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Abstract

Signal transducer and activator of transcription 1 (STAT1) plays a
pivotal role in the innate immune system by directing the tran-
scriptional response to interferons (IFNs). STAT1 is activated by
Janus kinase (JAK)-mediated phosphorylation of Y701. To deter-
mine whether STAT1 contributes to cellular responses without this
phosphorylation event, we generated mice with Y701 mutated to a
phenylalanine (Stat1Y701F). We show that heterozygous mice do
not exhibit a dominant-negative phenotype. Homozygous
Stat1Y701F mice show a profound reduction in Stat1 expression,
highlighting an important role for basal IFN-dependent signaling.
The rapid transcriptional response to type I IFN (IFN-I) and type II
IFN (IFNc) was absent in Stat1Y701F cells. Intriguingly, STAT1Y701F
suppresses the delayed expression of IFN-I-stimulated genes (ISG)
observed in Stat1�/� cells, mediated by the STAT2/IRF9 complex.
Thus, Stat1Y701F macrophages are more susceptible to Legionella
pneumophila infection than Stat1�/� macrophages. Listeria mono-
cytogenes grew less robustly in Stat1Y701F macrophages and mice
compared to Stat1�/� counterparts, but STAT1Y701F is not suffi-
cient to rescue the animals. Our studies are consistent with a
potential contribution of Y701-unphosphorylated STAT1 to innate
antibacterial immunity.
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Introduction

The Jak-Stat signaling pathway regulates cellular responses to cyto-

kines. The prototypic signal transducer and activator of transcrip-

tion, STAT1, plays a crucial role in host defense by mediating the

effects of interferons (IFNs). In the canonical signaling pathway, all

types of IFNs produce transcriptionally active STAT1 through Janus

kinase (JAK)-mediated phosphorylation at Y701. The type II inter-

feron (IFNc) receptor complex phosphorylates STAT1 exclusively,

thus producing homodimers of the transcription factor. These

translocate to the cell nucleus and stimulate gene expression

through binding to gamma interferon-activated sequences (GAS)

within the IFN response regions of its target genes. By contrast,

stimulation with type I or type III interferons (IFN-I and IFN-III,

respectively) produces phosphorylated STAT1–STAT2 heterodimers.

These heterodimers associate with interferon regulatory factor 9

(IRF9) to form the IFN-stimulated gene factor 3 (ISGF3). After

translocation to the nucleus, ISGF3 binds to interferon-stimulated

response elements (ISREs) to stimulate gene expression [1,2].

In addition to canonical, tyrosine-phosphorylated ISGF3 and

STAT1 dimers, STATs 1 and 2 form non-canonical complexes. Tran-

scriptional responses by STAT1/IRF9 complexes in complete

absence of STAT2 or in the absence of its phosphorylation, and by

STAT2 complexes lacking STAT1, are documented in the literature

[3–8]. Non-canonical complexes may contain transcriptionally

active STATs without a phosphotyrosine (U-STATs) [8–10]. In

Drosophila, U-STATs associate with and maintain the stability of

heterochromatin. Whether similar examples of this chromatin/STAT

link exist also in Dictyostelium and C. elegans, organisms that

appear to lack JAKs, but still have STATs, is currently not known

[11–13]. Recent experimental evidence supports the concept that

U-STAT1 prolongs the expression of a subset of IFN-induced genes,
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many of which are involved in immune regulation [14]. It has been

hypothesized that this occurs due to the accumulation of newly

synthesized STAT1 through a positive feedback loop after interferon

stimulation. Furthermore, it has been proposed that prolonged expo-

sure of cells to IFNb induces the expression of non-phosphorylated

STAT2 (U-STAT2) and IRF9 which combine with U-STAT1 and form

the unphosphorylated ISGF3 (U-ISGF3) [9]. U-ISGF3 in turn main-

tains the expression of a subset of the initially induced ISGs, leading

to extended resistance to virus infection and DNA damage.

In the present manuscript, we investigate the role of U-STAT1

signaling in mice expressing a Stat1Y701F mutant. We report an

important contribution of STAT1 tyrosine phosphorylation to a tonic

signal increasing Stat1 expression. Extensive analysis of STAT acti-

vation and type I IFN-induced genes (ISGs) expression patterns

demonstrate clear differences between macrophages lacking STAT1

and those expressing STAT1Y701F. These are reflected by an altered

ability to limit the growth of the intracellular bacterial pathogen

Le. pneumophila. In spite of reduced STAT1Y701F protein amounts,

our work suggests a minor but significant contribution of

STAT1Y701F also to the innate response against another bacterial

pathogen, L. monocytogenes. In summary, our results provide

evidence for biological activity of STAT1 in the absence of its

tyrosine phosphorylation.

Results

Jak-Stat signaling in Stat1Y701F mice

To investigate STAT1 activity in the absence of its tyrosine phospho-

rylation, we generated Stat1Y701F knock-in mice by targeting the

gene with a construct encoding phenylalanine in position 701 (see

Materials and Methods). We first examined heterozygous Stat1Y701F/+

mice. Importance of this genetic configuration stems from human

patients, where Stat1Y701C heterozygosity was classified as an

autosomal dominant cause of Mendelian susceptibility to

mycobacterial disease (MSMD) [15,16]. We observed reduced Y701

phosphorylation of STAT1 expressed from the WT allele in macro-

phages treated with either IFNb or IFNc (Fig 1A). The kinetics of

STAT1 phosphorylation were comparable to those of wild-type cells

(Fig 1A). Reduced STAT1 phosphorylation on Y701 corresponded to

decreased protein amounts. STAT2 phosphorylation by IFNb and

total STAT2 amounts were normal. In line with diminished STAT1

tyrosine phosphorylation, maximal expression of interferon-

stimulated genes (ISGs) was lower after stimulation with either

IFNb (Fig 1B) or IFNc (Fig 1C). The data suggest that Stat1Y701F

heterozygosity causes reduced STAT1 expression and a correspond-

ingly lower activation by the interferon receptors.

When analyzing macrophages from mice carrying homozygous

Stat1Y701F mutation for STAT1 protein, we noted strongly dimin-

ished amounts of total STAT1 (Fig 2A, far right panel) and

treatment with either IFNb or IFNc showed the expected loss of

tyrosine phosphorylation (Fig 2B and E). Strongly reduced

amounts of STAT1 were also observed in livers, spleens, and other

organs of mutant animals (Fig 2A). Reportedly, small amounts of

IFN-I are secreted and accumulate in tissue milieu even in the

absence of infection. Constitutive IFN-I secretion was proposed to

generate a tonic signal and cause a priming effect keeping cells in

a state of alertness to other cytokines and contributing to immune

homeostasis, maintenance of bone density, and antiviral and anti-

tumor immunity [17]. Our data provide the first in vivo evidence

that a tonic signal, most likely from the IFN-I receptor, increases

Stat1 expression through a mechanism involving its phosphoryla-

tion on Y701. Intriguingly, the levels of constitutive STAT1 phos-

phorylation are below the radar of the tools used for detection in

most cell types, yet they are sufficient to exert a strong biological

impact.

In accordance with expectations, the early transcriptional

response to interferons after 4 h was absent in Stat1�/� as well as

Stat1Y701F cells (Fig 2C and D). Previous studies in Stat1�/� cells

demonstrated the occurrence of STAT1-independent, STAT2-

dependent gene expression at a delayed stage of the transcriptional

response to IFN-I [4,6,18–20]. Consistent with our previous

report [3], stimulation with IFNb caused STAT1-independent ISG

expression starting around 8–12 h after treatment which required

the presence of both STAT2 and IRF9 (Fig 2D). Intriguingly, the

presence of STAT1Y701F partially repressed STAT2/IRF9-

dependent, STAT1-independent genes at late stages of the IFNb
response. This relationship between genotype and expression

profile was noted for many other investigated ISGs (Fig EV1B). The

presence of STAT1Y701F inhibited the late expression of these genes

through the STAT2/IRF9-dependent pathway.

After treatment with IFNc, both Stat1Y701F and Stat1�/� macro-

phages failed to induce a transcriptional response of typical STAT1

target genes, such as Irf1, CIIta, Stat1, and Stat2 at any time after

treatment (Figs 2C and EV1A). Consistent with their regulation by

STAT1 homodimers, lack of STAT2 or IRF9 had no or little impact

on their expression (data not shown). These findings suggest that

inhibition of late-stage gene expression by STAT1Y701F is selective

for the response to IFN-I.

Identical STAT2 tyrosine phosphorylation profile in Stat1�/� and
Stat1Y701F macrophages

In order to further characterize the mechanism by which

STAT1Y701F represses STAT1-independent, STAT2/IRF9-dependent

gene expression during the late IFN-I response, we considered a

dominant-negative effect of the mutant at the level of JAK-mediated

tyrosine phosphorylation. Therefore, tyrosine phosphorylation of

STATs was profiled by Western blot. In accordance with [3], STAT1

showed both delayed and prolonged phosphorylation in Stat2�/�

and Irf9�/� macrophages stimulated with IFNb compared to WT

(Fig 2E). 24 h of stimulation with IFNb leads to upregulation of total

STAT1 levels equally well in WT, Stat2�/�, and Irf9�/�, while it

remained absent in Stat1Y701F mutant macrophages (Figs 2E and

EV1B). We also observed delayed, but prolonged phosphorylation

of STAT2 in Stat1Y701F, Stat1�/�, and Irf9�/� macrophages. Similar

to STAT1, the total amounts of STAT2 were upregulated after 24 h

of stimulation with IFNb in all genotypes, but never as well as in

WT, with Stat1Y701F mutant having the weakest induction (Figs 2E

and EV1B). The data suggest that the presence or absence of ISGF3

subunits exerts strong influence on both the tyrosine phosphoryla-

tion and upregulation of STATs 1 and 2.

Apart from STAT1, STAT3 and STAT5 are known to contribute to

tissue-specific interferon signaling [21]. To examine possible

effects of STAT1Y701F on other STATs, we profiled the tyrosine
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phosphorylation of STAT3 and STAT5 by Western blot. Compared to

their WT counterparts, cells expressing STAT1Y701F displayed an

unimpaired ability to phosphorylate STAT3 and STAT5 in response

to IFNb (Fig EV2). In accordance with this, amounts of STAT3 and

STAT5 proteins were unchanged (Fig EV2). These data confirm the

importance of STAT2 phosphorylation and signaling in STAT1-

independent, STAT2/IRF9-dependent gene expression, but did not

explain the inhibition of the STAT2/IRF9 pathway by STAT1Y701F.

Cytoplasmic STAT1Y701F inhibits STAT1-independent
STAT2 signaling

According to the Jak-Stat paradigm, STATs need to be phosphory-

lated on tyrosine to perform nuclear functions. This is also true for

the U-Stat pathway proposed by Stark and coworkers because U-Stat

function follows an early, tyrosine-dependent IFN response [14].

However, data with several STATs suggest a cytoplasmic or

A

B

C

Figure 1. Interferon signaling in mice bearing heterozygous Stat1Y701F mutation resembles that of human cells with heterozygous Stat1Y701C mutation.

A Western blot analysis of STAT expression and phosphorylation. Bone marrow-derived macrophages (BMDMs) of wild-type (WT), Stat1Y701F/+ (WT/YF), or Stat1�/� (S1)
mice were treated with 250 IU/ml of IFNb or 5 ng/ml of IFNc for 0.5, 6, 12, and 24 h. Whole-cell extracts were collected and tested in Western blot for levels of
phosphorylation of STAT1 (Y701) and STAT2 (Y689) and total level of STAT1 and STAT2. The blots are representative of more than three independent experiments.

B Effect of Stat1Y701F heterozygosity on the expression of type I IFN-induced genes (ISGs). BMDMs of wild-type (WT), Stat1Y701F/+ (WT/YF), or Stat1�/� (S1) mice were
treated with 250 IU/ml of IFNb for 4 and 48 h. Gene expression was measured by qPCR and normalized to Gapdh and to the expression levels in untreated wild-type
cells. The bars represent mean values with the standard deviations (SD) of three independent experiments.

C Effect of Stat1Y701F heterozygosity on the expression of IFNb-induced genes. BMDMs of wild-type (WT), Stat1Y701F/+ (WT/YF), or Stat1�/� (S1) mice were treated with
5 ng/ml of IFNc for 4 and 48 h. Gene expression was measured by qPCR and normalized to Gapdh and to the expression levels in untreated wild-type cells. The bars
represent mean values with the standard deviations (SD) of three independent experiments.
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A

B

C

D

E

Figure 2. STAT1 expression and interferon signaling in Stat1Y701F mice.

A Effect of Stat1Y701F homozygosity on STAT1 expression in mouse cells and organs. Spleens, livers, or bone marrow-derived macrophages (BMDMs) were isolated from
wild-type (WT), Stat1Y701F (YF), and Stat1�/� (S1) mice. Whole-cell extracts were collected and tested for levels of total STAT1 in Western blot. The blots are
representative of more than three independent experiments.

B Effect of Stat1Y701F homozygosity on STAT1 phosphorylation at Y701. BMDMs were isolated from wild-type (WT), Stat1Y701F (YF), and Stat1�/� (S1) mice and
stimulated for 30 min with 250 IU/ml of IFNb or 5 ng/ml of IFNc. Whole-cell extracts were collected and tested for levels of STAT1 phosphorylation on Y701 in
Western blot. The blots are representative of more than three independent experiments.

C Effect of Stat1Y701F homozygosity on the expression of IFNb-induced genes. BMDMs of wild-type (WT), Stat1Y701F (YF), and Stat1�/� (S1) mice were treated with 5 ng/ml
of IFNc for 4 or 48 h. Gene expression was measured by qPCR and normalized to Gapdh and to the expression levels in untreated wild-type cells. Bars represent a
mean value of three independent experiments. Error bars represent standard error of the mean (SEM); asterisks denote the level of statistical significance (ns,
P > 0.05); and the P-values were calculated using paired ratio t-test.

D Effect of Stat1Y701F homozygosity on the expression of type I IFN-induced genes (ISGs). BMDMs were isolated from wild-type (WT), Stat1Y701F, Stat1�/�, Stat2�/�, and
Irf9�/� mice treated with 250 IU/ml of IFNb for 4, 8, 12, 24, or 48 h. Gene expression was measured by qPCR and normalized to Gapdh and to the expression levels in
untreated wild-type cells. Bars represent a mean value of three independent experiments. Error bars represent standard error of the mean (SEM); asterisks denote the
level of statistical significance (*P ≤ 0.05; **P ≤ 0.01); and the P-values were calculated using paired ratio t-test.

E STAT1 and STAT2 phosphorylation in Stat1�/�, Stat1Y701F, Stat2�/�, and Irf9�/� macrophages. BMDMs were isolated from wild-type (WT), Stat1Y701F (YF), Stat1�/� (S1),
Stat2�/� (S2), and Irf9�/� (IRF9) mice and treated with 250 IU/ml of IFNb for 30 min or 6, 12, or 24 h. Whole-cell extracts were collected and tested in Western blot
for levels of phosphorylation of STAT1 on Y701 and of STAT2 on Y689. The same cell extracts were tested for total levels of STAT1 and STAT2. The blots are
representative of more than three independent experiments.
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organelle-based function independently of tyrosine phosphorylation

[22–28].

To examine the nuclear effect of STAT1Y701F, next-generation

sequencing of chromatin immunoprecipitations with antibodies to

STAT1 (ChIP-Seq) was carried out. Both untreated and IFNb-
stimulated macrophages of WT and Stat1Y701F genotypes were

analyzed. The data provide no hint of nuclear presence of

STAT1Y701F before or after IFNb treatment. By contrast, binding of

WT STAT1 was readily observed after IFNb treatment (Fig EV3

shows Mx2, Irf7, Stat1, and Stat2 genes as representative examples).

Consistent with the suppression of gene expression stimulated by

STAT2/IRF9 complexes, site-directed ChIP showed decreased STAT2

binding to both Mx2 and Irf7 ISRE sequences in Stat1Y701F cells 24 h

after IFNb treatment (Fig 3A). In WT macrophages, STAT1 occupied

the Mx2 ISRE site both 2 and 24 h after stimulation with IFNb and

binding required STAT2 (Fig 3B). ChIP-reChIP experiments

confirmed the simultaneous presence of STAT1 and STAT2 24 h

after IFNb stimulation on at least a subfraction of ISREs, suggesting

that in WT cells late-stage induction involves both STAT1 and

STAT2 (Fig 3C). Further evidence for a suppression of STAT2/IRF9-

mediated gene expression was obtained with the experiment shown

in Fig 3D. Transfection of STAT2 into STAT1-deficient fibroblasts

stimulated late IFNb-induced gene expression. Expression of

STAT1Y701F along with STAT2 suppressed gene expression when

compared to the amount obtained with STAT2 overexpression alone.

By contrast, WT STAT1 enhanced gene expression when transfected

together with STAT2.

In the absence of evidence for nuclear STAT1Y701F activity, we

performed immunofluorescence-based experiments to test whether

the lack of individual ISGF3 subunits influences nuclear transloca-

tion of STAT2. Staining for STAT2 showed a comparable transloca-

tion of STAT2 to the nucleus 30 min after IFNb stimulation of

Stat1�/� and Irf9�/� macrophages (Fig 4A). Twenty-four hours

after IFNb stimulation, STAT2 was largely present in the nucleus of

Stat1�/� and Irf9�/� macrophages. Importantly, the presence of

STAT2 in the nucleus of Stat1Y701F macrophages was reduced in

comparison with Stat1�/� (Fig 4B).

Together, the data strongly suggest that STAT1Y701F leads to

inhibition of STAT1-independent, STAT2/IRF9-dependent late ISG

expression through interaction with STAT2 in the cytoplasm,

preventing it from nuclear translocation and DNA binding.

Stat1Y701F and Stat1�/� macrophages and mice differ in their
response to infection with Legionella pneumophila and
Listeria monocytogenes

To examine whether suppression of late IFN-I signaling by

STAT1Y701F alters cell-autonomous antibacterial immunity

provided by macrophages, we infected the cells with two intracellu-

lar pathogens, Le. pneumophila and L. monocytogenes. While IFN-I

was shown to limit intracellular growth of Le. pneumophila with

a clear impact of the STAT1-independent delayed pathway [29–31],

this activity of IFN-I is not seen upon infection with L. monocyto-

genes [32].

Infection of untreated macrophages with Le. pneumophila

showed no difference between WT, Stat1�/�, or Stat1Y701F geno-

types (Fig 5A). As previously reported [3,30], Le. pneumophila

growth was reduced after IFN-I treatment in both WT and Stat1�/�

macrophages (Fig 5B). Consistent with the suppressive activity of

STAT1Y701F on the STAT1-independent pathway, Stat1Y701F

macrophages showed less ability than Stat1�/� to inhibit

Le. pneumophila growth (Fig 5B).

During infection of WT macrophages with L. monocytogenes,

IFN-I is produced and causes phosphorylation of STAT1 on Y701

(Fig 6A), but IFN-I does not affect growth in WT or Stat1-deficient

macrophages [32]. We tested whether Stat1Y701F mutation and

STAT1-deficiency have a different impact on the transcriptional

response to L. monocytogenes by performing gene microarrays using

cDNA from infected cells. Comparing Stat1Y701F macrophages with

WT, we found differentially expressed probes at an FDR of 0.1 at all

observed time points during infection (Table 1, first row). In

striking contrast to the comparison with the WT, no differentially

regulated genes at an FDR of 0.1 were found at any time point when

we compared Stat1Y701F and Stat1�/� (Table 1, second row). Among

the genes higher expressed in WT versus Stat1�/� as well as

Stat1Y701F macrophages was the Ifnb gene (Fig 6B). Thus, the

strongly reduced production of type I IFN is likely to obscure poten-

tial effects IFN-I might exert on the innate response of Stat1Y701F

cells and mice to L. monocytogenes. It may also preclude significant

alterations of gene expression when compared to STAT1-deficiency.

To investigate potential effects of unphosphorylated STAT1, we

infected macrophages in vitro and determined intracellular L. mono-

cytogenes growth. Strikingly, untreated macrophages with the

Stat1Y701F genotype inhibited L. monocytogenes replication better

than BMDM with complete STAT1-deficiency (Fig 7A), suggesting a

role for U-STAT1.

STAT1 is essential for innate resistance of mice against L. mono-

cytogenes infection [33,34]. Prompted by the result in isolated

macrophages, we determined the impact of STAT1Y701F in murine

L. monocytogenes infection. Due to the strong decrease in STAT1

amounts caused by Y701F mutation with respect to WT, the most

important readout of these experiments is a potential gain of

function in comparison with Stat1�/� mice.

Stat1Y701F mice infected with L. monocytogenes were highly

susceptible to infection when compared to WT, but showed reduced

bacterial loads in lungs, brain, liver, and spleen 48 h and 72 h after

infection compared to the Stat1�/� mice (Fig 7C). The difference

between the Stat1�/� and Stat1Y701F genotypes was smaller at 72 h

after infection and disappeared at the terminal stage of infection

shortly before death (between 72 and 144 h p.i.). Consistently,

Stat1Y701F and Stat1�/� mice died at equal rates (Fig 7B). We

conclude that compared to STAT1-deficiency, the presence of

STAT1Y701F delays L. monocytogenes replication, however,

without the efficacy that would be needed for an increase in

survival. The delay in bacterial spread and the concomitant

generation of inflammatory infiltrates was further supported by

immunohistochemistry. Stat1Y701F mice livers contained fewer

L. monocytogenes (Fig 8A) and immune cell infiltrates were smaller

both in numbers and size compared to the Stat1�/� mice livers

(Fig 8A and B). As previously described [35], these infiltrates

consisted mostly of neutrophils (Fig 8A), while there were no

clearly discernable differences in macrophage distribution in livers

of all three genotypes (Fig EV4). Furthermore, measurements of

alanine aminotransferase (ALT) levels in serum of infected mice

showed a decrease of this liver damage parameter in Stat1Y701F mice

compared to Stat1�/� (Fig 8C). The data demonstrate a subtle, yet
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D

Figure 3. Presence of the STAT1Y701F mutant reduces IFNb-stimulated binding of STAT2 to nuclear ISRE sequences.

A IFNb-stimulated binding of STAT2 to ISRE sequences of Mx2 and Irf7 promoters. Bone marrow-derived macrophages (BMDMs) of wild-type (WT), Stat1Y701F (YF),
Stat1�/� (S1), Stat2�/� (S2), and Irf9�/� (IRF9) mice were treated with 250 IU/ml of IFNb for 2 or 24 h. Cells were cross-linked, sonicated, and immunoprecipitated
with STAT2-specific antibody. The amount of precipitated DNA was measured by qPCR. Bars represent a mean value of three independent experiments. Error bars
represent standard error of the mean (SEM); asterisks denote the level of statistical significance (**P ≤ 0.01); and the P-values were calculated using paired ratio
t-test.

B Impact of STAT2 deficiency on IFNb-stimulated STAT1 association with the Mx2 ISRE. BMDMs of wild-type (WT), Stat1�/� (S1), and Stat2�/� (S2) mice were treated
with 250 IU/ml of IFNb for 2 or 24 h. Cells were cross-linked, sonicated, and immunoprecipitated with STAT1-specific antibody. The amount of precipitated DNA was
measured by qPCR. Bars represent mean values of three independent experiments; error bars represent standard error of the mean (SEM).

C Simultaneous association of STAT1 and STAT2 with the Mx2 ISRE analyzed by ChIP-reChIP. BMDMs of wild-type (WT) mice were treated with 250 IU/ml of IFNb for 2
or 24 h. Cells were cross-linked, sonicated, and immunoprecipitated with either STAT1-specific antibody and re-immunoprecipitated with STAT2-specific antibody or
vice versa. The amount of precipitated DNA was measured by qPCR. Bars represent mean values of three independent experiments; error bars represent standard
deviation (SD).

D Impact of STAT1Y701F on delayed, STAT2-mediated expression of IFN-induced genes. Stat1�/� fibroblasts were transfected with plasmids driving expression of the
indicated proteins. Twenty-four hours after transfection, 250 IU/ml of IFNb was added to the transfected cells and ISG expression was determined by qPCR after 48 h
of cytokine treatment. Gene expression was measured by qPCR and normalized to Gapdh. Bars represent a mean value of three independent experiments. Error bars
represent standard error of the mean (SEM) and asterisks denote the level of statistical significance (*P ≤ 0.05); the P-values were calculated using paired ratio t-test.
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clearly discernible activity of U-STAT1 in the innate response

against L. monocytogenes.

Discussion

STAT1 makes an essential contribution to innate immunity against

viral and intramacrophagic bacterial disease. The objective of our

study was to reveal any contribution of non-tyrosine-phosphory-

lated STAT1 to innate immunity. Examining cells and organs of

mice expressing a Stat1Y701F mutant, the first observation of note

was the strong dependence of STAT1 expression on its tyrosine

phosphorylation through tonic signaling. None of the tested stimuli,

including L. monocytogenes infection, caused upregulation of the

Stat1 gene in the absence of its tyrosine-phosphorylated product.

Therefore, effects of the U-Stat pathway as defined by Stark and

colleagues which rely on an increase in STAT abundance could not

be examined. In addition, any results obtained for the immune

response of Stat1Y701F cells or mice could not be compared to WT

counterparts because a distinction between effects of tyrosine phos-

phorylation and effects of STAT1 abundance was not possible. To

overcome this problem, we recorded gain or loss of function with

respect to Stat1�/� cells and mice. With this approach, we were able

to derive important insight into the cross-regulation of Stat1 and

A

B

Figure 4. STAT1Y701F mutant reduces IFNb-stimulated nuclear translocation of STAT2.

A Analysis of STAT2 nuclear translocation by immunofluorescence. Bone marrow-derived macrophages (BMDMs) of wild-type (WT), Stat1Y701F (YF), Stat1�/� (S1),
Stat2�/� (S2), and Irf9�/� (IRF9) mice were seeded on cover slips and stimulated with 250 IU/ml of IFNb for 30 min or 24 h. The cells were fixed and stained for
STAT2-specific antibody followed by Alexa Fluor® 488 conjugated secondary antibody (green). Nuclei were stained with DAPI (blue). Studies are representative of more
than three independent experiments. The scale bars represent 10 µm.

B Quantitative evaluation of STAT2 nuclear translocation. The intensity of STAT2-dependent immunofluorescence over DNA staining (DAPI) was quantified using ImageJ
software in 20 cells from two independent experiments. Bars represent a mean with standard deviation (SD) and asterisks denote the level of statistical significance
(***P ≤ 0.001); P-value was calculated using unpaired t-test.
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Stat2 genes and the mechanism of Stat signaling by the IFN

receptors. We also demonstrated inhibition of delayed, STAT1-inde-

pendent type IFN signaling by the STAT1Y701F mutant, owing to

inhibited nuclear translocation of STAT2. Reduced inhibition of

intracellular Le. pneumophila growth in Stat1Y701F compared to

Stat1�/� macrophages supports our interpretation of this activity.

Other than Le. pneumophila, STAT1-independent type I IFN signal-

ing is thought to partially rescue cells and organisms from infection

with viruses causing STAT1 inhibition or degradation. Finally, we

noted that the presence of STAT1Y701F inhibited L. monocytogenes

replication, although not rescuing mice from lethal infection.

Mice expressing one Stat1Y701F allele in addition to a WT Stat1

allele showed reduced STAT1 expression, in accordance with

phosphotyrosine-dependent autoregulation of the gene. Decreased

tyrosine phosphorylation of WT STAT1 upon IFN treatment may

thus reflect decreased protein amounts rather than a dominant-

negative effect of STAT1Y701F. Several mutations of human Stat1

have been reported to impair the phosphorylation of STAT1 on

Y701 [36–38]. However, only one clinical case of two-generation

kindred has been described to have a heterozygous Y701C Stat1

mutation [16]. In this report, the patient’s blood leukocytes

showed normal STAT1 levels, but reduction in STAT1 phosphory-

lation and binding to DNA after both type I and type II interferon

treatment. Therefore, Stat1Y701C mutation was concluded to be

autosomal dominant. We cannot entirely rule out autosomal

dominance of Stat1Y701F mutation in mice, but the reduced STAT1

expression appears to manifest a cell type- or species-specific

difference.

In line with expectations, the early transcriptional response to

both tested IFN types was completely lost in Stat1Y701F mice. Tyro-

sine phosphorylation of STATs 2, 3, and 5 did not differ from that

observed in Stat1�/� cells. This shows the lack of dominant-nega-

tive activity of the Y701F mutant with regard to STAT activation by

the IFN receptor complex. STAT2 levels were slightly elevated in

resting Stat1Y701F compared to Stat1�/� cells. However, upon IFNb
treatment STAT2 protein increased to higher levels in Stat1�/� cells,

but much less so in Stat1Y701F cells or Irf9�/� cells. In agreement

with data in Fig EV1, this shows that the Stat2 gene is a target of

STAT1-independent STAT2/IRF9 signaling which, like many other

genes examined in our study, is partially suppressed by

STAT1Y701F. Regarding the mechanism of STAT1Y701F-mediated

ISG suppression, our ChIP-Seq data support the conclusion that it is

not through activity in the cell nucleus. While we cannot exclude

insufficient sensitivity of this technology to detect very small

STAT1Y701F amounts, a clear effect on STAT2 nuclear translocation

suggests a cytoplasm-based mode of action. The finding that the

small amounts of STAT1Y701F produce this significant effect is

explained on the one hand by reduced nuclear presence of

hemiphosphorylated STAT1Y701F/STAT2 dimers and by the result-

ing defect in STAT2 upregulation. STAT1Y701F/STAT2 dimers

might either have reduced ability to enter the nucleus or to persist

in this cell compartment through stable association with chromatin

[39,40]. This would be expected to reduce the amount of gene-asso-

ciated STAT2/IRF9 complexes, an interpretation compatible with

both the analysis of STAT2 subcellular distribution (Fig 4A) and the

site-directed ChIP demonstrating reduced STAT2 binding to ISRE-

containing ISG promoters in Stat1Y701F cells (Fig 3A).

Unlike Stat2, the Stat1 gene increased profoundly after IFNb
treatment not only in WT, but also in all investigated genotypes

except Stat1Y701F. This result further emphasizes the importance of

Y701 phosphorylation for Stat1 gene expression. Enhanced expres-

sion in Stat2�/� and Irf9�/� cells shows that IFNb regulation of the

Stat1 gene does not involve the ISGF3 complex. Surprisingly and in

contrast, STAT1 maintenance in resting cells appears to require

ISGF3 as a profound drop occurs in Stat2�/� as well as Irf9�/�

macrophages.

Innate immunity to L. monocytogenes was strongly reduced

in Stat1�/� as well as Stat1Y701F mice, in accordance with its

A B

Figure 5. STAT1Y701F mutant counteracts the inhibition of Legionella pneumophila replication by delayed, STAT2/IRF9-dependent IFN signaling.

A Legionella pneumophila growth in unstimulated macrophages. Bone marrow-derived macrophages (BMDMs) of wild-type (WT), Stat1Y701F, and Stat1�/� mice were
seeded in 24-well plates and infected with Le. pneumophila (JR32 Fla�, MOI 0.25). The numbers of colony-forming units (CFUs) were determined 24, 48, and 72 h after
infection on charcoal yeast extract plates (CYE). The 0 time point was collected 1.5 h after the infection.

B Legionella pneumophila growth in IFNb-treated macrophages. Bone marrow-derived macrophages (BMDMs) of wild-type (WT), Stat1Y701F, and Stat1�/� mice were
seeded in 24-well plates, treated with 500 U/ml of IFNb, and then infected with Le. pneumophila (JR32 Fla�, MOI 0.25). The numbers of colony-forming units (CFU)
were determined 24, 48, and 72 h after infection on charcoal yeast extract plates (CYE). The 0 time point was collected 1.5 h after the infection.

Data information: The results in (A) and (B) represent six biological repeats and the data are presented as mean values. Asterisks denote statistically significant
differences between CFU numbers from Stat1Y701F and Stat1�/� cells (***P ≤ 0.001); P-values were calculated using unpaired t-test.
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dependence on IFNc and the lack of any apparent transcriptional

activity of STAT1Y701F on IFNc-inducible genes (Figs 7A and EV3)

[41,42]. In fact, STAT1Y701F was not able to rescue from lethal

infection irrespective of the inoculum size (Fig 7B). In spite of this,

replication of the bacteria in infected Stat1Y701F cells and organs was

delayed, as were the examined hallmarks of liver inflammation and

damage. At present, we cannot pinpoint the mechanism behind this.

Speculatively, the altered response to IFN-I might be a contributing

factor. Although Listeria-infected Stat1�/� and Stat1Y701F cells

produce less IFN-I (Fig 6B), levels of cytokine are expected to

stimulate cells, albeit to a lesser degree. In the absence of IFN-I

signaling, Listeria-infected mice show decreased bacterial burden

and increased survival. This correlates with reduced apoptosis of

splenic lymphocytes [43–46]. The impact of the late phase of the

IFN-I response during which ISG transcription can occur without

STAT1 and during which STAT1Y701F exerts its inhibitory activity

on immunity to L. monocytogenes is unclear. However, the biologi-

cal relevance of the STAT1-independent pathway is documented by

antiviral activity of Stat1�/� cells against viruses (Dengue virus

[19]; MV [18]), by type I IFN-mediated viral pathology in mice [47]

and antibacterial macrophage activity against Le. pneumophila

(Fig 5) [3,30]. Based on our findings and these reports in the litera-

ture, we hypothesize that late-phase suppression of the IFN-I

response reduces its known detrimental effects on innate resistance

to L. monocytogenes. However, reduced L. monocytogenes growth

in Stat1Y701F macrophages compared to Stat1�/� suggests an

additional, cell-autonomous effect of U-STAT1 because cells lack-

ing the type I IFN receptor do not reproduce this phenotype

[32] and there is no IFNc in the experimental system. Extensive

microarray analyses are inconsistent with a nuclear activity of

the mutant in infected cells, suggesting a hitherto undefined

cytoplasmic route through which U-STAT1 influences antibacterial

resistance.

In this regard, our observation that L. monocytogenes infection

causes phosphorylation of the STAT1Y701F mutant at S727 (data

not shown) may be of importance, as several reports suggest that

at least some biological activities of U-STATs require phosphoryla-

tion at this residue. Whereas nuclear S727 phosphorylation by

CDK8 enhances transcriptional activity of the tyrosine-phosphory-

lated STAT1 dimer [48], cytoplasmic S727 phosphorylation of

U-STAT1 was linked to diverse biological processes such as the

apoptotic response to TNF or the regulation of NK cytotoxicity

[49,50]. Therefore, it is tempting to speculate that the cytoplasmic

kinase causing S727 phosphorylation of U-STAT1 in L. monocyto-

genes-infected macrophages is part of a STAT1-dependent

antibacterial pathway.

In conclusion, our analysis of Stat1Y701F cells and mice supports

the idea of U-Stat activity and yielded interesting insight into the

cross-regulation of STATs. How relevant is this experimental system

for Stat signaling in WT cells? Generally speaking, the gain of innate

immunity versus STAT1 deficiency seen in our studies is small and

hard to extrapolate to a contribution of unphosphorylated STAT1 in

WT animals. The best our experimental model can achieve is to

reveal a potential of unphosphorylated STAT1, but it cannot provide

final proof that this potential is realized in WT cells or animals. The

ChIP analysis of Fig 3C demonstrates WT STAT1 at ISREs both early

and late after IFNb treatment and that it co-occupies the same sites

with STAT2. This suggests that a STAT1-independent pathway

employing STAT2/IRF9 is less prominent in WT cells. Therefore, a

selective inhibition of this pathway by unphosphorylated STAT1

can neither be ruled out nor confirmed. From a broader perspective,

the finding demonstrating STAT1Y701F mutant inhibition of STAT2

translocation to the nucleus suggests that the subcellular distribu-

tion of STAT2 in type I IFN-treated WT cells may be regulated by

the relative amount of U-STAT1. Moreover, the scenario studied

here applies to patients with Stat1 mutations that inhibit tyrosine

phosphorylation [15,16] or to cells in which pathogens disrupt

Jak-Stat signal transduction.

A

B

Figure 6. Interferon signaling in Listeria monocytogenes-infected
Stat1Y701F bone marrow-derived macrophages.

A Western blot analysis of STAT1 tyrosine phosphorylation. Bone marrow-
derived macrophages (BMDMs) of wild-type (WT), Stat1Y701F (YF), and
Stat1�/� (S1) mice were infected with L. monocytogenes (LO28, MOI 10) for
5 or 6 h. Whole-cell extracts were collected and tested in Western blot for
levels of total STAT1 and phosphorylation of STAT1 on tyrosine 701 (Y701).
The blots are representative of more than three independent experiments.

B Impact of Stat1Y701F mutation, or of deletion of ISGF3 subunits on the
expression of the Ifnb gene. BMDMs of wild-type (WT), Stat1Y701F, Stat1�/�,
Stat2�/�, and Irf9�/� mice were infected with L. monocytogenes (LO28, MOI
10) for 4, 8, 12, 24, or 48 h. Levels of Ifnb gene expression were determined
by qPCR. Bars represent mean values of three independent experiments.
Error bars represent standard error of the mean (SEM).

Table 1. Transcriptome changes in macrophages of WT, Stat1Y701F,
and Stat1�/� genotypes after infection with Listeria monocytogenes.

Untreated 6 h 12 h 24 h

WT 6 (0.08%) 1047 (13.68%) 570 (7.46%) 274 (3.58%)

Stat1�/� 0 0 0 0

Numbers indicate differentially expressed genes between WT and Stat1Y701F

macrophages (first row) and between Stat1Y701F and Stat1�/� macrophages
(second row). Numbers in brackets indicate percent changes with respect to
all genes analyzed. Microarray data are deposited at ArrayExpress under
accession number E-MTAB-3598 (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-3598/).
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A

C

B

Figure 7. STAT1Y701F contributes to clearance of L. monocytogenes infection.

A Impact of Stat1 deficiency or of STAT1Y701F mutation on the growth of Listeria monocytogenes in macrophages. Bone marrow-derived macrophages (BMDMs) of
wild-type (WT), Stat1Y701F, and Stat1�/� mice were infected with L. monocytogenes (LO28, MOI 10). Colony-forming unit (CFU) numbers were determined 1, 2, 4, 6, or
8 h after infection by plating on brain–heart infusion (BHI) agar plates. The graph represents biological triplicates and the data are represented as mean values. Error
bars represent standard deviation (SD) and asterisks denote statistically significant differences (ns, P > 0.05; **P ≤ 0.01; ***P ≤ 0.001); P-values were calculated using
unpaired t-test.

B Survival of mice infected with L. monocytogenes. 10 wild-type (WT), Stat1Y701F, and Stat1�/� mice per group were infected by intraperitoneal injection of 1 × 102

viable L. monocytogenes. Survival was monitored over 10 days. The study is representative of more than three independent experiments.
C Organ pathogen burdens of mice infected with L. monocytogenes. Wild-type (WT), Stat1Y701F (YF), and Stat1�/� (S1) mice were infected by intraperitoneal injection of

1 × 102 viable L. monocytogenes. Number of colony-forming units (CFU) in organs was determined at 48, 72 h, or at the terminal stage of infection by plating
homogenates on brain–heart infusion (BHI) agar plates or Oxford agar plates (for lungs). Dots represent pooled data of three independent experiments. Lines
represent the median and asterisks denote statistically significant differences (ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001); P-values were
calculated using Mann–Whitney U-test.

EMBO reports Vol 17 | No 3 | 2016 ª 2016 The Authors

EMBO reports U-STAT1 activity in the innate immune system Andrea Majoros et al

376



A

B C

Figure 8. Liver inflammation in Stat1Y701F and Stat1�/� mice after infection with Listeria monocytogenes.

A Immunohistochemical analysis of infection and inflammatory infiltrates. Wild-type (WT), Stat1Y701F, and Stat1�/� mice were infected by intraperitoneal injection of
1 × 102 viable L. monocytogenes for 48 h. Liver sections were examined by immunohistochemistry with L. monocytogenes or Ly6C/Ly6G-specific antibody. The scale
bars on 20× magnification images represent 100 and 50 µm on the 63× magnification images.

B Quantitative evaluation of inflammatory infiltrates. Infiltrates representing the entire surface of sections from five animals per genotype were counted and
categorized according to their size.

C Liver pathology in infected mice. Wild-type (WT), Stat1Y701F (YF), and Stat1�/� (S1) mice were infected by intraperitoneal injection of 1 × 105 viable L. monocytogenes
for 72 h. Serum was collected and tested for ALT activity. Lines represent the median and asterisks denote statistically significant differences (*P ≤ 0.05; ***P ≤ 0.001);
P-values were calculated using unpaired t-test.

ª 2016 The Authors EMBO reports Vol 17 | No 3 | 2016

Andrea Majoros et al U-STAT1 activity in the innate immune system EMBO reports

377



Materials and Methods

Mice

Mice containing an A->T point mutation in exon 23 of the Stat1

gene, causing a change of Y701 to F, were generated following the

strategy described for Stat1S727A mice by [51]. In brief, a targeting

construct spanning intron 22 through exon 23 was made, inserting

a floxed neo cassette in intron 22 and a DT gene after exon 23 for

selection of homologous recombinants. The construct was intro-

duced in ES cells and homologous recombinants identified by

Southern blot of BglII-restricted genomic DNA. The point mutation

was verified by PCR amplification of the tyrosine-containing exon

23 and digestion with restriction enzyme Hinf. The A->T transver-

sion generates an additional Hinf site that divides the PCR amplicon

into fragments of 355 and 175 bp length. A positive ES clone (A10)

was identified and the neo cassette excised after infection with a

Cre-expressing adenovirus. Neo-deleted ES cells were used for blas-

tocyst injection and the generation of chimeric mice. Mice transmit-

ting the mutant allele to their progeny were backcrossed to C57BL/

6N mice. A pure C57BL/6N congenic strain was established

by marker-assisted selection. C57BL/6N and congenic Stat1�/�,
Stat2�/�, and Irf9�/� mice were housed under SPF conditions

[52–54].

All of the animal experiments have been approved by the

Vienna University of Veterinary Medicine institutional ethics

committee and performed according to protocols approved by the

Austrian law (BMWF 68.205/0032-WF/II/3b/2014). General condi-

tion and behavior of the animals during the experiments was

controlled by FELASA B degree holding personnel. The progress

of the disease was monitored every 2–4 h during the “day phase”

(7 a.m. to 7 p.m.) or both during the “day” and the “night

phase” depending on the condition of the animals. In survival or

terminal stage experiments, humane endpoint by cervical disloca-

tion was conducted if death of the animals was expected within

next few hours. Animal husbandry and experimentation was

performed under the Austrian national law and the ethics

committees of the University of Veterinary Medicine Vienna and

according to the guidelines of FELASA which match those of

ARRIVE.

Infection of mice and in vivo colony-forming unit (CFU) assays

Mice were infected by intraperitoneal injection with the indicated

inoculum sizes of the LO28 strain of L. monocytogenes. The bacteria

were prepared as previously described [55]. For infection, bacteria

were washed, diluted in respective concentration in PBS (Sigma),

and injected into 8- to 10-week-old, gender-matched C57BL/6N

(WT), Stat1Y701F, and Stat1�/� mice. The infectious dose was

controlled by plating serial dilutions on Oxford agar (Merck

Biosciences) or brain–heart infusion (BHI; BD Biosciences) agar

plates. For the survival assays, mice were monitored over the course

of 10 days. For detection of bacterial loads in liver, spleen, brain,

and lungs (CFU assays), mice were sacrificed at the indicated time

points, and organs were harvested and homogenized in PBS. The

1:10 serial dilutions were plated on Oxford agar plates (lungs) or

BHI agar plates. The colonies were counted after 24-h incubation at

37°C.

Histology

Mouse organs were harvested, fixed in 4% paraformaldehyde over-

night, and dehydrated in 70% ethanol overnight. Samples were

further embedded in paraffin and cut on a microtome into 3-lm
sections. Immunohistochemical detection of L. monocytogenes and

of Ly6C/Ly6G+ cells in infected liver tissue was performed as previ-

ously described [35]. In brief, sections for the identification of

L. monocytogenes were incubated in 50% methanol and 3%

hydrogen peroxide to inhibit endogenous peroxidase activity and

then incubated with pronase (Roche), washed in PBS containing

0.05% Tween (PBS-T), and blocked in 5% normal goat serum.

Sections were reacted with primary antibody against L. monocyto-

genes (Abcam) and binding was detected using HRP rabbit/mouse

polymer (Dako) and AEC+ high chromogen substrate. The counter-

stain was done with hematoxylin. For Ly6C/Ly6G (Gr-1) immuno-

histochemistry, liver sections were incubated in 50% methanol and

3% hydrogen peroxide to inhibit endogenous peroxidase activity

and then boiled in 10 mM sodium citrate antigen unmasking solu-

tion. The samples were blocked in 3% normal goat serum and

stained overnight with primary Ly6C/Ly6G antibody (BD Pharmin-

gen). On the next day, samples were incubated with biotinylated

rabbit anti-rat IgG (Vector Laboratories), washed and incubated

with ABC reagent (Vector Laboratories). Binding was visualized

using AEC+ high sensitivity chromogen substrate (Dako). Samples

were counterstained with hematoxylin.

Analysis of alanine aminotransferase levels (ALT)

Mice were infected with 1 × 105 LO28 L. monocytogenes intraperi-

toneally and sacrificed 72 h after infection. ALT levels were

measured in mice serum using a Roche COBASc11 analyzer (Labor

Invitro, Vienna, Austria).

Cell culture

Bone marrow-derived macrophages (BMDMs) were differentiated

from bone marrow isolated from femurs and tibias of 6- to 8-week-

old mice. Cells were cultured in DMEM (Sigma-Aldrich)

supplemented with 10% of FCS (Sigma-Aldrich), 10% of L929-cell

derived CSF-1 and 100 units/ml penicillin, 100 lg/ml streptomycin

(Sigma-Aldrich) as previously described [55]. The culture contained

>99% of F4/80+ cells.

In vitro colony-forming unit (CFU) assay

Listeria monocytogenes: For in vitro colony-forming unit (CFU)

assays, cells were infected with L. monocytogenes LO28 at a multi-

plicity of infection (MOI) of 10 in antibiotic-free medium. After 1 h,

the medium was replaced with medium containing 50 lg/ml of

gentamicin in order to eliminate all external bacteria. After one

more hour, the medium was exchanged again with medium contain-

ing 10 lg/ml gentamicin. At indicated time points, cells were lysed

in sterile water and CFUs were determined by plating 1:10 serial

dilutions on BHI (BD Biosciences) agar plates. Colonies were

counted after 24-h incubation at 37°C.

Legionella pneumophila: The Le. pneumophila JR32 Fla�
(flagellin deficient) strain was grown in AYE (ACES-buffered yeast

EMBO reports Vol 17 | No 3 | 2016 ª 2016 The Authors

EMBO reports U-STAT1 activity in the innate immune system Andrea Majoros et al

378



extract) broth or on CYE (charcoal yeast extracts) plates as previ-

ously described [30]. BMDMs were infected at MOI 0.25 and cells

were lysed in sterile water at the indicated time points. Numbers of

CFUs were determined by plating 1:10 serial dilutions plated on CYE

plates. Colonies were counted after 72 h of incubation at 37°C.

Preparation of whole-cell lysates and Western blot analysis

3 × 106 BMDMs were infected with L. monocytogenes at MOI 10 as

described above, or treated with 250 IU/ml of IFNb (PBL interferon

source) or 5 ng/ml of IFNc (Affymetrix, eBioscience). For whole-cell

lysates, BMDMs were lysed in 80 ll of Frackelton buffer (10 mM Tris,

30 mM Na4P2O7, 50 mM NaCl, 50 mM NaF, 1% Triton X-100,

0.1 mM PMSF, 1 mM DTT, 0.1 mM Na3VO4, pH 7.5) supplemented

with complete protease inhibitors diluted 1:100 (Roche). Proteins

were separated on 10% SDS–polyacrylamide gels and blotted onto

cellulose membranes (Optitran BA-S 83, GE Healthcare Life Sciences)

using a standard semidry protocol (1.5 h, 32 mA per gel). For tissue

Western blots, spleens were lysed in 1 ml Frackelton buffer and livers

were lysed in five volumes of buffer (50 mM Tris–HCl pH 8, 150 mM

NaCl, 1% Triton X-100, 0.1% SDS, 5 mM EDTA, 1 mM EGDA, inhibi-

tors). The following primary antibodies were used: STAT1 C-terminal

[56], STAT1 (clone E-23, Santa Cruz), phospho-Y701 STAT1 (Cell

Signaling), phospho-Y689 STAT2 (Millipore), STAT2 (Millipore),

STAT3 (Cell Signaling), phospho-Y705 STAT3 (Cell Signaling), phos-

pho-Y694 STAT5 (BD Biosciences), STAT5 (Millipore) and tubulin

(Sigma). Secondary antibodies were purchased from Li-COR and blots

were detected on Odyssey CLx� Infrared Imaging System (Li-COR).

RNA isolation, cDNA synthesis, and qPCR

1 × 106 BMDMs were infected with L. monocytogenes at MOI 10 as

described above, or treated with 250 IU/ml of IFNb (PBL interferon

source) or 5 ng/ml of IFNc (Affymetrix, eBioscience). At indicated

time points, cells were lysed in RA1 buffer from the NucleoSpin II

RNA isolation kit (Macherey-Nagel). Total RNA isolation was

further performed according to the manufacturer’s instructions.

cDNA was synthesized using 200 ng of isolated RNA. qPCR was

performed using GoTaq� qPCR Master Mix (Promega) according to

the manufacturer’s instructions. Samples were amplified on a

Mastercycler realplex real-time PCR system (Eppendorf). mRNA

levels were calculated and normalized to Gapdh using the DCT

method. Relative fold induction was calculated by normalizing all

genotypes and treatments to untreated WT. Sequences of primers

are listed in Appendix Table S1.

Cell transfection

Stat1�/� fibroblasts were grown to 70% confluency in 6-cm dishes.

The cells were transfected with 1 lg of each expression plasmid

using 8 ll of TurbofectTM reagent (Thermo Scientific). Twenty-four

hours later, the cells were treated with IFNb for 48 h, followed by

extraction of RNA as described above.

Immunofluorescence

2 × 105 BMDMs were seeded on glass cover slides, treated with

250 IU/ml IFNb, and fixed with 3% paraformaldehyde for 20 min at

room temperature. Cells were permeabilized with 0.1% saponin in

0.5 M NaCl PBS. Blocking and incubation with STAT2 primary

antibody [3] and secondary anti-rabbit Alexa Fluor� 488 (Life Tech-

nologies) were done in 0.1% saponin and 1% BSA in 0.5 M NaCl

PBS. Samples were mounted in DAPI-containing mounting media

Dapi-Fluoromount-G (SouthernBiotech). Confocal images were

acquired using a Zeiss LSM 710 microscope with 63X (NA 1.4) oil

objectives. Images were processed and analyzed using the ImageJ

software and relative fluorescence was calculated according to the

corrected total cell fluorescence (CTCF) formula (CTCF = Integrated

density � (area of selected cell × mean fluorescence background

readings)) as previously described [57,58].

ChIP-seq, ChIP, and ChIP-reChIP

Chromatin immunoprecipitation (ChIP) using DynaBeads Protein G

(Invitrogen) was performed as described [59]. BMDMs were

treated with 250 IU/ml of IFNb. ChIP was performed using STAT1

(clone E-23, Santa Cruz) or STAT2 antibody (clone C-20, Santa

Cruz). Levels of precipitated chromatin were measured by qPCR as

described above. Primers used for qPCR are listed in Appendix

Table S1. Data were normalized to input and to the sample from

untreated wild-type cells. For ChIP-seq, precipitated chromatin was

sonicated into 200- to 300-bp-long fragments. 5–10 ng of DNA

precipitated by ChIP was used as the starting material for the

generation of sequencing libraries using the KAPA library prepara-

tion kit for Illumina systems. Completed libraries were quantified

with a Bioanalyzer dsDNA 1000 assay kit (Agilent) and a qPCR

NGS library quantification kit (KAPA). Cluster generation and

paired-end sequencing was achieved with a HiSeq 2000 system

with a read length of 100 bp according to the manufacturer’s

guidelines (Illumina). Samples were multiplexed using unique

adaptors; all the untreated samples were run on the first lane and

the treated ones on the second lane of the flow cell. ChIP-reChIP

experiments were preformed as previously described [60] using

STAT1 (clone E-23, Santa Cruz) or STAT2 antibody (clone C-20,

Santa Cruz). In short, the immune complexes were eluted with

10 mM DTT for 40 min at room temperature with agitation after

which they were diluted 40-fold in ChIP dilution buffer and re-

immunoprecipitated.

ChIP-Seq analysis

Quality-based trimming was performed at the 30 end of raw reads

using the “trim-fastq.pl” script of the PoPoolation toolbox [61],

where all trimmed reads with length less than 30 bp were discarded.

Quality controlled reads were mapped to the mouse genome (UCSC,

mm10) using Bowtie [62] where all non-unique alignments were

discarded. Post-alignment filtering: Reads mapped in a proper pair

were selected and PCR duplicates were removed using SAMtools

[63]. Peak calling was performed using MACS [64] with default

parameters. Significant peaks were annotated to the nearest genes

using PeakAnalyzer [65]. ChIP-Seq data for Stat1Y701F mutant and

Stat1�/� samples are deposited at ArrayExpress under accession

number E-MTAB-3597 (https://www.ebi.ac.uk/arrayexpress/experi

ments/E-MTAB-3597/) and for wild-type Stat1 sample are deposited

at ArrayExpress under accession number E-MTAB-2972 (https://

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2972/).
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Microarray

Total RNA from mouse BMDMs treated with L. monocytogenes for 6,

12, or 24 h was purified using TRIzol (Invitrogen, USA) and RNeasy

Mini Kit (Qiagen, Germany). The RNA samples were collected from

3 sets of independent experiments. Samples were prepared by the

Genomics Core of Lerner Research Institute, Cleveland Clinic, using

1 g of total RNA and Illumina Mouse Ref-8 v2 Expression BeadChips

(Illumina Inc. USA). After filtering to remove probes expressed at or

below background levels in the WT, 7644 probes remained. The log

expression level of each remaining probe was analyzed with a linear

model with genotype, time point, and replicate as factors. The mean

expression of the Stat1Y701F genotype was contrasted with that of the

WT and Stat1�/�. Subsequently a Benjamini–Hochberg false discov-

ery rate analysis was performed independently for the three compar-

isons among genotypes. Microarray data are deposited at

ArrayExpress under accession number E-MTAB-3598 (https://

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3598/).

Statistical analysis

Bacterial loads of organs and ALT levels in serum were compared

using the Mann–Whitney U-test andmiddle values represent medians.

Bacterial loads in in vitro CFU assayswere comparedwith the Student’s

t-test and bars on the graph represent the mean values with error bars

that represent standard deviation (SD). mRNA expression data also

represent the mean values with standard error of the mean (SEM). The

differences in mRNA expression data were compared using the

ratio t-test. All statistical analyses were performed using the GraphPad

Prism (GraphPad) software. Asterisks denote statistical signifi-

cance as follows: ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

Expanded View for this article is available online.
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