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Introduction

During the SARS-CoV-2 pandemic, mRNA vaccines, 
including mRNA-1273 and BNT 162b2, were developed 
by Moderna and Pfizer-BioNTech, respectively. They have 
been developed at an unprecedented speed in the history of 
vaccine development. The mRNA vaccines were approved 
by FDA under an Emergency Use Authorization in less than 
1 year from identifying the sequences of the spike protein 
of SARS-CoV-2. The rapid development of the mRNA 
vaccines showed a significant impact on pandemic situa-
tion management. The mRNA was first discovered in 1961 
while studying the protein synthesis mechanism of DNA 
(Brenner et al. 1961). In 1963, it was found that interferons 
are induced by mRNA, and in 1975, the cap structure of 
mRNA was identified (Isaacs et al. 1963; Muthukrishnan 
et al. 1975; Furuichi and Miura 1975). In 1978 and 1989, 
it was revealed that mRNA could be delivered into the cell 
by liposome or cationic lipid carriers to express proteins 
(Dimitriadis 1978, Malone et al. 1989). In 1990, in vitro 
transcribed mRNA (IVT mRNA) was directly injected into 
a mouse skeleton muscle, and it expressed target proteins 
(Wolff et al. 1990). Since the mRNA can induce both cel-
lular and humoral immunity while presenting an mRNA-
encoded antigen, it has been regarded as a powerful vaccine 
system. Therefore, mRNA has been widely applied in the 
development of therapeutic vaccines for cancers and pro-
phylactic vaccines for influenza A virus and RSV (Petsch 
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et al. 2012; Geall et al. 2012). In 2020, COVID-19 mRNA 
vaccines became the first FDA-approved mRNA therapies 
for people (Polack et al. 2020; Baden et al. 2021).

Historically, vaccine development has enabled successful 
protection against various infectious diseases. Especially, 
smallpox, which had plagued people for 1000s of years, 
was declared completely eradicated by the WHO in 1980. 
Several types of vaccines have been developed to cope with 
infectious diseases. Vaccines using whole pathogens include 
live-attenuated and inactivated vaccines. The live-attenuated 
vaccine is a formulation of living bacteria or viruses with 
weakened pathogenicity. These can be obtained by culturing 
pathogens for a long time under abnormal culture condi-
tions. Another way to weaken pathogens is to treat them with 
heat or chemicals. In this case, which is called inactivated 
vaccines, pathogens become completely impossible to grow 
within the host. However, there is still a risk of recovering 
pathogenicity. To overcome this, subunit vaccines are devel-
oped by the utilization of fragmented antigenic sites instead 
of whole pathogens. These approaches use toxoid, capsular 
polysaccharides, or recombinant protein antigens that are 
components of whole pathogens. Other types of vaccines 
include viral vectors and DNA vaccines that utilize genetic 
materials. They can induce immune responses by introduc-
ing gene sequences into the cell nucleus and subsequently 
expressing antigen proteins. Viral vector vaccines use low 
pathogenic viruses as their targets, and DNA vaccines use 
plasmid DNAs as non-viral vectors.

mRNA vaccines also use genetic materials expressing 
antigen proteins, but they have several advantages over the 
other types of vaccines that use genetic materials. While 
DNA vaccines require cellular entry into the nucleus to 
express encoded proteins, mRNA vaccines can express 
antigen proteins once they are delivered directly into the 
cytoplasm of cells (Sahin et al. 2014). Based on this dif-
ference, mRNA vaccines can express target proteins much 
faster with high translation efficiency compared to DNA 
vaccines. In addition, there is no risk of causing insertion 
mutagenesis because RNA cannot be inserted into the host 
genome (Sahin et al. 2014). The mRNA vaccines can be 
rapidly synthesized in a large scale using a cell-free system 
in a cost-effective manner. Thus, it has great potential in 
the development of vaccines against highly mutated viruses. 
Despite these advantages and current success in the develop-
ment of the COVID-19 vaccine, mRNA vaccines still have 
some issues that need to be overcome to broaden their clini-
cal applications. In this review, we provide a comprehen-
sive overview of the structure and function of in vitro tran-
scribed (IVT) mRNA, which is utilized in the development 
of mRNA vaccines. The methods of mRNA synthesis and 
large-scale production will be discussed. Then, a description 
of the innate immunogenicity of IVT mRNA will be pro-
vided. Finally, along with the principle of mRNA vaccines, 

we will introduce various applications of the IVT mRNA 
other than COVID-19 vaccines, including immunotherapies, 
protein replacement therapies, and genome engineering and 
reprogramming.

Types of in vitro transcribed (IVT) mRNA

In the mRNA vaccines, IVT mRNA is designed to encode 
antigen proteins to induce humoral and cellular immune 
responses. IVT mRNA has similar structural features resem-
bling the natural eukaryotic endogenous mRNA (Sahin et al. 
2014). Although linear type mRNA is the representative 
structure of IVT mRNA, new types of mRNA structures 
were designed to modulate protein expression patterns 
depending on the specific purposes. These include self-
amplifying mRNA (SAM) and circular mRNA (Geall et al. 
2012; Wesselhoeft et al. 2018).

Linear mRNA

Figure 1 shows the schematic illustration of conventional 
linear IVT mRNA. Linear IVT mRNA resembles the endog-
enous mRNA, consisting of a 5′ cap, 5′ untranslated region 
(5′ UTR), open reading frame (ORF), 3′ UTR, and poly A 
tail structure in the 5′ to 3′ direction. At the 5′ end of mRNA, 
there is a 5′ cap structure, and natural endogenous mRNA 
has a 7-methylguanosine cap structure linked to 5′5′-triphos-
phate bridge. The 5′ cap structure is critical for translation 
initiation because eukaryotic translation initiation factor 4E 
(eIF4E) binds to the 5′ cap of the mRNA. mRNA decaying 
enzymes such as DCP1, DCP2, and DCPS are also bound 
to the 5′ cap to regulate mRNA decay. The poly A tail regu-
lates the stability and translation efficiency of mRNA (Gallie 
1991). The most optimal length of the poly A tail is known 
to be 100–150 bp (Holtkamp et al. 2006; Mockey et al. 
2006). However, according to some recent studies, mRNA 
with a poly A tail longer than 300 bp also shows high trans-
lation efficiency (Grier et al. 2016). In addition, many of the 
highly expressed genes in eukaryotes were found to have 
a short poly A tail, which seems to be related to the tail 
pruning of mRNA to make closed loops (Lima et al. 2017). 
Interestingly, a 5′ cap and a poly A tail work synergistically 
to make the closed-loop RNA structure. In the closed-loop 
RNA model, both ends of mRNA make strong interactions 
with each other through transcription initiation factors and 
poly A binding protein (PABP). Therefore, mRNA can be 
protected from enzymatic degradation and the re-entry of 
the ribosome is facilitated.

UTRs regulate mRNA stability and translation efficiency 
through the RNA–protein interactions. Naturally occur-
ring UTR sequences of highly expressed genes such as α 
and β globin genes are widely used for synthetic mRNA 
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(Ross and Sullivan 1985). However, UTR performance is 
often varied by species, cell type, and cell state. Artificially 
engineered UTRs, which are optimized for target cells and 
clinical applications, are being developed (Orlandini von 
Niessen et al. 2019). The presence of miRNA binding sites 
and AU-rich regions in the UTR promotes mRNA degrada-
tion (Chen and Shyu 1995). These elements can be incor-
porated into UTRs to translate proteins for short durations 
or to rapidly degrade mRNA in non-target tissues (Jain et al. 
2018). Highly stable secondary structures of 5′ UTR, such as 
hairpin, can interfere with ribosome recruiting and scanning 
(Pelletier and Sonenberg 1985; Kozak 1986). Recently, bio-
informatics or deep learning technology has been introduced 
to design novel UTR sequences and predict mRNA transla-
tion efficiency (Gaspar et al. 2013; Sample et al. 2019). The 
ORF is the coding genetic information of the target protein, 
translated from the IVT mRNA. The translation efficiency of 
the mRNA can be regulated by codon optimization (Mauro 
Chappell 2014; Hanson and Coller 2018). Replacing rare 
codons with frequently used synonymous codons often 
increases protein expression from the mRNA (Gustafsson 
et al. 2004). This is because cognate tRNA, which is abun-
dant in the cytosol, is reused in the vicinity of ribosomes 
(Cannarozzi et al. 2010). Although codon optimization may 
increase the translation efficiency of the mRNA, some pro-
teins require a slow translation rate for their proper folding 
(Kimchi-Sarfaty et al. 2007; Spencer et al. 2012). Therefore, 
different codon optimization strategies will be required for 
different target proteins.

Self‑amplifying mRNA (SAM)

Self-amplifying mRNA (SAM) includes the RNA replica-
tion machinery of alphaviruses, aiming at high antigen pro-
tein expression with a lower amount of mRNA vaccine dose 

(Bloom et al. 2020). The genome of alphaviruses, which 
belong to positive-strand RNA viruses, has dual functions 
(Lundstrom 2018). Positive-strand mRNA can be translated 
into proteins immediately. Next, RNA-dependent RNA pol-
ymerase (RDRP) can be synthesized from non-structural 
genes. This RDRP can synthesis antigenome, a negative-
strand mRNA, using a positive-strand mRNA genome as 
a template. In the later phase of infection, viruses require 
a large amounts of structural proteins for replication. In 
alphaviruses, RDRP can bind to the downstream promoter 
to synthesize the subgenomic RNA encoding structural 
proteins. Later, more structural proteins can be synthesized 
from the subgenomic RNA (Rayner et al. 2002).

Figure 2A shows the schematic illustration of the SAM 
structure. The major difference between SAM and conven-
tional IVT mRNA is the incorporation of non-structural gene 
for the generation of RNA-dependent RNA polymerase. The 
SAM is designed in such a form that the non-structural pro-
tein of the alphaviruses’ genome is substituted with the gene 
of interest (Bloom et al. 2020). In other words, when the 
self-amplifying mRNA is introduced, it amplifies itself in 
the cell and induces a high level of target protein expression 
without the production of viral structural proteins. There-
fore, the self-amplifying mRNA can theoretically generate 
comparable immune responses even at a lower dose than 
conventional linear mRNA (Vogel et al. 2018). In addition, 
the self-amplifying mRNA is especially suitable for appli-
cations in the mRNA vaccine development because of its 
inherent adjuvant effect. In the process of self-amplification 
in the cell, a transient double-stranded mRNA (dsRNA) 
structure is formed that triggers the pattern recognition 
receptors (PRR). This can result in strong antigen-specific 
immune responses in the host (Sahin et al. 2014; Pardi et al. 
2018). In the past, viral vectors have been used to utilize 
synthetic self-amplifying mRNA as a vaccine (Zhou et al. 

Fig. 1   Structure and functional component of linear mRNA. Schematic structure of linear mRNA and major functions of each component
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1994; Fleeton et al. 2001). Later, non-viral delivery of self-
amplifying mRNA has been reported using lipid nanopar-
ticles (LNP) (Perri et al. 2003; Geall et al. 2012). Recently, 
self-amplifying mRNA for the SARS-CoV-2 vaccine was 
developed and showed high antibody production in mice 
(McKay et al. 2020). Self-amplifying mRNA can be easily 
scalable for mRNA vaccine production like that of linear 
IVT mRNA, and many clinical and preclinical self-ampli-
fying mRNA vaccine studies are currently ongoing (Hekele 
et al. 2013; Bloom et al. 2020). However, there have been 
concerns about the safety issues of self-amplifying mRNA. 
Due to its inherent adjuvant effect, it is difficult to control 
the immune-modulating property of self-amplifying mRNA. 
Further studies are necessary to investigate the triggering of 
innate immune responses through the PRR. A bipartite vec-
tor system using trans-amplifying RNA (taRNA) may pro-
vide a solution to resolve these issues (Beissert et al. 2020).

Circular mRNA

Exogenous circular mRNA is designed to extend the expres-
sion duration of IVT mRNA (Wesselhoeft et al. 2018). Fig-
ure 2B illustrates the typical precursor structure of circular 

mRNA and their back-spliced products. Circular RNA is 
also found endogenously, which is produced by a back-splic-
ing mechanism, and some of them play a role in express-
ing proteins in humans (Jeck and Sharpless 2014; Chen 
and Yang 2015; Wang and Wang 2014; Enuka et al. 2015; 
Legnini et al. 2017). Circular mRNA lacks free ends that 
can be recognized by exonuclease, so its lifespan is much 
longer than linear mRNA (Chen and Yang 2015; Enuka et al. 
2015). Therefore, a method of circularizing IVT mRNA has 
been developed to increase the stability of mRNA and over-
come the short half-life of linear IVT mRNA (Wesselhoeft 
et al. 2018). As a circularization strategy of exogenous IVT 
mRNA, a ribozymatic method is often utilized using self-
splicing introns (Petkovic and Müller 2015). In the permuted 
group 1 catalytic intron-based system, the exon sequence is 
flanked by split introns, causing a double transesterification 
reaction in the presence of GTP and Mg2+ cofactors (Petko-
vic and Müller 2015). Based on this system, circularization 
of longer IVT mRNA has been attempted. Inserting internal 
ribosomal entry site (IRES) and sequence of gene of inter-
est have been conducted between exon fragment E1 and E2 
present in permutated intron–exon (PIE) (Wesselhoeft et al. 
2018).

Fig. 2   Structure and functional components of self-amplifying mRNA and circular mRNA. A Schematic structure of self-amplifying mRNA. B 
Schematic structure of circular mRNA. (Some structures such as homology arms and spacers are omitted from this figure)
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Through the introduction of homology arms and spacers, 
it was possible to increase the circularization efficiency of 
mRNA with various lengths up to 5 kb (Wesselhoeft et al. 
2018). Circular mRNA showed a stable protein expression 
profile over a longer duration than that of linear mRNA, 
confirming its enhanced stability (Wesselhoeft et al. 2018). 
However, there are still various concerns about the low pro-
duction yield of circular mRNA. The back-splicing system 
clearly needs further optimization to overcome the difficulty 
of generating a full-length circular mRNA. Another problem 
is the relatively low protein expression efficiency as com-
pared to that of the cap-dependent IVT mRNA. This is often 
related to the IRES-based mRNA systems that require trans-
lational initiation by the cap-independent process. There is 

still a need for in depth investigation into cap independent 
translational initiation and further identification of IRES 
sequences.

Production of mRNA vaccines

Figure 3 shows a general process to prepare IVT mRNA 
for mRNA vaccine development. This includes (1) antigen 
selection, (2) linear DNA template synthesis, (3) in vitro 
transcription, and (4) mRNA purification steps. When a 
target antigen is selected after the genome of a pathogen 
is sequenced, it is inserted into a plasmid DNA template. 
The production DNA template should contain sequences 

Fig. 3   Preparation process of IVT mRNA. (1) cDNA encoding antigen inserted to DNA template. DNA template must include the sequence of 
the T7 promoter, 5′ UTR, and 3′ UTR. (2) T7 RNA polymerase synthesis IVT mRNA. Both 5′ cap and the poly A tail can be synthesized in two 
methods. (3) A purification process is required to remove unintended and immunogenic impurities
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of antigen, 5′ and 3′ UTRs, and a T7 promoter upstream 
of the 5′ UTR. The in vitro transcription process requires 
a DNA template, modified or unmodified nucleosides, and 
T7 RNA polymerase. For the DNA template, linearized 
plasmid DNA or PCR product is often used. For in vitro 
transcription, T7 RNA polymerase is mostly used. How-
ever, some studies also utilized T3 or SP6 RNA polymer-
ase. T7 RNA polymerase recognizes the T7 promoter of 
the DNA template and initiates the transcription of mRNA. 
The 5′ cap structure of IVT mRNA can be produced in 
two ways. One is to prepare it in one step by adding cap 
analogs during the in vitro transcription process, and the 
other is to synthesize it by enzymatic capping reaction 
after in vitro transcription of mRNA. Likewise, the poly 
A tail of IVT mRNA can be synthesized by two differ-
ent methods. An enzymatic tailing method using poly A 
polymerase has been widely used to generate poly A tail. 
However, this method has the disadvantage that the length 
of the poly A tail is not homogenous among the produced 
IVT mRNA (Sahin et al. 2014).

As an alternative, direct incorporation of the poly A 
sequence can be attempted at the downstream of the 3′ 
UTR on the DNA template. In this method, T7 RNA 
polymerase synthesizes poly A tail during the in vitro 
transcription process. A DNA template with a poly A tail 
sequence can be prepared by performing the tail-PCR 
using a reverse primer with a 100–150 nt poly T sequence 
added to the 5′ end. This process ensures a homogenous 
poly A tail length on all produced IVT mRNA. However, 
there is a problem with the stability of the DNA template 
when encoding the long poly A tail sequence. To this end, 
Pfizer-BioNTech has improved the stability of BNT162b2 
by inserting 10 nt UGC linkers between the poly A tail 
sequence (Chaudhary et al. 2021).

After in vitro transcription, the purification process 
must be performed to obtain the IVT mRNA at full length. 
The DNA template is removed by DNase, and if neces-
sary, the immunogenic 5′ ppp of uncapped mRNA can be 
removed and converted to 5′-OH mRNA by phosphatase 
(Hornung et al. 2006). In addition, removal of dsRNA is 
necessary by high-performance liquid chromatography 
(HPLC). These dsRNAs are generated during in vitro tran-
scription, and they are highly immune stimulatory. Remov-
ing dsRNA with HPLC consequently increases the overall 
expression of antigen protein and reduces inappropriate 
immune responses (Karikó et  al. 2011). However, the 
problem with HPLC purification is the use of organic sol-
vents such as acetonitrile and the high cost of the process. 
Purifying IVT mRNA using HPLC takes a lot of time, 
and the final production yield is only about 50%. So far, 
the biggest problem for the large-scale production of IVT 
mRNA is the purification step (Baiersdörfer et al. 2019).

General guidelines for large‑scale production

In the case of epidemic infection, scalable production of IVT 
mRNA is the most important factor for rapid vaccination. 
Several methods have been developed. For example, one-pot 
synthesis using cap analogs and rapid purification through 
tangential flow filtration is favorable. Removing immuno-
genic dsRNA through the adsorption of cellulose can be an 
alternative to using HPLC. All these approaches enable the 
scalable production of mRNA vaccine (Baiersdörfer et al. 
2019).

One‑pot system with cap analogs

With the development of the synthetic cap analog, one-pot 
synthesis of capped IVT mRNA became possible without an 
additional enzymatic capping step. The biggest advantage of 
one-step synthesis is that there is only one nucleic acid pre-
cipitation or purification process during the IVT. Therefore, 
the time and cost of production can be dramatically reduced, 
and the production yield can also be increased. However, 
the synthetic cap analog approach still has some problems. 
First, cap analog competes with GTP during the in vitro tran-
scription process. Therefore, some translationally inactive 
uncapped mRNA is produced. Second, some cap analogs are 
inserted into mRNA in a reverse orientation. This limitation 
was much improved with the introduction of anti-reverse 
cap analogs (ARCA) (Jemielity 2003). In particular, ARCA-
capped IVT mRNA showed a very high protein expression 
profile in various cell types (Mockey et al. 2006; Rabinovich 
et al. 2006). On the other hand, a cap analog approach has 
some disadvantages over an enzyme capping method. The 
capping efficiency of ARCA is relatively low (70%), and 
it produces an immunogenic cap 0 structure. However, in 
the two-step capping method using vaccinia virus-derived 
capping enzyme, capping efficiency is almost 100% (Martin 
et al. 1975). Eukaryotic mRNA has several types of 5′ caps: 
cap 0, cap 1, cap 2, and m6Am cap. Here, the cap struc-
ture of natural endogenous mRNA is mostly cap 1 or cap 2, 
and these have high translational efficiency. Unlike vaccinia 
virus-derived enzymes, which produce cap 1, ARCA has the 
cap 0 structure. Cap 0 mRNA is also capable of translation 
initiation by recruiting a ribosome, but translation is inhib-
ited by PRR recognition such as IFN-inducible protein with 
tetratricoid repeats (IFIT) (Kumar et al. 2014). Recently, 
CleanCaps (Cap 1) have been developed to overcome both 
disadvantages of ARCA (Vaidyanathan et al. 2018). A co-
transcriptional capping method using CleanCap AG shows 
a far enhanced production yield of IVT mRNA (5 mg/ml) 
with a 94%-cap 1 structure (Henderson et al. 2021). These 
advanced cap analogs clearly offer many advantages and 
may play important roles in the future development of 
mRNA therapeutics.
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Tangential flow filtration

Tangential flow filtration (TFF), also called crossflow fil-
tration, is a method of quickly and efficiently filtering and 
concentrating solutions containing biomolecules. TFF is dis-
tinct from dead-end filtration methods. In TFF, the feed con-
taining biomolecule solution flows tangentially across the 
surface of the filter, whereas in dead-end filtration, the feed 
is passed through a membrane and the filtrate is released at 
the other end. The principal advantage is that TFF can be a 
continuous process, unlike dead-end filtration. Because the 
filter cake is washed away during the filtration process of 
TFF, the operating time of the filter unit is increased. TFF is 
typically used for feeds containing small particle size solids 
because solid materials can quickly block the filter surface 
in the dead-end filtration. The applied pressure causes the 
feed flow to pass through the filter, while the retentate is 
returned back to the feed reservoir for recirculation. The 
TFF technique can be used in the scalable production of IVT 
mRNA (Rosa et al. 2021). mRNA precipitation techniques, 
which have been used on the laboratory scale in the past, are 
not suitable for large-scale good manufacturing processes 
(GMP) because they are time-consuming and require organic 
solvents such as alcohols. Currently, instead of mRNA pre-
cipitation methods, the TFF method is used in many cases, 
including SARS-CoV-2 mRNA vaccine manufacturing (Cor-
bett et al. 2020; Zhang et al. 2020; Ouranidis et al. 2021). 
The TFF technique is expected to be suitable for various IVT 
mRNA formulations, without affecting mRNA stability and 
compliance with GMP.

Removal of dsRNA by cellulose

As an alternative approach for the removal of dsRNA from 
IVT mRNA, a purification method using cellulose rather 
than HPLC is developed (Baiersdörfer et al. 2019). In fact, 
cellulose has been widely used to separate viral genomes for 
a long time (Franklin 1966; Su and Comeau 1999; Urayama 
et al. 2015). It is known that cellulose has a different degree 
of binding to nucleic acids depending on ethanol concentra-
tion. Although the principle is not completely known, it is 
assumed that 2-hydroxyl residue, which is frequently present 
in dsRNA, forms a hydrophilic interaction with cellulose 
(Urayama et al. 2015). At a higher ethanol concentration, 
more dsRNA can be removed, but the recovery of single-
stranded IVT mRNA tends to decrease. As a result, 16% 
ethanol is considered to be the best choice for adding to 
a cellulose-containing column for IVT mRNA purification 
(Baiersdörfer et al. 2019). After removing dsRNA using 
cellulose chromatography with 16% ethanol, the translation 
efficiency of IVT mRNA improves and becomes compara-
ble to that of HPLC (Baiersdörfer et al. 2019). On the other 
hand, the interferon-α level decreased due to the removal of 

dsRNA (Baiersdörfer et al. 2019). Cellulose purification can 
improve the protein expression of both linear IVT mRNA 
and self-amplifying mRNA (Linares-Fernández et al. 2021; 
Zhong et al. 2021). In particular, the vaccination efficacy 
of self-amplifying mRNA against Zika viruses is enhanced 
(Zhong et al. 2021). Therefore, cellulose purification may 
offer an alternative approach for the large-scale production 
of mRNA vaccines.

Innate immunogenicity of IVT mRNA

As an innate immune response, the PRR plays an impor-
tant role in identifying pathogen-associated molecular pat-
terns (PAMP). Exogenous mRNA, such as viral mRNA, 
is recognized by the PRR and triggers complex cascades 
of intracellular signaling pathways. There are two types of 
PRRs, which are present in the endosomes or the cytosol. 
Therefore, PAMPs can be recognized at two different levels 
(Linares-Fernández et al. 2020). Toll-like receptors (TLRs) 
can recognize the viral mRNA at the endosomal level. TLR3 
recognizes the dsRNA with 40–45 bp length (Alexopoulou 
et al. 2001; Botos et al. 2009). Moreover, TLR 7 and TLR8 
recognize GU-rich regions of single-stranded mRNA (Die-
bold et al. 2004; Heil et al. 2004). The PRRs recognizing the 
exogenous mRNA at the cytosol level include melanoma dif-
ferentiation-associated-5 (MDA-5), retinoic acid inducible 
gene I (RIG-I), and RNA-dependent protein kinase (PKR). 
MDA-5 and RIG-I recognize dsRNAs with lengths of more 
than 2 kb and 5′-triphosphate short dsRNA, respectively 
(Kato et al. 2008; Schlee et al. 2009; Binder et al. 2011). 
These PRRs commonly activate the interferon type I path-
way. Secretion of interferons α and β, which belong to the 
type I interferon family, upregulates protein kinase R (PKR) 
and oligoadenylate synthetase (OAS) (Linares-Fernández 
et al. 2020). PKR is a serine-threonine kinase that also acts 
as a dsRNA sensor and blocks mRNA translation by phos-
phorylating eukaryotic initiation factor 2 (eIF2) (Clemens 
and Elia 1997). OAS is also a dsRNA sensor, and it activates 
RNase L to degrade mRNA (Pulit-Penaloza et al. 2012). 
Therefore, if the IVT mRNA is recognized as an exogenous 
mRNA, the translation of the target protein as well as its 
therapeutic efficacy will be greatly decreased.

Incorporating modified nucleosides can improve the 
therapeutic potency of IVT mRNA by avoiding the innate 
immune response (Karikó et al. 2008; Pardi et al. 2017; 
Richner et al. 2017; Vaidyanathan et al. 2018; Freyn et al. 
2020; Laczkó et al. 2020). Modified nucleosides can inhibit 
the recognition of mRNA by PRRs and decrease the gen-
eration of dsRNA during the in vitro transcription process 
(Karikó et al. 2005; Durbin et al. 2016; Mu et al. 2018). 
Natural endogenous mRNAs contain modified nucleosides, 
and the innate immune system has evolved to recognize 
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unmodified mRNA as a viral mRNA (Chaudhary et  al. 
2021). Therefore, modified nucleosides decrease the risk of 
being recognized as an exogenous mRNA. Since TLR7 and 
TLR8 bind to the GU-rich regions of mRNA, modified uri-
dine such as pseudouridine and N1-methylpseudouridine can 
inhibit the recognition of IVT mRNA by the PRRs (Karikó 
et al. 2008; Vaidyanathan et al. 2018). Both mRNA-1273 
and BNT 162b2, developed by Moderna and Pfizer-BioN-
Tech, respectively, contain modified uridine nucleosides to 
ensure proper antigen expression in cells as well as to reduce 
undesirable innate immune-triggering effects (Chaudhary 
et al. 2021).

Since many viral RNA sensors recognize the dsRNA, it is 
important to remove the dsRNA from IVT mRNA. The main 
cause of dsRNA formation is the T7 RNA polymerase (Wu 
et al. 2020). In the “on-pathway” process, when T7 RNA 
polymerase operates accurately, the enzyme binds to the 
T7 promoter to synthesize IVT mRNA. In this case, the T7 
RNA polymerase generates a run-off product that is a single-
stranded mRNA (Gholamalipour et al. 2018). However, if 
the T7 RNA polymerase operates promoter abnormally, the 
dsRNA by-products are generated by the process called “off-
pathway” or “pseudo-on-pathway” (Wu et al. 2020). When 
the run-off transcripts accumulate through the “on-pathway,” 
T7 RNA polymerase competitively binds to the DNA tem-
plates and the run-off transcripts. In the “off-pathway”, 
3′-extension occurs by rebinding of T7 RNA polymerase to 
the run-off transcripts. Then, 3′-extended products become 
the dsRNA by intramolecular interaction (Triana-Alonso 
et al. 1995; Gholamalipour et al. 2018; Wu et al. 2020). The 
“pseudo-on-pathway” also occurs in a promoter-independent 
manner such as “off-pathway,” but it is different because of 
how the DNA template is recognized, not the 3′-end of the 
run-off transcript. In the “pseudo-on-pathway,” the T7 RNA 
polymerase binds to the end of the DNA template without 
the T7 promoter and synthesize anti-sense mRNA that is 
complementary to normal sense mRNA (Mu et al. 2018; 
Wu et al. 2020). Through this process, dsRNA is formed by 
the hybridization of sense-mRNA and anti-sense mRNA.

The dsRNA is recognized by multiple PRRs (TLR3, 
MDA-5, and RIG-I) and induces the secretion of type I 
interferons. Therefore, it is important to remove the dsRNA 
from IVT mRNA products. The dsRNA can be removed 
by the HPLC purification or the cellulose purification after 
the IVT process (Karikó et al. 2011; Baiersdörfer et al. 
2019). Besides, it is also possible to reduce the generation 
of dsRNA during the IVT process. These efforts include the 
use of modified nucleosides, applying high-temperature IVT, 
incorporating the template-encoded poly A tailing, and the 
use of low Mg2+ concentration (Mu et al. 2018; Wu et al. 
2020). Thermostable T7 RNA polymerase can synthesize 
the IVT mRNA at 48 °C, which is higher than the average 
temperature of the cell. Among the two dsRNA generation 

mechanisms, high-temperature IVT reduces “off-pathway” 
by altering either the rebinding of the T7 RNA polymerase 
or the folding back of the RNA that results in the self-primed 
extension (Wu et al. 2020). The template-encoded poly A 
tailing can also inhibit the dsRNA generation by regulating 
the “pseudo-on-pathway” (Wu et al. 2020). It has also been 
proven that lowering Mg2+ concentration during the IVT 
process can reduce the dsRNA generation (Mu et al. 2018). 
However, Mg2+ concentration also affects the overall yield 
of the IVT process (Wu et al. 2020). Currently, various puri-
fication technologies are used to remove the dsRNA after the 
IVT process (Karikó et al. 2011; Baiersdörfer et al. 2019). 
Cellulose purification has been developed for the scalable 
production of mRNA, but it is unclear whether this method 
can distinguish between the dsRNA by-products and the 
intrinsic secondary structure of mRNA (Wu et al. 2020). 
The combination of high-temperature IVT and template-
encoded poly A tailing can synthesize high-purity IVT 
mRNA without dsRNA purification after the IVT process 
(Wu et al. 2020). Therefore, the optimizing IVT condition 
and process for the low generation of dsRNA can be a new 
alternative to post-synthesis purification. Moreover, reduc-
ing dsRNA generation by optimizing IVT conditions could 
be a new alternative to post-synthesis purification.

Principles of mRNA vaccines

The general mechanism of mRNA vaccines is illustrated in 
Fig. 4. mRNA vaccines are administered intramuscularly 
(IM injection) and lead to uptake by nearby cells at the injec-
tion site such as muscle cells and dendritic cells (DC). IVT 
mRNA escapes from the endosome and then gets translated 
by ribosomes to generate target antigen proteins in the cyto-
sol. IVT mRNA can stimulate the innate immune response 
by interacting with PRRs and is quickly degraded after being 
translated into the target antigens. Since the synthesized tar-
get antigen proteins are not used in cells, they are degraded 
by the proteasome after ubiquitination. Some of the peptides 
from the degradation by the proteasome are moved to the 
rough endoplasmic reticulum (rough ER) by the transporter 
associated with antigen processing (TAP) protein. Addition-
ally, secreted antigen proteins can be uptake and degraded on 
the inside of endosomes. Antigen peptides can be presented 
by the major histocompatibility complex (MHC) class I or 
MHC class II to activate the immune system. While most 
cells only have MHC class I, APCs have both MHC class 
I and MHC class II. When antigen peptide fragments are 
presented to the cell membrane of an APC by MHC class II, 
helper T cells can be activated. Subsequently, helper T cells 
activate cytotoxic T cells and B cells. The B cells with anti-
bodies can bind to the antigen-presenting cells (APC) and 
produce a large amount of antibodies, inducing an adaptive 
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immune response against pathogens. If antigen peptide frag-
ments are presented by MHC class I, activated cytotoxic T 
cells can secrete cytotoxic molecules such as perforin and 
granzyme to kill infected cells. After the immune response, 
T cells and B cells each produce memory cells for the rec-
ognized antigens. The memory cells protect the body before 
the pathogen breaks the homeostasis by quickly producing 
immune cells when the same infection occurs again (Chaud-
hary et al. 2021).

One of the characteristics of mRNA vaccines is their 
inherent adjuvant properties, and these can be either ben-
eficial or detrimental (Linares-Fernández et al. 2020). The 
mRNA vaccines induce strong interferon type I secretion 
at the injection site. As stated previously, interferon type I 
induced by exogenous mRNA-PRR interaction can inhibit 
translation and degrade the IVT mRNA (Clemens and Elia 
1997; Pulit-Penaloza et al. 2012). However, interferon type 
I can enhance the immune response directly or indirectly 
(Broos et al. 2016). It can regulate DCs and cytotoxic T 

cells (Broos et  al. 2016). Interferon type I induces DC 
maturation by upregulating co-stimulatory molecules of 
DCs (Ceppi et al. 2005; Hervas-Stubbs et al. 2011; Pan-
tel et al. 2014). Furthermore, it can modulate cytotoxic 
T cell immunity by affecting survival and differentiation 
(Hervas-Stubbs et al. 2011; Broos et al. 2016). According 
to the timing of interferon type I signal, cytotoxic T cells 
induce a stronger immune response through proliferation 
and differentiation (De Beuckelaer et al. 2017). However, 
on the contrary, apoptosis of cytotoxic T cells can be trig-
gered by a strong interferon type I signal, and the mecha-
nism is still unclear (De Beuckelaer et al. 2017). Indirect 
effects of interferon type I involve their ability to trigger the 
induction of chemokines and cytokines to recruit various 
immune cells (Broos et al. 2016). Further research will be 
needed on how interferon type I affects vaccine-mediated 
immunity; however, so far, it seems that these responses are 
highly related to its amount, appropriate time, and location 
(Broos et al. 2016). To improve the immune response of 

Fig. 4   Mechanism of the mRNA vaccines. Upon the introduction of IVT mRNA into cells, various TLRs and PRRs recognize the presence 
of exogenous mRNA and trigger innate immune responses. IVT mRNA delivered in the cytoplasm of cells directly utilizes the host translation 
system to express target proteins. Expressed proteins are further processed by proteasomes and moved to the cellular membrane by MHC class I
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the mRNA vaccines, studies have been conducted to induce 
interferon type I by inserting dsRNA structures into IVT 
mRNA (Loomis et al. 2018; Uchida et al. 2018). Hybridizing 
a short poly-U sequence to poly A tail induces more secre-
tion of interferon-β and interleukin-6 without affecting the 
translation of antigens in the DCs (Uchida et al. 2018). As 
the dsRNA structure within the poly A tail induces an innate 
immune response, co-stimulatory molecules of DCs such 
as CD80, CD86, and CCR7 are upregulated, which further 
activate DCs (Uchida et al. 2018). Recently, co-delivery of 
TLR-agonists with mRNA has been suggested as an adju-
vant (Verbeke et al. 2017). However, if the inherent adjuvant 
properties of IVT mRNA are appropriately exploited, it will 
be possible to elicit a strong immune response without addi-
tional adjuvants.

Conclusions and future directions

mRNA vaccines for infectious diseases are the most recent 
applications of IVT mRNA therapeutics. Currently, starting 
with SARS-CoV-2, several mRNA vaccines against infec-
tious diseases such as HIV-I, Zika, and rabies are undergo-
ing clinical trials (Chaudhary et al. 2021). Tables 1 and 2 
summarize the data from the current clinical trials of various 
mRNA vaccines (Chaudhary et al. 2021).

In addition to the treatment of infectious diseases, IVT 
mRNA-based therapeutics can be used for immunotherapies, 
protein replacement therapy, and genome engineering and 
reprogramming. Here, we would like to conclude our review 
by briefly outlining the current and future directions of these 
approaches.

Table 1   Clinical trials of mRNA vaccines against infectious diseases (Chaudhary et al. 2021)

Name Target Vaccine type Clinical trial phase Clinical trial identifier Funding source

mRNA-1647 CMV Nucleoside-modified 
mRNA-LNP

Phase II NCT04232280
NCT03382405

Moderna

mRNA-1443 Nucleoside-modified 
mRNA-LNP

Phase I NCT03382405 Moderna

mRNA-1893 Zika Nucleoside-modified 
mRNA-LNP

Phase I NCT04064905 Moderna

mRNA-1325 Nucleoside-modified 
mRNA-LNP

Phase I NCT03014089 Moderna

mRNA-1653 hMPV/PIV3 Nucleoside-modified 
mRNA-LNP

Phase I NCT04144348
NCT03392389

Moderna

mRNA-1345 RSV Nucleoside-modified 
mRNA-LNP

Phase I NCT04528719 Moderna

mRNA-1777(V171) Nucleoside-modified 
mRNA-LNP

Phase I Unregistered Moderna/Merck

mRNA-1172(V172) Nucleoside-modified 
mRNA-LNP

Phase I Unregistered Moderna/Merck

mRNA-1851
(VAL-339851)

Influenza A (H7N9) Nucleoside-modified 
mRNA-LNP

Phase I NCT03345043 Moderna

mRNA-1440
(VAL506440)

Influenza A (H10N8) Nucleoside-modified 
mRNA-LNP

Phase I NCT03076385 Moderna

mRNA-1010 Influenza A (H1N1, 
H3N2), Influenza B 
(Yamagata lineage, 
Victoria lineage)

Unknown Phase I/II NCT04956575 Moderna

MRT5400 Influenza A (H3N2) Unknown Phase I Unregistered Translate Bio, 
Sanofi

MRT5401 Influenza A (H3N2) Unknown Phase I Unregistered Translate Bio, 
Sanofi

mRNA-1944 Chikungunya Nucleoside-modified 
mRNA-LNP

Phase I NCT03829384 Moderna

mRNA-1388
(VAL-181388)

Nucleoside-modified 
mRNA-LNP

Phase I NCT03325075 Moderna

CV7201 Rabies Unmodified mRNA com-
plexed in RNActive

Phase I NCT02241135 CureVac

CV7202 Unmodified mRNA-LNP Phase I NCT03713086 CureVac
GSK3903133A Self-amplifying mRNA in 

cationic nanoemulsion
Phase I NCT04062669 GSK
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Table 2   Clinical trials of mRNA vaccines against SARS-CoV-2 (Chaudhary et al. 2021)

Name Vaccine type Clinical trial phase Clinical trial identifier Funding source

BNT162b2 (Tozinameran) Nucleoside-modified Phase I NCT04839315
NCT04816643

BioNTech, Pfizer

Phase I/II EUCTR2020-001038-36, 
NCT04380701

NCT04889209
NCT04588480

Phase II ISRCTN73765130
NCT04894435
NCT04761822
NCT04824638
NCT04860739
EUCTR2021-001978-37
NCT04649021
ISRCTN69254139
NCT04907331
NCT04895982

Phase II/III NCT04368728
NCT04754594

Phase III NCT04805125
NCT04816669
NCT04800133
NCT04713553

mRNA-1273 Nucleoside-modified Phase I NCT04785144
NCT04813796
NCT04839315
NCT04283461

Moderna, NIAID, BARDA

Phase I/II NCT04889209
Phase II ISRCTN73765130

NCT04847050
NCT04894435
NCT04748471
NCT04761822
NCT04405076

Phase II/III NCT04649151
NCT04796896

Phase III NCT04811664
NCT04470427
NCT04860297
NCT04806113
NCT04805125

TAK-919 Nucleoside-modified Phase I/II NCT04677660 Takeda, Moderna
CVnCoV
(Zorecimeran)

Unmodified Phase I NCT04449276 CureVac
Phase II ISRCTN73765130

NCT04515147, PER-054-20
Phase III NCT04652102, EUCTR2020-003998-

22
EUCTR2020-004066-19, 

NCT04674189
NCT04860258
NCT04848467

ARCoV Unmodified Phase I ChiCTR2000034112 Walvax Biotechnology, PLA
Phase Ib ChiCTR2000039212
Phase II ChiCTR2100041855
Phase III NCT04847102
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Immunotherapies

The IVT mRNA can be used for cancer immunotherapy and 
allergy tolerization. Cancer immunotherapy has been studied 
for the longest time among IVT mRNA-based therapeutics 
(Boczkowski et al. 1996). In the field of cancer immuno-
therapy, IVT mRNA encodes tumor-associated antigens or 
antigen receptors such as chimeric antigen receptors (CAR) 
and T cell receptors (TCRs) (Beck et al. 2021). T cells play 
an important role in cancer immunotherapy. By deliver-
ing mRNA encoding the cancer-associated antigen to DCs, 
DCs stimulate T cells with antigen-specific T cell receptor 
(TCR) (Beck et al. 2021). Another approach is to deliver 
CAR mRNA to T cells extracted from the patients and then 
to re-administer it (Beatty et al. 2014; Tchou et al. 2017; 
Xiao et al. 2019; Lin et al. 2021). In both ex vivo methods, it 
is important to efficiently deliver IVT mRNA to the isolated 
cells and strongly express target proteins to generate engi-
neered cells. (Perez and Palma 2019). More recently, direct 
in vivo delivery of CAR or TCR mRNA to the body has 
been attempted (Miao et al. 2019; Cafri et al. 2020). These 
approaches require further targeting strategies to ensure the 
delivery of CAR or TCR mRNA to the T cells. Therefore, 
targeting ligands such as antibodies and small-molecule 
sugar moieties are often utilized for this purpose. Next, IVT 
mRNA-encoding allergens can be used to alleviate type I 

allergic disease by two strategies. One is to modulate T cell 
response, and the other is to induce immunoglobulin G (IgG) 
antibodies that compete with immunoglobulin E (IgE) for 
binding to the allergens (Valenta et al. 2010; Weiss et al. 
2012; Scheiblhofer et al. 2018). It has been proven that the 
DNA vaccine can alleviate various allergies by modulat-
ing the response of type 1 T helper cells (Raz et al. 1996; 
Chua et al. 2009). However, the DNA vaccines for aller-
gic diseases have some safety issues because of their long-
term gene expression, which can induce anaphylactic side 
effects (Slater et al. 1998; Weiss et al. 2012). IVT mRNA 
has emerged as a new candidate for allergy vaccine due to 
its short half-life and a strong immunostimulatory capacity 
to type 1 T helper cells such as the DNA vaccines (Roesler 
et al. 2009; Weiss et al. 2010).

Protein‑replacement therapy

The basic principle of protein-replacement therapy is to 
administer IVT mRNA-encoding proteins that are not 
expressed or malfunction in the patients. The first pre-
clinical application of IVT mRNA to protein-replacement 
therapy was performed in 1992, and further studies have 
been conducted since the introduction of modified nucle-
osides (Jirikowski et al. 1992; Karikó et al. 2012; Zangi 
et al. 2013; Sahin et al. 2014). Despite the introduction of 

Table 2   (continued)

Name Vaccine type Clinical trial phase Clinical trial identifier Funding source

BNT162b1 (Abdavomeran) Nucleoside-modified Phase I ChiCTR2000034825, NCT04523571 BioNTech, Pfizer

Phase I/II EduraCT 2020-001038-36, 
NCT04380701

Phase II/III NCT04368728
mRNA-1273.211 Nucleoside-modified Phase II NCT03305076 Moderna
ARCT-021 Self-amplifying mRNA Phase I/II NCT04480957 Arcturus

Phase II NCT04728347
NCT0466839

BNT162a1 Unmodified Phase I/II EudraCT 2020-001038-36, 
NCT04380701

BioNTech, Pfizer

BNT162b3 Nucleoside-modified Phase I/II NCT04537949, EUCTR2020-003267-
26-DE

BioNTech, Pfizer

BNT162c2 Self-amplifying mRNA Phase I/II EudraCT 2020-001038-36, 
NCT04380701

BioNTech, Pfizer

MRT5500 Unmodified Phase I/II NCT04798027 Sanofi, Translate Bio
LNP-nCoVsaRNA Self-amplifying mRNA Phase I ISRCTN17072692 Imperial College London, 

Acuitas Therapeutics
ChulaCov19 Nucleoside-modified Phase I/II NCT04566276 Chulalongkorn University
PTX-COVID19-B Nucleoside-modified Phase I NCT04765436 Providence Therapeutics
SAM-LNP-S Self-amplifying mRNA Phase I NCT04776317 Gristone Oncology, NIAID
mRNA-1273.351 Nucleoside-modified Phase I NCT04785144 Moderna
mRNA-1283 Nucleoside-modified Phase I NCT04813796 Moderna
CoV2 SAM [LNP] Self-amplifying mRNA Phase I NCT04758962 GSK
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modified nucleosides, there is a problem with the varied 
protein expression profile depending on cell types (Sahin 
et al. 2014). These include post-translational modifications 
such as glycol-conjugation and proteolytic processing and 
recognition of secretory signal peptides (Sahin et al. 2014). 
Currently, various UTR optimization has been under inves-
tigation for developing cell-specific mRNA for targeted pro-
tein expression. This will be an interesting next step for the 
design of the IVT mRNA.

Genome engineering and reprogramming

Genome editing can be achieved by expressing zinc-finger 
nucleases (ZFNs), transcription activator-like effector nucle-
ases (TALENs), and clustered regularly spaced short palin-
dromic repeats and CRISPR-associated protein 9 (CRISPR-
CAS9) in cells (Miller et al. 2007; Hockemeyer et al. 2011; 
Mali et al. 2013). The major risk of these approaches is the 
utilization of viral vectors such as adeno-associated virus 
(AAV). This severely limits the large size of gene introduc-
tion, so it is difficult to put the whole length of the Cas 9 
gene along with sgRNA sequences. A viral expression can 
also be associated with non-specific genome editing by the 
long duration of expression of genome-editing proteins in 
cells (Fu et al. 2013). Therefore, IVT mRNA can be an alter-
native choice to express genome-editing proteins in cells to 
overcome this issue since IVT mRNA transiently expresses 
the genome editing proteins in cells, which is clearly ben-
eficial for reducing the risk of non-specific genome editing.

The IVT mRNA-based approach was successfully applied 
to site-specific genome modification (Shen et al. 2013; 
Wefers et al. 2013; Niu et al. 2014; Yang et al. 2014). In 
addition, IVT mRNA encoding transposase was also applied 
for transposon-mediated stable gene transfer, showing higher 
efficacy than plasmid DNA (Sumiyama et al. 2010). By 
expressing transcription factor proteins, IVT mRNA can 
also be utilized to reprogram cell phenotypes. In 2010, it 
was reported that IVT mRNA encoding Yamanaka stem cell 
factors can generate induced pluripotent stem cells (iPSCs) 
(Takahashi and Yamanaka 2006; Warren et al. 2010). Later, 
iPSCs or other types of cells can be further reprogrammed 
into other types of cells (Warren et al. 2010; Guo et al. 2015; 
Preskey et al. 2016). Reprogramming cell fates using IVT 
mRNA has the advantage of safety because it does not pro-
duce residual transgenes (Warren et al. 2010). Therefore, 
IVT mRNA therapeutics will be useful for the reprogram-
ming and direct differentiation of cells for regenerative 
medicines.

Finally, IVT mRNA is likely to be used in various thera-
peutic fields as a novel drug candidate. In particular, in pan-
demic situations, mRNA vaccines will play an extremely 
effective role because they enable fast, scalable, and cost-
effective production. Although there are still issues about 

safety, cold storage requirements, and duration of antibody 
response, mRNA vaccines are expected to be the major types 
of vaccines in the future.
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