Bioinformatics Resources 6.8 ((https://david.ncifcrf.gov/).

GO enrichment analysis included biological process (BP), molecular

function (MF), and cellular component (CC). The p values have been

obtained through hypergeometric analysis corrected by the false

discovery rate (FDR) method. Both GO terms and KEGG pathways

were considered to be significantly enriched with FDR < 0.05.

2.5 | Construction of the ceRNAs regulatory
network

Candidate mRNAs, an lncRNAs regulated by the DE miRNAs, were

predicted by Shanghai OE biotech Co., Ltd using miRanda v3.3a. The

Miranda algorithm was based on dynamic programming to compre-

hensively evaluate the target genes through miRNA–3′‐UTR sequen-

cing matching and energy stability. The threshold parameter was set

as described previously: S ≥ 150, ΔG ≤ −30 kcal/mol and strict 5′ seed
pairing (Zhao et al., 2018). S refers to single residue pair match scores

in the matching area, and ΔG refers to free energy when the double

chains combine. Among these predicted DE miRNA–DE mRNA pairs,

DE mRNAs opposite with their corresponding DE miRNAs in this

study were defined as the targets of DE miRNA with high accuracy.

Based on the DE miRNA–DE mRNA interaction analysis and DE

miRNA–DE lncRNA interaction analysis, an lncRNA–miRNA–mRNA

regulatory network was constructed and visualized by Cytoscape

(v3.6.1) software.

2.6 | Construction of TF–miRNA–lncRNA
regulatory network

The mRNAs in the lncRNA–miRNA–mRNA interaction network was

analyzed by AnimalTFDB database (http://bioinfo.life.hust.edu.cn/

AnimalTFDB/#!/) to identify transcription factors (TF). Then a

TF–miRNA–lncRNA regulatory network was constructed based on

TF–miRNA and miRNA–lncRNAs interaction pairs and visualized by

Cytoscape (v3.6.1) software.

3 | RESULTS

3.1 | DE mRNAs, DE miRNA, and DE lncRNAs
during the proliferative phase of rat LR

The expression profiles of lncRNAs, miRNAs, and mRNAs during the

proliferative phase of rat LR were detected by high‐throughput
sequencing technique. Compared with normal group (CG, 0 hr), a

total of 1,738 DE lncRNAs were identified, with 1,069 upregulated,

653 downregulated, and 16 up/downregulated (p < 0.05) at 12, 24,

30, 36, and 72 hr after PH (Figure 1a; Additional file 1). Among them,

637 lncRNAs were detected at 12 hr after PH, 688 at 24 hr, 602

at 30 hr, 610 at 36 hr, and 561 at 72 hr (Figure 1d). A total of

167 known DE miRNAs was identified, with 113 upregulated, and

54 downregulated at 12, 24, 30, 36, and 72 hr after PH (p < 0.05;

Figure 1b; Additional file 2). Among them, 52 miRNAs were detected

at 12 hr after PH, 58 at 24 hr, 44 at 30 hr, 46 at 36 hr, and 84 at 72 hr

(Figure 1e). A total of 2,727 DE mRNAs were identified, with 1,515

upregulated, 1,186 downregulated and 26 up/downregulated at 12,

24, 30, 36, and 72 hr after PH (p < 0.05; Figure 1c; Additional file 3).

Among them, 1,143 mRNAs were detected at 12 hr after PH, 1,143

at 24 hr, 1,107 at 30 hr, 1,108 at 36 hr, and 1,110 at 72 hr (Figure 1f).

3.2 | Function analysis of DE miRNAs, DE lncRNAs,
and DE mRNAs during rat LR

Of the 167 DE miRNA, 20 miRNAs have been studied to be

correlation with LR, such as miR‐127 (Pan et al., 2012), miR‐21
(Castro et al., 2010), miR‐34a (X. P. Wang et al., 2017), miR‐429
(C. Zhang et al., 2018), miR‐376b (Lu et al., 2015), miR‐382 (Bei et al.,

2016), miR‐378 (Song et al., 2010), miR‐155 (Lin et al., 2018), miR‐25
(X. Xu et al., 2016), miR‐106b (X. Xu et al., 2016), miR‐133b
(Gjymishka et al., 2016), miR‐125b (Hyun, Wang, Kim, Kim, & Jung,

2015), miR‐144 (Chaveles et al., 2012), miR‐451 (Chaveles et al.,

2012), miR‐582‐3p (Chaveles et al., 2012), miR‐181c (Geng et al.,

2016), miR‐183 (Geng et al., 2016), miR‐429 (Geng et al., 2016), miR‐
27a (Ji et al., 2009), and miR‐30e (Ling et al., 2018). Unlike the DE

miRNAs, most of the 1,738 DE lncRNAs were with unknown function.

Functional analysis of DE mRNAs indicated that the most significant

enriched BP were cell division, chromosome segregation, mitotic

nuclear division, DNA replication, and oxidation‐reduction process,

and so forth. Pathways in cell cycle, metabolic pathways, extracellular

matrix (ECM)‐receptor interaction, focal adhesion, p53 signaling

pathway, PI3K‐Akt signaling pathway, FoxO signaling pathway, and

insulin signaling pathway may be closely enriched during the

proliferative phase of rat LR.

3.3 | Construction of lncRNA–miRNA–mRNA
regulatory network during the proliferative phase of
rat LR

The DE mRNAs targeted by DE miRNAs were predicted using

miRanda algorithm according to the miRNA–mRNA binding data.

Totally, 373 miRNA–mRNA target pairs removing duplicates were

obtained which were consisted of 54 miRNAs and 307 mRNAs

(Additional file 4). Five significant miRNAs, rno‐miR‐370‐3p (degree =

53), rno‐miR‐324‐3p (degree = 35), rno‐miR‐6315 (degree = 27), rno‐
miR‐1956‐5p (degree = 25), and rno‐miR‐484 (degree = 25) had the

most target mRNAs.

In the next step, the DE lncRNAs regulated by DE miRNAs were

analyzed by miRanda algorithm. Totally, 116 miRNA–lncRNA

regulatory pairs were identified including 34 miRNAs and 108

lncRNAs (Additional file 5). In the miRNA–lncRNA network, rno‐miR‐
296‐3p (degree = 12), rno‐miR‐324‐3p (degree = 11), rno‐miR‐370‐3p
(degree = 11), rno‐miR‐331‐3p (degree = 8), and rno‐miR‐6315 (de-

gree = 8) had the most target lncRNAs.

Based on the regulatory pairs of miRNA–mRNA and miRNA–

lncRNA, a lncRNA–miRNA–mRNA network was constructed, con-

sisted of 32 miRNAs, 107 lncRNAs, and 270 mRNAs (Figure 2).
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Of these mRNAs, 63 were upregulated, and 207 were down-

regulated. Each mRNA or lncRNA could be regulated by one or

more miRNA and vice versa.

3.4 | Function annotation of candidate genes
during proliferative phase of rat LR

First, gene ontology (GO) enrichment analysis of the 270 mRNAs was

conducted to reveal their functions. The result showed that 86 BP

terms, 19 MF terms, and 34 CC terms were enriched (Additional file

6). The most enriched BP terms were multicellular organismal

development, anatomical structure development, cellular component

organization, nitrogen compound metabolic process, and cellular

metabolic process. As for MF, the most enriched GO terms were

protein binding, nucleotide binding, sequence‐specific DNA binding

transcription factor activity, transferase activity, and nucleic acid

binding. The most enrichment CC terms were intracellular, cell part,

intracellular part, intracellular organelle, and membrane‐bounded
organelle. Then Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis of the 270 mRNAs was performed to explore the

signaling pathways involved. A total of nine significant pathways were

enriched including insulin signaling pathway, pyrimidine metabolism,

carbohydrate digestion and absorption, and pyruvate metabolism.

3.5 | The screening of core lncRNAs during the
proliferative phase of rat LR

The lncRNAs–miRNA–mRNA network was consisted with 107

lncRNAs, 32 miRNAs, and 270 mRNAs. Of these miRNAs, five were

reported to play an important role during LR, including miR‐21, miR‐
127, miR‐34a, miR‐378, and miR‐125b, and they were regarded as

the core miRNAs. The core lncRNAs were selected with a differently

expression, and they were associated with the five miRNAs. Finally,

nine core lncRNAs were correspondingly identified (Figure 3).

F IGURE 1 Expression pattern of lncRNAs, miRNAs, and mRNAs during the proliferative phase of rat LR. (a–c) Heatmap of DE lncRNAs, DE
miRNAs, and DE mRNAs during the proliferative phase of rat LR. (d–f) Venn analysis of DE lncRNAs, DE miRNAs, and DE mRNAs detected at
each time points. DE: differently expressed; lncRNAs: long noncoding RNAs; miRNAs: microRNAs; mRNAs: messenger RNAs [Color figure can

be viewed at wileyonlinelibrary.com]
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3.6 | TF–miRNA–lncRNA regulatory network

TFs in the lncRNA–miRNA–mRNA network were analyzed using

AnimalTFDB database. The result showed that 21 TFs (CSRNP1,

MYBL2, TEAD4, EGR2, ESRRA, ARID1B, ZBTB20, NFYC, SREBF2,

HNF4A, PRKAG1, NFAT5, SREBF1, ERG, ZFP384, CLOCK, RORC,

MAFB, GPBP1L1, ZBTB7C, and ADNP) were identified to be

involved, and then a TF–miRNA–lncRNA regulatory network was

constructed (Figure 4).

4 | DISCUSSION

Previous studies have shown that LR was regulated by a number of

biological molecules including hormones, growth factors, and

cytokines. However, most of these studies are limited to the

protein‐coding genes, and it is still largely unknown how these genes

are regulated during LR. Therefore, it is necessary to find new

regulators involved in LR for better understanding the mechanism.

Recent studies have shown that lncRNAs were important regulators

of gene expression and associated with many important cellular

physiological activities such as cell proliferation and differentiation

(Ma et al., 2015; Zhu & Xu, 2013). LncRNAs could act as miRNA

sponges to regulate the target mRNAs. The role of lncRNAs has been

studied in a variety of cancer‐related diseases including HCC. Staff

et al. identified two miRNAs (miR‐192 and miR204) could directly

suppress lncRNA HOTTIP expression and interrupt GLS1‐mediated

glutaminolysis in HCC (Staff, 2016). Chen et al. indicated that lncRNA

PTENP1 could modulate cell proliferation, migration, autophagy, and

apoptosis by decoying miR‐17, miR‐19b, and miR‐20a in HCC cell

(C. L. Chen et al., 2015). However, the role of lncRNA–miRNA–mRNA

network remains largely unknown during the proliferative phase of

rat LR.

In this study, high‐throughput sequencing was conducted to analyze

the expression changes of lncRNAs, miRNAs, and mRNAs during the

F IGURE 2 DE lncRNA–DE miRNA–DE mRNA interaction networks during the proliferative phase of rat LR. Rectangles, triangle, and ellipses
represented DE lncRNAs, DE miRNAs, and DE mRNAs, respectively. Pink, light blue, and purple color represented upregulation,
downregulation, and up/downregulation, respectively. DE: differently expressed; lncRNAs: long noncoding RNAs; miRNAs: microRNAs;
mRNAs: messenger RNAs [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3 Core ceRNA network during the proliferative phase of rat LR. Rectangles, triangle, and ellipses represented DE lncRNAs, DE
miRNAs, and DE mRNAs, respectively. Pink, light blue, and purple color represented upregulation, downregulation, and up/downregulation.

CeRNA: competition endogenous RNA; DE: differently expressed; lncRNAs: long noncoding RNAs; miRNAs: microRNAs; mRNAs: messenger
RNAs [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The regulatory network for TFs. Rectangles, triangle, and diamond represented DE lncRNAs, DE miRNAs, and TFs, respectively.

Pink, light blue, and purple color represented upregulation, downregulation, and up/downregulation. DE: differently expressed; lncRNAs: long
noncoding RNAs; miRNAs: microRNAs; TFs: transcription factors [Color figure can be viewed at wileyonlinelibrary.com]
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proliferative phase of rat LR. Based on the RNA sequence data, 286 DE

miRNAs, 1,738 DE lncRNAs, and 2,727 DE mRNAs were identified

during the proliferative phase of LR compared with the normal group.

Some DE miRNAs have been reported to be associated with LR.

However, the function of most lncRNAs has not been studied. Then, an

lncRNA–miRNA–mRNA interaction network was constructed during

the proliferative phase of rat LR involving 107 lncRNAs, 32 miRNAs,

and 270 mRNAs. To study the underlying role of lncRNAs during the

proliferative phase of rat LR, GO enrichment analysis of the target

mRNAs was performed. The result indicated that a large amount of

significant GO terms were related to cellular metabolic process, cell

adhesion, cellular response to stimulus, cell communication, and cell

cycle, which had been reported as important physiological activities

during the proliferative phase of rat LR (Erickson, Thompson, & Hixson,

2006; Kotsis et al., 2018; Loyer et al., 1994; Qin, Zhao, Chen, & Xu,

2006; Zheng, Weng, & Yu, 2009). KEGG pathway analysis identified

nine signaling pathways including insulin signaling pathway and

substance metabolism including pyrimidine metabolism, carbohydrate

digestion and absorption, and pyruvate metabolism. Sasaki et al.

indicated that insulin transmitted signal to intracellular regulators

involved in hepatocyte growth through insulin receptor substrate 1

(IRS‐1) during rat LR (Sasaki, Zhang, Nishiyama, Avruch, & Wands,

1993). The substance metabolism could supply energy and materials for

the synthesis of DNA and proteins during the proliferative phase of rat

LR (Yin, Chang, & Xu, 2017). In the lncRNA–miRNA–mRNA interaction

network, five core miRNAs (miR‐21‐3p, miR‐34a‐5p, miR‐127‐3p, miR‐
378a‐5p, and miR‐125b‐5p) and nine core lncRNAs (NON-

RATT026569.2, NONRATT030768.2, NONRATT012812.2, NONR

ATT000367.2, NONRATT021024.2, NONRATT007218.2, TCONS_

00008697, TCONS_00008701, and NONRATT001051.2) were identi-

fied according to the literature and regulation relationship between

lncRNAs and miRNAs.

Some studies indicated that miR‐21 was upregulated and played a

significant role in modulating cell cycle progression and hepatocyte

proliferation by targeting PTEN, FASLG, CCND1, BTG2, and PELI1 during

LR (Castro et al., 2010; X. Chen et al., 2016; Li, Chan, Leung, Wang, & Xu,

2015; Marquez, Wendlandt, Galle, Keck, & McCaffrey, 2010; Ng, Song,

Roll, Frandsen, & Willenbring, 2012; Song et al., 2010). Thus,

NONRATT026569.2 and NONRATT030768.2 might regulate cell cycle

progression and hepatocyte proliferation to contribute to rat LR by

interacting with miR‐21‐3p. A few studies demonstrated that miR‐34a
was upregulated and was associated with the suppression of hepatocyte

proliferation and cell apoptosis by targeting Notch receptors, BCL‐2, BCL‐
XL, INHBB, and MET during LR (H. Chen et al., 2011; X. P. Wang et al.,

2017). Therefore, NONRATT012812.2 might regulate hepatocyte pro-

liferation and cell apoptosis to control rat LR by targeting miR‐34a‐5p.
Pan et al. suggested that miR‐127 was downregulated andmight facilitate

hepatocyte proliferation by releasing BCL6 and SETD8 during rat LR (Pan

et al., 2012). Hence, NONRATT000367.2 and NONRATT021024.2 might

accelerate hepatocyte proliferation by regulating miR‐127‐3p. Song et al.

discovered that miR‐378 directly inhibits ornithine decarboxylase (Odc1),

which is known to promote DNA synthesis in hepatocytes after 2/3 PH

(Song et al., 2010). So NONRATT007218.2, TCONS_00008697 and

TCONS_00008701 might control hepatocyte proliferation during rat LR

by interacting with miR‐378a‐5p. In this study, miR‐127‐3p was also

predicted to target ENSRNOT00000079185 (ODC1), which was

consisted with previous study. Hyun et al. showed that miR‐125b could

contribute to liver regeneration by mediating Hedgehog signaling (Hyun

et al., 2015). It suggested that NONRATT001051.2 might be conducive

to liver regeneration by targeting miR‐125b‐5p.
Many TFs have been reported during rat LR including E2F2, KLF2,

STAT3, NFkappaB, AP‐1, C/EBPbeta, and Nrf2. In this study, 21

transcription factors (CSRNP1, MYBL2, TEAD4, EGR2, ESRRA, ARID1B,

ZBTB20, NFYC, SREBF2, HNF4A, PRKAG1, NFAT5, SREBF1, ERG,

ZFP384, CLOCK, RORC, MAFB, GPBP1L1, ZBTB7C, and ADNP) were

found to be involved in TF‐miRNAs regulation network during the

proliferative phase of rat LR. Zinc‐finger protein ZBTB20, also named

DPZF, HOF, and ZNF288, was a critical regulator of EGFR expression

and hepatocyte proliferation in mouse liver regeneration (H. Zhang

et al., 2018). HNF4α, a member of the nuclear receptor family of

transcription factors, could maintain hepatocyte differentiation in the

adult healthy liver, and its loss may directly contribute to hepatocellular

carcinoma development (Bonzo, Ferry, Matsubara, Kim, & Gonzalez,

2012). CLOCK, belonging to the bHLH‐PAS family, located in the cell

nucleus, played an important role in the regulation of liver gene

expression (Malatesta, Baldelli, Marcheggiani, & Gazzanelli, 2003). The

nuclear factor of activated T‐cells (NFAT) transcription factors

represented a family of gene transcription signaling intermediates that

translate receptor‐dependent signaling events into specific transcrip-

tional responses using the Ras/Raf pathway, and NFAT4 played an

important role in liver regeneration (Pierre et al., 2009). However, the

function of most TFs was still unclear.

Some limitations were existed in this study. LncRNAs have a

variety of functions. However, only the role of lncRNAs as miRNA

sponges was analyzed through building the regulatory network of

lncRNA–miRNA–mRNA and lncRNA–miRNA–TF. In addition, key

lncRNAs predicted by bioinformatics analysis were not experimen-

tally verified during the proliferative phase of rat LR.

5 | CONCLUSIONS

First, DE lncRNA, DE miRNA, and DE mRNA were analyzed by high‐
throughput sequencing technology, and then the lncRNA–miRNA–

mRNA regulatory network was constructed according to the

regulation mechanism of lncRNAs. Finally, through literature review

and lncRNA–miRNA regulatory pairs, nine key lncRNAs, and five key

miRNAs were screened out, which may play an important role during

the proliferative phase of rat LR. This study provided clues for

revealing the mechanism of LR and offered new ideas for the

treatment of liver‐associated diseases
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