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Abstract
Background: It is critical for laboratories to conduct multianalyzer comparisons as a 
part of daily routine work to strengthen the quality management of test systems. Here, 
we explored the application of patient-based real-time quality controls (PBRTQCs) on 
comparative assays to monitor the consistency among clinical laboratories.
Methods: The present study included 11 commonly tested analytes that were de-
tected using three analyzers. PBRTQC procedures were set up with exponentially 
weighted moving average (EWMA) algorithms and evaluated using the AI-MA artifi-
cial intelligence platform. Comparative assays were carried out on serum samples, and 
patient data were collected. Patients were divided into total patient (TP), inpatient 
(IP), and outpatient (OP) groups.
Results: Optimal PBRTQC protocols were evaluated and selected with appropriate 
truncation limits and smoothing factors. Generally, similar comparative assay per-
formance was achieved using both the EWMA and median methods. Good consist-
ency between the results from patients' data and serum samples was obtained, and 
unacceptable bias was detected for alkaline phosphatase (ALP) and gamma-glutamyl 
transferase (GGT) when using analyzer C. Categorizing patients' data and applying 
specific groups for comparative assays could significantly improve the performance 
of PBRTQCs. When monitoring the inter- and intraanalyzer stability on a daily basis, 
EWMA was superior in detecting very small quality-related changes with lower false-
positive alarms.
Conclusions: We found that PBRTQCs have the potential to efficiently assess multi-
analyzer comparability. Laboratories should be aware of population variations con-
cerning both analytes and analyzers to build more suitable PBRTQC protocols.
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1  |  INTRODUC TION

At clinical laboratories, there is usually a great demand for the test-
ing of biochemical samples. These tests may require the simulta-
neous use of multiple different models or brands of biochemical 
analyzers. The International Organization for Standardization (ISO) 
15,189 standard specifies that a comparability scheme should be 
established to ensure the consistency of results. In routine prac-
tice, comparison assays with fresh serum samples1 and daily qual-
ity control (QC) samples, which are not commutable as patient 
samples with a material matrix,2–4 are recommended. However, 
this system is conducted at certain intervals rather than continu-
ously, which increases potential quality risks during the analytical 
process. Patient data have potential advantages in aiding the im-
plementation of laboratory management,5,6 particularly following 
the revolution of information technology. Nevertheless, the con-
sideration of applying patient data in multianalyzer comparisons is 
still underexplored.

The International Federation of Clinical Chemistry (IFCC) and 
the International Council for Clinical Chemistry and Analytical 
Quality in Laboratory Medicine proposed that patient-based real-
time quality control (PBRTQC) is a valuable complementary qual-
ity control method, having the advantages of lower cost, absence 
of matrix effects, continuous real-time monitoring, and higher 
sensitivity to preanalytical errors.6 Various arithmetic procedures 
have been applied for PBRTQC, including Bull's algorithm,7 the 
moving average (MA) method,8 and the exponentially weighted 
moving average (EWMA) method.9 To evaluate and monitor the 
comparability and stability of clinical tests across manufactur-
ers and laboratories, the median of patient data is most widely 
used.10 However, this requires a large quantity of samples, and the 
performance is greatly affected when the amount of data is rel-
atively small. In the EWMA algorithm, a weighting coefficient is 
introduced to smooth the dataset by adjusting the sensitivity of 
bias based on the training data.11 By using this method, which is 
reported to be less affected by sample size, small deviations in the 
process can be detected.

In this study, PBRTQC protocols using the EWMA algorithm 
were set up using the professional artificial intelligence software 
AI-MA. Then, we conducted comparison assays using the EWMA al-
gorithm and the median method and evaluated the performance by 
comparing the results from serum samples. Overall, we attempted to 
establish a more convenient, economical, and efficient method for 
interanalyzer consistency monitoring in clinical laboratories.

2  |  MATERIAL S AND METHODS

2.1  |  Analyzer and analytes

Three Beckman Coulter AU5800 series clinical chemistry analyzers 
(Beckman Coulter, United States) were used in the clinical laboratory 
at Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, 

namely, AU5821_1, AU5821_2, and AU5800_3, which were marked 
as analyzers A, B, and C, respectively, in the present study. Eleven 
common analytes, including alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST), gamma-glutamyl transferase (GGT), 
alkaline phosphatase (ALP), creatine (CREA), uric acid (UA), potas-
sium (K), sodium (NA), chloride (CL), calcium (CA), and inorganic 
phosphorus (PHOS), were studied using the three analyzers. In total, 
approximately 5000 samples were measured every day. Analyzers A 
and B were randomly assigned to run outpatient and inpatient sam-
ples, which were equivalent to approximately 2000 tests per day. 
Analyzer C was mainly used for urgent samples, averaging 500 and 
200 tests for inpatient and outpatient samples, respectively. Three 
levels of internal quality controls (IQCs) were measured at the begin-
ning of the analytical batch in the morning, and clinical sample test-
ing was performed only when IQCs were in control. All of the IQC 
results were recorded and exported from the Beckman information 
system. Events that may have affected the analytical results, such as 
reagent lot changes, detection light calibrations, and reagent calibra-
tions, were also recorded.

2.2  |  Simulating and optimizing PBRTQC protocols 
based on the AI-MA platform

The process of establishing optimal PBRTQC protocols in the AI-
MA platform is illustrated in Figure  1A. Briefly, raw data in the 
laboratory information system (LIS) containing measurand infor-
mation were directly collected, extracted, and processed by using 
the AI-MA software version 1.0, which was developed by SENXU 
MEDICAL Corporation (Shanghai, China). By implementing multiple 
parameters for data investigation, a quality risk prediction model 
for PBRTQC was built through deep machine learning with the ran-
dom forest method constructed from decision tree algorithms. The 
parameters, including the measurands, inclusion/exclusion of sam-
ple sources, specimen types, truncation limits, time windows, and 
smoothing factors, were set. The datasets for training and testing 
were proportionally extracted, and the PBRTQC model was estab-
lished with multiple parameters. The EWMA algorithm is given as 
EWMAt = (1 − λ)EWMAt−1 + λ × xt ,

12 where EWMAt and xt are the es-
timated and actual values of the t point measurement, respectively, 
and λ is the smoothing factor.

To obtain a stable dataset and avoid the deleterious effects of 
extreme values, we set truncation limits (TLs) based on biological 
variations (BVs) in the European Federation of Clinical Chemistry 
and Laboratory Medicine (EFLM) Biological Variation Database.13 
The BVs of a measurand contained within-subject variations (CVI) 
and between-subject variations (CVG). The upper and lower TLs of 
the measurands were derived from the following formulas:

(1)RCVG = 2.76 ×

√

CVG

2
+ CVI

2

(2)TLs = Means ± RCVG
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Here, Means represents the average value of the test results 
from all patients within the previous 6 months. If the amount of data 
in each group per day did not exceed 10, the data were excluded.

The control limits of the AI-MA EWMA chart were set based on 
the traditional concept of the Levey–Jennings graph using 

⏤

x  ± 1, 2 
and 3SD and were modified by the introduction of quality objec-
tives. 

⏤

x  and SD represent the mean and standard deviation of the 
EWMA results accumulated in the previous 6 months, respectively. 
EWMA QC rules were applied based on the 10x and 41s “Westgard 
Rules” and machine learning of the control charts.

To verify the performance and select optimal protocols, we ran-
domly selected a confirmed unbiased dataset and introduced posi-
tive/negative allowed total errors (TEa)

14 for approximately 200–300 
data points. Under different parameters, the data were resubmitted 
and calculated. The probability of error detection (Ped) and false-
positive rate (FPR) was calculated based on the quality control chart. 
The optimal EWMA protocols were determined if Ped >90% and 
FPR < 5%.

3  |  COMPAR ATIVE A SSAYS BY SERUM 
SAMPLES AND PATIENT DATA FROM E WMA 
OR MEDIANS

The study design of the comparative assay is illustrated in Figure 1B. 
As the gold standard for interinstrument comparisons, measurement 
procedures were performed based on the Clinical and Laboratory 
Standards Institute (CLSI) EP9-A3 guidelines.15 Serum samples were 
collected and prepared according to an updated protocol based on 
Clinical and Laboratory Standard Institution (CLSI) C37-A.16 The 

analyte concentrations were more evenly distributed within the 
measurement range and covered the medical determination levels 
(MDLs) (Table S1), as suggested at https://www.westg​ard.com/decis​
ion.htm. At least 40 fresh samples for each analyte, 8 per day for 5 
consecutive days, were included. Single outlying results were identi-
fied and removed by the extreme linearized deviation (ESD) method. 
Extra samples were added to reach a total of 40 samples if neces-
sary. The Passing-Bablok analysis model using Medcalc software 
version 19.3 was used to obtain regression equations. The assess-
ment of bias was determined by substituting medical determination 
levels into the equations and setting the acceptance limits as ½ al-
lowed total errors (TEa).

17

During the period of serum sample comparisons, patient data 
from the three analyzers were collected using the median and the 
PBRTQC method under optimal parameter settings. Raw data of pa-
tient specimens were divided into three groups, total patient (TP), 
inpatient (IP) and outpatient (OP) groups, according to the source 
of the patients. Pairwise comparisons were performed, that is, B vs. 
A, C vs. A, and C vs. B. Interanalyzer differences were assessed by 
calculating the delta percentage difference of two compared results.

To further investigate the application of patient data in real-time 
monitoring interanalyzer comparability, the cumulative results of the 
three instruments were collected daily using the EWMA and median 
methods, and events that may have affected test results, including 
changes in reagent lots and bottles, the calibration of lights and kits, 
and the maintenance and malfunction of analyzers, were recorded. 
Intraanalyzer bias was assessed by comparing the daily EWMA or 
median value to its target value accumulated over the previous 
6 months. Interanalyzer differences were calculated as (maximum-
minimum)/average × 100%.10 The acceptable bias limits of both the 

F I G U R E  1 Flow chart of (A) 
PBRTQC procedure and (B) comparative 
study design. Abbreviation: EWMA, 
exponentially weighted moving average; 
LIS, laboratory information system; 
PBRTQC, patient-based real-time quality 
control

https://www.westgard.com/decision.htm
https://www.westgard.com/decision.htm
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intra- and interanalyzers were set to ½ TEa. Inter- and intraanalyzer 
bias events were recorded. If interanalyzer deviation on a given day 
was due to bias caused by a certain instrument, the two events were 
considered the same; otherwise, they were calculated as two sepa-
rate events. A true bias alarm suggested by patient data was deter-
mined in the presence of a corresponding quality event; otherwise, 
it was regarded as a false alarm.

4  |  RESULTS

4.1  |  Performance of the PBRTQC algorithms

Taking serum K as an example, two batches of positive and negative 
bias were introduced into the original data (Figure 2). The number of 
biases detected by the PBRTQC model on the AI-MA platform was 
recorded with various weighting coefficients (Table S2). Using the 
truncation limit helped to exclude extreme values and provided a 
more stable dataset for process monitoring. It was presumed that a 
better performance of PBRTQC could be achieved using this dataset 
than the dataset without truncation (Figure 2). After performing sim-
ulations with different smoothing factors, we chose a λ value of 0.03 
for the optimal PBRTQC model, and a Ped of 91.54% and FRP of 0% 
were obtained (Table  1). Moreover, the number of patient results 
affected before error detection (NPed) was investigated under dif-
ferent EWMA parameters. The optimal PBRTQC model generated a 
smaller NPed (Table 1, Figure 2), indicating a better performance in 
detecting erroneous results in a timely manner. Accordingly, the pa-
rameters for other analytes were obtained and are listed in Table S3.

4.2  |  Test comparability by serum samples

We conducted serum sample comparison testing from August 16, 
2021, to August 20, 2021. Forty samples of each analyte were sepa-
rately measured in the three analyzers without any outlying results. 
Regression analysis revealed that all of the analytes had good cor-
relation coefficients (r2 > 0.99) among the analyzers. Then, we as-
sessed the bias in medical determination by pairwise comparisons to 
determine whether the deviation was acceptable. Table S1 provides 
a detailed overview of the comparative assay results by serum sam-
ples. In general, good comparability was achieved for analytes ALT, 
AST, CREA, UA, K, NA, CL, CA, and PHOS, as no unacceptable levels 
of bias were detected at either level of concentration for any of the 
manufacturers. However, for analytes ALP and GGT, significant bias 
was observed when using analyzer C, as increased test results oc-
curred for these analytes at lower concentrations.

4.3  |  Test comparability using patient data

Accordingly, we conducted comparison assays using patient data. 
Notably, Figure S1 shows that the test number for each analyte in 

analyzer C was distinct from the other two analyzers, as there was 
a smaller number of OP patients. To investigate whether the results 
were affected by the patients' source, we analyzed the dataset used 
with analyzer A, which had an equivalent number for the IP and OP 
groups, under the respective optimal PBRTQC models. The accumu-
lated EWMA values are listed in Table S4. For analytes ALP, GGT, UA, 
K, and CA, the differences between patients' sources were found to 
exceed the applied limits. Concerning distinct sample numbers and 
sources, all analytes were categorized to evaluate the performance 
of patient data in the analyzer comparison. The pairwise compara-
tive analysis results by EWMA were in good accordance with those 
by the median method in each group (Table  2). For analytes with 
good comparability by serum assays, such as AST, K, NA, CL, CA, and 
PHOS, the assessment of pairwise bias was also performed with de-
sirable limits derived from the EWMA and median methods in each 
group. For measurements of analytes ALT and UA, the serological 
comparison was excellent, but the results were falsely lower using 
analyzer C on the OP group for ALT and on the TP group for UA. 
Discrepancies when applying the data derived from the OP group 
were not detected for analytes GGT and ALP, for which we observed 
considerable positive bias when using analyzer C.

4.4  |  Application of patient data in the 
surveillance of analyzer comparisons

To assess the application of the PBRTQC models in real-time ana-
lyzer comparisons, the ALT analyte data from the TP and IP groups 
were studied based on the aforementioned results. During the 
monitoring period, IQCs at the three concentrations were all in 
controls (Figure S2). The intra- and interanalyzer deviations by day 
were plotted with their respective symbols and corresponding dates 
(Figure 3). Overall, 3 and 4 potential abnormal events were recorded 
when using EWMA on the TP and IP groups, among which 66.67% 
(2/3) and 100% (4/4) were identified as true, respectively. In con-
trast, 6 and 10 out-of-range bias events were recorded for the TP 
and IP groups, respectively, when using the median method; how-
ever, only 50% of them were considered true (Table 3). Generally, 
the method using the median value had a significantly higher false-
positive rate than the EWMA method. Categorizing patients when 
using EWMA protocols can clearly improve the accuracy of unex-
pected bias detection by increasing the detection rate and decreas-
ing the false-positive rate.

5  |  DISCUSSION

In this study, we aimed to establish optimal PBRTQC models for 
commonly requested test samples and assess their potential role in 
comparability assays in daily work. Compared with the synchronous 
serological methods, the results showed that PBRTQCs could be ap-
plied as an efficient tool for monitoring test comparability and stabil-
ity in laboratories.
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With the continuous improvement of laboratory information 
systems and the development of “big data” technology, professional 
software for the PBRTQC models was exploited and improved, pro-
moting the application of PBRTQCs in the quality management of 
clinical biochemistry.8,18 When setting up the PBRTQC protocols, 
it is essential to screen out parameters through data training and 
to select appropriate indicators to evaluate the performance of 
the model, which typically requires researchers with an academic 

background in computer science. Researchers have proposed al-
gorithm optimization methods, including simulated annealing19 
and grid searches,18,20 to enable laboratories to practically design 
PBRTQC procedures. In the present study, we used commercial AI-
MA software to establish PBRTQC models by incorporating multiple 
parameters through a deep learning strategy, which was developed 
based on big data processing by artificial intelligence technology. 
Optimal PBRTQC protocols were further selected and evaluated. By 

F I G U R E  2 Graphic illustration of the performance of PBRTQC for potassium (K) by introducing positive (regions framed by solid lines) 
and negative (regions framed by dashed lines) biased data (A-F) Detected bias data at truncation limits of 3.2–4.9 mmol/L when λ = 0.01 
(A) λ = 0.03 (B) and λ = 0.05 (C) and truncation limits of 2.8–6.2 mmol/L when λ = 0.01 (D) λ = 0.03 (E) and λ = 0.05 (F) Regions framed 
by solid and dashed lines indicate the introduced negative and positive biased data points, respectively. (G and H) Number of test results 
affected before error detection at truncation limits of 3.2–4.9 mmol/L when λ = 0.03 (G) and λ = 0.05 (H) The black arrows indicate the error 
introduction data, and red arrows indicate the error detection data. The horizontal black solid line, gray, yellow, and red dashed lines in the 
graph represent the mean ± 1, 2, and 3 SD of the EWMA results accumulated in the previous 6 months, respectively. The yellow and red 
curves of the points indicate the alarm and out-of-control data points detected, respectively, which are based on the intellectual QC rules in 
the AI-MA platform. Abbreviations: EMWA, exponentially weighted moving average; PBRTQC, patient-based real-time quality control; QC, 
quality control; SD, standard deviation
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using the optimal PBRTQC protocols, the comparative results were 
concordant with those obtained with serum samples. In general, the 
application of the intelligent platform may aid inspectors in more ef-
fectively selecting the optimal model for the laboratory.

Even though truncation limits were applied, patient data used 
for real-time monitoring systems were often affected by multiple 
factors, such as fluctuations in sample numbers, different sources 
of specimens, heterogeneous patient populations, and specific clin-
ical interventions.21 Caution is particularly needed in laboratories 
that employ multiple instruments to measure the same analyte. 
The study by Song et al. implied that classifying patient data ac-
cording to sources of specimens and setting quality control rules 
in consideration of different groups could efficiently reduce the 
false-positive rate of PBRTQCs.22 As influences within a group 
were relatively limited and did not interfere with other groups, 
we divided the truncated data into the inpatient (IP), outpatient 
(OP) and total patient (TP) groups. The negative bias detected for 
analyte UA when using analyzer C for the TP group was probably 
false, as comparative results from both serum samples and catego-
rizing groups were excellent (Table 2). Samples run using analyzer C 
consisted of a major composition of inpatient samples (Figure S1). 
Lower results for analyte UA were observed for these samples than 
for those from the outpatient groups (Table S4). Thus, we speculate 
that the false-negative bias was likely related to the inconsistent 
sample numbers and deviated patient data in different groups. In 
addition to analyte UA, accumulated patient data for analytes ALP, 
GGT, K, and CA differed between the OP and IP groups. Except for 
analytes ALP and GGT, which were detected as having true bias, 
the effects from group variations for analytes K and CA might have 
leveled off due to the large sample quality; thus, the data in the TP 
group were not influenced by the aforementioned factors. In addi-
tion, in the real-time monitoring of instrument comparability, we 

found that better performance in detecting small interinstrument 
variability and decreasing false-positive alarms was achieved using 
the categorized patient data. Thus, categorizing patients will be of 
great benefit to improve the performance of PBRTQC in compar-
ative assays.

However, categorizing patients might lead to a decreased sam-
ple number, thus requiring further attention due to inherent limita-
tions. For analytes with large between-subject biological variation 
(CVG), the ability of PBRTQC to detect potential deviations was dra-
matically weakened on account of a smaller sample size and larger 
population variations.10,22 Likewise, for analytes ALT, ALP, and GGT, 
of which CVGs were ranked highest, we observed false-positive 
and negative biased events for the OP group when using analyzer 
C. Nevertheless, for the analytes with relatively narrow biological 
variation, the desired performance was still achieved regardless of 
changes in sample size and patient categories. These findings em-
phasize the significance of considering the potential influences of 
low- and medium-sized populations, especially for highly varied an-
alytes. Therefore, we suggested that PBRTQCs could be improved 
in relation to the sample size, population variation, and preanalytical 
factors for some specific analytes.

Another notable finding was that the deviated analytes were 
only observed when using analyzer C, which was operated 24 h a day 
for urgent samples. This nonstop running may have accelerated the 
consumption of the light source and aged the system, contributing 
to the instability of test samples. Enzymatic assays were particularly 
sensitive to manufacturing conditions, including temperature fluc-
tuations and defective lamps,23 which is consistent with the results 
that showed that analytes ALP and GGT were significantly biased 
when using analyzer C. In this case, the laboratory should be aware 
of solving this issue through more frequent calculations and earlier 
replacement of light sources.

TA B L E  1 Performance of PBRTQCs for serum K with different limits and smoothing factors

Truncation Limits 
(mmol/L)

Smoothing 
factor

Introduced 
biased data

True detected 
biased data

False detected 
biased data Ped (%) FPR (%) NPed

2.8–6.2 0.01 550 176 262 33.85 13.70 —a

0.03 550 476 1032 91.54 53.95 —

0.05 550 476 1194 95.20 62.42 —

0.10 550 56 115 11.20 6.01 —

0.20 550 43 93 8.60 4.86 —

0.40 550 47 105 9.40 5.49 —

3.2–4.9 0.01 550 0 0 0.00 0.00 18

0.03b 550 476 0 91.54 0.00 5

0.05 550 476 203 91.54 10.61 9

0.10 550 245 559 47.12 29.22 13

0.20 550 40 32 7.69 1.67 16

0.40 550 39 3 7.50 0.16 27

Abbreviations: FPR, false-positive rate; K, potassium; NPed, number of patient results affected before error detection; Ped, probability of error 
detection; PBRTQC, patient-based real-time quality control.
aNot applicable.
bOptimal PBRTQC factors are marked in bold.
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Since IQC and serum samples hardly reflect the stability of the 
detection system in the whole process, we then aimed to use the 
optimal EWMA and median methods to monitor the fluctuation of 
the inter- and intraanalyzers. The EWMA algorithm appeared to per-
form much better than the median method in the application of daily 
monitoring analyzer stability, even though both methods exhibited 
similar performance on comparative assays. The deficiencies of the 
median method that led to a higher FPR became prominent when 
using applied patient data per day other than those from five ac-
cumulated days for comparative assays. As suggested by Kenneth 
Goossens on the “The Percentiler” project,10 the median method was 
greatly affected by population variations in small- and medium-sized 
samples. Therefore, PBRTQC protocols with the EWMA algorithm 
were more suitable as an efficient tool for the real-time monitoring 
of analyzer comparability and stability. However, we found that we 
were more likely to detect very small changes in the detection sys-
tems, for example, kit lot variations and light calibration, when the 

IQCs were all in controls, and the PBRTQCs were used. We recom-
mend that PBRTQCs, especially with an EWMA algorithm, be con-
ducted as a supplementary procedure to expand the application of 
analyzer comparability to guarantee the performance of laboratory 
detection systems.

However, there are some limitations in our study. First, we set 
up individual optimal PBRTQC models with combined patient data 
other than the data from the analyzers. As stated by Zhou et al.24 
the performance of PBRTQC could be better if data were applied 
using separate instruments. In addition, in the simulation process, 
the intellectual QC rules to assess the biased data points in the chart 
were built in the software and were confidential for the corporation. 
Finally, we monitored the stability of the analyzers for a relatively 
short period of 1 month and only for the analyte ALT; this study 
should be continued for a longer time and for more analytes. In gen-
eral, further studies should be conducted to optimize and expand 
the application of PBRTQC.

F I G U R E  3 Surveillance of comparability and stability of inter- and intraanalyzers for alanine aminotransferase (ALT) by (A) the EWMA 
method with data from the total population (TP) (B) the EWMA method with data from inpatients (IP) (C) the median method with data 
from TP and (D) the median method with data from IP. A, B and C indicate analyzers A, B and C, respectively. Unacceptable biases for 
intraanalyzers were pointed out with circles for analyzer A, squares for analyzer B and triangles for analyzer C in the chart. Significant 
deviations for interanalyzers were marked by underlining its relevant dates. Abbreviation: EWMA, exponentially weighted moving average
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