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Abstract
Background: It is critical for laboratories to conduct multianalyzer comparisons as a 
part of daily routine work to strengthen the quality management of test systems. Here, 
we	explored	the	application	of	patient-	based	real-	time	quality	controls	(PBRTQCs)	on	
comparative assays to monitor the consistency among clinical laboratories.
Methods: The present study included 11 commonly tested analytes that were de-
tected	 using	 three	 analyzers.	 PBRTQC	procedures	were	 set	 up	with	 exponentially	
weighted	moving	average	(EWMA)	algorithms	and	evaluated	using	the	AI-	MA	artifi-
cial intelligence platform. Comparative assays were carried out on serum samples, and 
patient	data	were	collected.	Patients	were	divided	 into	 total	patient	 (TP),	 inpatient	
(IP),	and	outpatient	(OP)	groups.
Results: Optimal	PBRTQC	protocols	were	evaluated	and	selected	with	appropriate	
truncation limits and smoothing factors. Generally, similar comparative assay per-
formance	was	achieved	using	both	the	EWMA	and	median	methods.	Good	consist-
ency between the results from patients' data and serum samples was obtained, and 
unacceptable	bias	was	detected	for	alkaline	phosphatase	(ALP)	and	gamma-	glutamyl	
transferase	 (GGT)	when	using	analyzer	C.	Categorizing	patients'	data	and	applying	
specific groups for comparative assays could significantly improve the performance 
of	PBRTQCs.	When	monitoring	the	inter-		and	intraanalyzer	stability	on	a	daily	basis,	
EWMA	was	superior	in	detecting	very	small	quality-	related	changes	with	lower	false-	
positive alarms.
Conclusions: We	found	that	PBRTQCs	have	the	potential	to	efficiently	assess	multi-
analyzer comparability. Laboratories should be aware of population variations con-
cerning	both	analytes	and	analyzers	to	build	more	suitable	PBRTQC	protocols.
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1  |  INTRODUC TION

At	clinical	laboratories,	there	is	usually	a	great	demand	for	the	test-
ing of biochemical samples. These tests may require the simulta-
neous use of multiple different models or brands of biochemical 
analyzers.	The	International	Organization	for	Standardization	(ISO)	
15,189	standard	specifies	that	a	comparability	scheme	should	be	
established to ensure the consistency of results. In routine prac-
tice, comparison assays with fresh serum samples1 and daily qual-
ity	 control	 (QC)	 samples,	 which	 are	 not	 commutable	 as	 patient	
samples with a material matrix,2– 4 are recommended. However, 
this system is conducted at certain intervals rather than continu-
ously, which increases potential quality risks during the analytical 
process. Patient data have potential advantages in aiding the im-
plementation of laboratory management,5,6 particularly following 
the	revolution	of	 information	technology.	Nevertheless,	 the	con-
sideration of applying patient data in multianalyzer comparisons is 
still underexplored.

The	International	Federation	of	Clinical	Chemistry	(IFCC)	and	
the	 International	 Council	 for	 Clinical	 Chemistry	 and	 Analytical	
Quality	in	Laboratory	Medicine	proposed	that	patient-	based	real-	
time	quality	control	(PBRTQC)	is	a	valuable	complementary	qual-
ity control method, having the advantages of lower cost, absence 
of	 matrix	 effects,	 continuous	 real-	time	 monitoring,	 and	 higher	
sensitivity to preanalytical errors.6 Various arithmetic procedures 
have	 been	 applied	 for	 PBRTQC,	 including	 Bull's	 algorithm,7 the 
moving	 average	 (MA)	 method,8 and the exponentially weighted 
moving	 average	 (EWMA)	method.9 To evaluate and monitor the 
comparability and stability of clinical tests across manufactur-
ers and laboratories, the median of patient data is most widely 
used.10 However, this requires a large quantity of samples, and the 
performance is greatly affected when the amount of data is rel-
atively	 small.	 In	 the	EWMA	algorithm,	 a	weighting	 coefficient	 is	
introduced to smooth the dataset by adjusting the sensitivity of 
bias based on the training data.11	By	using	this	method,	which	 is	
reported to be less affected by sample size, small deviations in the 
process can be detected.

In	 this	 study,	 PBRTQC	 protocols	 using	 the	 EWMA	 algorithm	
were set up using the professional artificial intelligence software 
AI-	MA.	Then,	we	conducted	comparison	assays	using	the	EWMA	al-
gorithm and the median method and evaluated the performance by 
comparing the results from serum samples. Overall, we attempted to 
establish a more convenient, economical, and efficient method for 
interanalyzer consistency monitoring in clinical laboratories.

2  |  MATERIAL S AND METHODS

2.1  |  Analyzer and analytes

Three	Beckman	Coulter	AU5800	series	clinical	chemistry	analyzers	
(Beckman	Coulter,	United	States)	were	used	in	the	clinical	laboratory	
at	Ruijin	Hospital,	Shanghai	Jiaotong	University,	School	of	Medicine,	

namely,	AU5821_1,	AU5821_2,	and	AU5800_3,	which	were	marked	
as	analyzers	A,	B,	and	C,	respectively,	 in	the	present	study.	Eleven	
common	analytes,	 including	alanine	aminotransferase	 (ALT),	aspar-
tate	 aminotransferase	 (AST),	 gamma-	glutamyl	 transferase	 (GGT),	
alkaline	phosphatase	 (ALP),	 creatine	 (CREA),	uric	 acid	 (UA),	potas-
sium	 (K),	 sodium	 (NA),	 chloride	 (CL),	 calcium	 (CA),	 and	 inorganic	
phosphorus	(PHOS),	were	studied	using	the	three	analyzers.	In	total,	
approximately	5000	samples	were	measured	every	day.	Analyzers	A	
and	B	were	randomly	assigned	to	run	outpatient	and	inpatient	sam-
ples, which were equivalent to approximately 2000 tests per day. 
Analyzer	C	was	mainly	used	for	urgent	samples,	averaging	500	and	
200 tests for inpatient and outpatient samples, respectively. Three 
levels	of	internal	quality	controls	(IQCs)	were	measured	at	the	begin-
ning of the analytical batch in the morning, and clinical sample test-
ing	was	performed	only	when	IQCs	were	in	control.	All	of	the	IQC	
results	were	recorded	and	exported	from	the	Beckman	information	
system. Events that may have affected the analytical results, such as 
reagent lot changes, detection light calibrations, and reagent calibra-
tions, were also recorded.

2.2  |  Simulating and optimizing PBRTQC protocols 
based on the AI- MA platform

The	 process	 of	 establishing	 optimal	 PBRTQC	 protocols	 in	 the	 AI-	
MA	 platform	 is	 illustrated	 in	 Figure 1A.	 Briefly,	 raw	 data	 in	 the	
laboratory	 information	 system	 (LIS)	 containing	 measurand	 infor-
mation were directly collected, extracted, and processed by using 
the	AI-	MA	software	version	1.0,	which	was	developed	by	SENXU	
MEDICAL	Corporation	(Shanghai,	China).	By	implementing	multiple	
parameters for data investigation, a quality risk prediction model 
for	PBRTQC	was	built	through	deep	machine	learning	with	the	ran-
dom forest method constructed from decision tree algorithms. The 
parameters, including the measurands, inclusion/exclusion of sam-
ple sources, specimen types, truncation limits, time windows, and 
smoothing factors, were set. The datasets for training and testing 
were	proportionally	extracted,	and	the	PBRTQC	model	was	estab-
lished	with	multiple	parameters.	The	EWMA	algorithm	 is	 given	as	
EWMAt = (1 − λ)EWMAt−1 + λ × xt ,

12 where EWMAt and xt are the es-
timated and actual values of the t point measurement, respectively, 
and λ is the smoothing factor.

To obtain a stable dataset and avoid the deleterious effects of 
extreme	values,	we	 set	 truncation	 limits	 (TLs)	 based	on	biological	
variations	 (BVs)	 in	 the	 European	 Federation	 of	 Clinical	 Chemistry	
and	 Laboratory	 Medicine	 (EFLM)	 Biological	 Variation	 Database.13 
The	BVs	of	 a	measurand	 contained	within-	subject	 variations	 (CVI)	
and	between-	subject	variations	(CVG).	The	upper	and	lower	TLs	of	
the measurands were derived from the following formulas:

(1)RCVG = 2.76 ×

√

CVG

2
+ CVI

2

(2)TLs = Means ± RCVG



    |  3 of 10LU et al.

Here, Means represents the average value of the test results 
from all patients within the previous 6 months. If the amount of data 
in each group per day did not exceed 10, the data were excluded.

The	control	limits	of	the	AI-	MA	EWMA	chart	were	set	based	on	
the	traditional	concept	of	 the	Levey–	Jennings	graph	using	

⏤

x  ± 1,	2	
and 3SD and were modified by the introduction of quality objec-
tives. 

⏤

x  and SD represent the mean and standard deviation of the 
EWMA	results	accumulated	in	the	previous	6	months,	respectively.	
EWMA	QC	rules	were	applied	based	on	the	10x and 41s “Westgard 
Rules” and machine learning of the control charts.

To verify the performance and select optimal protocols, we ran-
domly selected a confirmed unbiased dataset and introduced posi-
tive/negative	allowed	total	errors	(TEa)

14 for approximately 200– 300 
data points. Under different parameters, the data were resubmitted 
and	calculated.	The	probability	of	 error	detection	 (Ped)	 and	 false-	
positive	rate	(FPR)	was	calculated	based	on	the	quality	control	chart.	
The	 optimal	 EWMA	 protocols	 were	 determined	 if	 Ped >90%	 and	
FPR < 5%.

3  |  COMPAR ATIVE A SSAYS BY SERUM 
SAMPLES AND PATIENT DATA FROM E WMA 
OR MEDIANS

The study design of the comparative assay is illustrated in Figure 1B. 
As	the	gold	standard	for	interinstrument	comparisons,	measurement	
procedures were performed based on the Clinical and Laboratory 
Standards	Institute	(CLSI)	EP9-	A3	guidelines.15 Serum samples were 
collected and prepared according to an updated protocol based on 
Clinical	 and	 Laboratory	 Standard	 Institution	 (CLSI)	 C37-	A.16 The 

analyte concentrations were more evenly distributed within the 
measurement range and covered the medical determination levels 
(MDLs)	(Table	S1),	as	suggested	at	https://www.westg ard.com/decis 
ion.htm.	At	least	40	fresh	samples	for	each	analyte,	8	per	day	for	5	
consecutive days, were included. Single outlying results were identi-
fied	and	removed	by	the	extreme	linearized	deviation	(ESD)	method.	
Extra samples were added to reach a total of 40 samples if neces-
sary.	 The	 Passing-	Bablok	 analysis	 model	 using	 Medcalc	 software	
version	19.3	was	used	to	obtain	 regression	equations.	The	assess-
ment of bias was determined by substituting medical determination 
levels into the equations and setting the acceptance limits as ½ al-
lowed	total	errors	(TEa).

17

During the period of serum sample comparisons, patient data 
from the three analyzers were collected using the median and the 
PBRTQC	method	under	optimal	parameter	settings.	Raw	data	of	pa-
tient	specimens	were	divided	 into	 three	groups,	 total	patient	 (TP),	
inpatient	 (IP)	 and	outpatient	 (OP)	 groups,	 according	 to	 the	 source	
of	the	patients.	Pairwise	comparisons	were	performed,	that	is,	B	vs.	
A,	C	vs.	A,	and	C	vs.	B.	Interanalyzer	differences	were	assessed	by	
calculating the delta percentage difference of two compared results.

To	further	investigate	the	application	of	patient	data	in	real-	time	
monitoring interanalyzer comparability, the cumulative results of the 
three	instruments	were	collected	daily	using	the	EWMA	and	median	
methods, and events that may have affected test results, including 
changes in reagent lots and bottles, the calibration of lights and kits, 
and the maintenance and malfunction of analyzers, were recorded. 
Intraanalyzer	bias	was	assessed	by	comparing	 the	daily	EWMA	or	
median value to its target value accumulated over the previous 
6	months.	 Interanalyzer	differences	were	calculated	as	 (maximum-	
minimum)/average × 100%.10 The acceptable bias limits of both the 

F I G U R E  1 Flow	chart	of	(A)	
PBRTQC	procedure	and	(B)	comparative	
study	design.	Abbreviation:	EWMA,	
exponentially weighted moving average; 
LIS, laboratory information system; 
PBRTQC,	patient-	based	real-	time	quality	
control

https://www.westgard.com/decision.htm
https://www.westgard.com/decision.htm
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intra-		and	interanalyzers	were	set	to	½	TEa.	Inter-		and	intraanalyzer	
bias events were recorded. If interanalyzer deviation on a given day 
was due to bias caused by a certain instrument, the two events were 
considered the same; otherwise, they were calculated as two sepa-
rate	events.	A	true	bias	alarm	suggested	by	patient	data	was	deter-
mined in the presence of a corresponding quality event; otherwise, 
it was regarded as a false alarm.

4  |  RESULTS

4.1  |  Performance of the PBRTQC algorithms

Taking	serum	K	as	an	example,	two	batches	of	positive	and	negative	
bias	were	introduced	into	the	original	data	(Figure 2).	The	number	of	
biases	detected	by	the	PBRTQC	model	on	the	AI-	MA	platform	was	
recorded	with	various	weighting	coefficients	 (Table	S2).	Using	 the	
truncation limit helped to exclude extreme values and provided a 
more stable dataset for process monitoring. It was presumed that a 
better	performance	of	PBRTQC	could	be	achieved	using	this	dataset	
than	the	dataset	without	truncation	(Figure 2).	After	performing	sim-
ulations with different smoothing factors, we chose a λ value of 0.03 
for	the	optimal	PBRTQC	model,	and	a	Ped	of	91.54%	and	FRP	of	0%	
were	 obtained	 (Table 1).	Moreover,	 the	 number	 of	 patient	 results	
affected	before	error	detection	(NPed)	was	investigated	under	dif-
ferent	EWMA	parameters.	The	optimal	PBRTQC	model	generated	a	
smaller	NPed	(Table 1, Figure 2),	indicating	a	better	performance	in	
detecting	erroneous	results	in	a	timely	manner.	Accordingly,	the	pa-
rameters for other analytes were obtained and are listed in Table S3.

4.2  |  Test comparability by serum samples

We	conducted	 serum	sample	 comparison	 testing	 from	August	16,	
2021,	to	August	20,	2021.	Forty	samples	of	each	analyte	were	sepa-
rately measured in the three analyzers without any outlying results. 
Regression analysis revealed that all of the analytes had good cor-
relation	 coefficients	 (r2 > 0.99)	 among	 the	 analyzers.	 Then,	we	 as-
sessed the bias in medical determination by pairwise comparisons to 
determine whether the deviation was acceptable. Table S1 provides 
a detailed overview of the comparative assay results by serum sam-
ples.	In	general,	good	comparability	was	achieved	for	analytes	ALT,	
AST,	CREA,	UA,	K,	NA,	CL,	CA,	and	PHOS,	as	no	unacceptable	levels	
of bias were detected at either level of concentration for any of the 
manufacturers.	However,	for	analytes	ALP	and	GGT,	significant	bias	
was observed when using analyzer C, as increased test results oc-
curred for these analytes at lower concentrations.

4.3  |  Test comparability using patient data

Accordingly,	 we	 conducted	 comparison	 assays	 using	 patient	 data.	
Notably,	Figure	S1 shows that the test number for each analyte in 

analyzer C was distinct from the other two analyzers, as there was 
a smaller number of OP patients. To investigate whether the results 
were affected by the patients' source, we analyzed the dataset used 
with	analyzer	A,	which	had	an	equivalent	number	for	the	IP	and	OP	
groups,	under	the	respective	optimal	PBRTQC	models.	The	accumu-
lated	EWMA	values	are	listed	in	Table	S4.	For	analytes	ALP,	GGT,	UA,	
K,	and	CA,	the	differences	between	patients'	sources	were	found	to	
exceed the applied limits. Concerning distinct sample numbers and 
sources, all analytes were categorized to evaluate the performance 
of patient data in the analyzer comparison. The pairwise compara-
tive	analysis	results	by	EWMA	were	in	good	accordance	with	those	
by	 the	median	method	 in	 each	 group	 (Table 2).	 For	 analytes	with	
good	comparability	by	serum	assays,	such	as	AST,	K,	NA,	CL,	CA,	and	
PHOS, the assessment of pairwise bias was also performed with de-
sirable	limits	derived	from	the	EWMA	and	median	methods	in	each	
group.	For	measurements	of	analytes	ALT	and	UA,	 the	serological	
comparison was excellent, but the results were falsely lower using 
analyzer	C	on	the	OP	group	for	ALT	and	on	the	TP	group	for	UA.	
Discrepancies when applying the data derived from the OP group 
were	not	detected	for	analytes	GGT	and	ALP,	for	which	we	observed	
considerable positive bias when using analyzer C.

4.4  |  Application of patient data in the 
surveillance of analyzer comparisons

To	assess	the	application	of	 the	PBRTQC	models	 in	 real-	time	ana-
lyzer	comparisons,	the	ALT	analyte	data	from	the	TP	and	IP	groups	
were studied based on the aforementioned results. During the 
monitoring	 period,	 IQCs	 at	 the	 three	 concentrations	 were	 all	 in	
controls	(Figure	S2).	The	intra-		and	interanalyzer	deviations	by	day	
were plotted with their respective symbols and corresponding dates 
(Figure 3).	Overall,	3	and	4	potential	abnormal	events	were	recorded	
when	using	EWMA	on	the	TP	and	IP	groups,	among	which	66.67%	
(2/3)	and	100%	 (4/4)	were	 identified	as	 true,	 respectively.	 In	 con-
trast,	6	and	10	out-	of-	range	bias	events	were	recorded	for	 the	TP	
and IP groups, respectively, when using the median method; how-
ever,	only	50%	of	 them	were	considered	 true	 (Table 3).	Generally,	
the	method	using	the	median	value	had	a	significantly	higher	false-	
positive	rate	than	the	EWMA	method.	Categorizing	patients	when	
using	EWMA	protocols	 can	clearly	 improve	 the	accuracy	of	unex-
pected bias detection by increasing the detection rate and decreas-
ing	the	false-	positive	rate.

5  |  DISCUSSION

In	 this	 study,	 we	 aimed	 to	 establish	 optimal	 PBRTQC	models	 for	
commonly requested test samples and assess their potential role in 
comparability assays in daily work. Compared with the synchronous 
serological	methods,	the	results	showed	that	PBRTQCs	could	be	ap-
plied as an efficient tool for monitoring test comparability and stabil-
ity in laboratories.
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With the continuous improvement of laboratory information 
systems and the development of “big data” technology, professional 
software	for	the	PBRTQC	models	was	exploited	and	improved,	pro-
moting	 the	application	of	PBRTQCs	 in	 the	quality	management	of	
clinical biochemistry.8,18	When	 setting	 up	 the	 PBRTQC	 protocols,	
it is essential to screen out parameters through data training and 
to select appropriate indicators to evaluate the performance of 
the model, which typically requires researchers with an academic 

background in computer science. Researchers have proposed al-
gorithm optimization methods, including simulated annealing19 
and grid searches,18,20 to enable laboratories to practically design 
PBRTQC	procedures.	In	the	present	study,	we	used	commercial	AI-	
MA	software	to	establish	PBRTQC	models	by	incorporating	multiple	
parameters through a deep learning strategy, which was developed 
based on big data processing by artificial intelligence technology. 
Optimal	PBRTQC	protocols	were	further	selected	and	evaluated.	By	

F I G U R E  2 Graphic	illustration	of	the	performance	of	PBRTQC	for	potassium	(K)	by	introducing	positive	(regions	framed	by	solid	lines)	
and	negative	(regions	framed	by	dashed	lines)	biased	data	(A-	F)	Detected	bias	data	at	truncation	limits	of	3.2–	4.9 mmol/L	when	λ = 0.01 
(A)	λ =	0.03	(B)	and	λ =	0.05	(C)	and	truncation	limits	of	2.8–	6.2 mmol/L	when	λ =	0.01	(D)	λ =	0.03	(E)	and	λ =	0.05	(F)	Regions	framed	
by	solid	and	dashed	lines	indicate	the	introduced	negative	and	positive	biased	data	points,	respectively.	(G	and	H)	Number	of	test	results	
affected	before	error	detection	at	truncation	limits	of	3.2–	4.9 mmol/L	when	λ =	0.03	(G)	and	λ =	0.05	(H)	The	black	arrows	indicate	the	error	
introduction data, and red arrows indicate the error detection data. The horizontal black solid line, gray, yellow, and red dashed lines in the 
graph	represent	the	mean ± 1,	2,	and	3	SD	of	the	EWMA	results	accumulated	in	the	previous	6	months,	respectively.	The	yellow	and	red	
curves	of	the	points	indicate	the	alarm	and	out-	of-	control	data	points	detected,	respectively,	which	are	based	on	the	intellectual	QC	rules	in	
the	AI-	MA	platform.	Abbreviations:	EMWA,	exponentially	weighted	moving	average;	PBRTQC,	patient-	based	real-	time	quality	control;	QC,	
quality control; SD, standard deviation



6 of 10  |     LU et al.

using	the	optimal	PBRTQC	protocols,	the	comparative	results	were	
concordant with those obtained with serum samples. In general, the 
application of the intelligent platform may aid inspectors in more ef-
fectively selecting the optimal model for the laboratory.

Even though truncation limits were applied, patient data used 
for	real-	time	monitoring	systems	were	often	affected	by	multiple	
factors, such as fluctuations in sample numbers, different sources 
of specimens, heterogeneous patient populations, and specific clin-
ical interventions.21 Caution is particularly needed in laboratories 
that employ multiple instruments to measure the same analyte. 
The study by Song et al. implied that classifying patient data ac-
cording to sources of specimens and setting quality control rules 
in consideration of different groups could efficiently reduce the 
false-	positive	 rate	 of	 PBRTQCs.22	 As	 influences	 within	 a	 group	
were relatively limited and did not interfere with other groups, 
we	 divided	 the	 truncated	 data	 into	 the	 inpatient	 (IP),	 outpatient	
(OP)	and	total	patient	(TP)	groups.	The	negative	bias	detected	for	
analyte	UA	when	using	analyzer	C	for	the	TP	group	was	probably	
false, as comparative results from both serum samples and catego-
rizing	groups	were	excellent	(Table 2).	Samples	run	using	analyzer	C	
consisted	of	a	major	composition	of	inpatient	samples	(Figure	S1).	
Lower	results	for	analyte	UA	were	observed	for	these	samples	than	
for	those	from	the	outpatient	groups	(Table	S4).	Thus,	we	speculate	
that	 the	 false-	negative	bias	was	 likely	 related	 to	 the	 inconsistent	
sample numbers and deviated patient data in different groups. In 
addition	to	analyte	UA,	accumulated	patient	data	for	analytes	ALP,	
GGT,	K,	and	CA	differed	between	the	OP	and	IP	groups.	Except	for	
analytes	ALP	and	GGT,	which	were	detected	as	having	 true	bias,	
the	effects	from	group	variations	for	analytes	K	and	CA	might	have	
leveled off due to the large sample quality; thus, the data in the TP 
group were not influenced by the aforementioned factors. In addi-
tion,	 in	 the	 real-	time	monitoring	of	 instrument	 comparability,	we	

found that better performance in detecting small interinstrument 
variability	and	decreasing	false-	positive	alarms	was	achieved	using	
the categorized patient data. Thus, categorizing patients will be of 
great	benefit	to	 improve	the	performance	of	PBRTQC	in	compar-
ative assays.

However, categorizing patients might lead to a decreased sam-
ple number, thus requiring further attention due to inherent limita-
tions.	For	analytes	with	 large	between-	subject	biological	variation	
(CVG),	the	ability	of	PBRTQC	to	detect	potential	deviations	was	dra-
matically weakened on account of a smaller sample size and larger 
population variations.10,22	Likewise,	for	analytes	ALT,	ALP,	and	GGT,	
of which CVGs	 were	 ranked	 highest,	 we	 observed	 false-	positive	
and negative biased events for the OP group when using analyzer 
C.	Nevertheless,	 for	 the	analytes	with	 relatively	narrow	biological	
variation, the desired performance was still achieved regardless of 
changes in sample size and patient categories. These findings em-
phasize the significance of considering the potential influences of 
low-		and	medium-	sized	populations,	especially	for	highly	varied	an-
alytes.	Therefore,	we	suggested	that	PBRTQCs	could	be	 improved	
in relation to the sample size, population variation, and preanalytical 
factors for some specific analytes.

Another	 notable	 finding	 was	 that	 the	 deviated	 analytes	 were	
only	observed	when	using	analyzer	C,	which	was	operated	24 h	a	day	
for urgent samples. This nonstop running may have accelerated the 
consumption of the light source and aged the system, contributing 
to the instability of test samples. Enzymatic assays were particularly 
sensitive to manufacturing conditions, including temperature fluc-
tuations and defective lamps,23 which is consistent with the results 
that	 showed	 that	analytes	ALP	and	GGT	were	 significantly	biased	
when using analyzer C. In this case, the laboratory should be aware 
of solving this issue through more frequent calculations and earlier 
replacement of light sources.

TA B L E  1 Performance	of	PBRTQCs	for	serum	K	with	different	limits	and	smoothing	factors

Truncation Limits 
(mmol/L)

Smoothing 
factor

Introduced 
biased data

True detected 
biased data

False detected 
biased data Ped (%) FPR (%) NPed

2.8– 6.2 0.01 550 176 262 33.85 13.70 — a

0.03 550 476 1032 91.54 53.95 — 

0.05 550 476 1194 95.20 62.42 — 

0.10 550 56 115 11.20 6.01 — 

0.20 550 43 93 8.60 4.86 — 

0.40 550 47 105 9.40 5.49 — 

3.2–	4.9 0.01 550 0 0 0.00 0.00 18

0.03b 550 476 0 91.54 0.00 5

0.05 550 476 203 91.54 10.61 9

0.10 550 245 559 47.12 29.22 13

0.20 550 40 32 7.69 1.67 16

0.40 550 39 3 7.50 0.16 27

Abbreviations:	FPR,	false-	positive	rate;	K,	potassium;	NPed,	number	of	patient	results	affected	before	error	detection;	Ped,	probability	of	error	
detection;	PBRTQC,	patient-	based	real-	time	quality	control.
aNot	applicable.
bOptimal	PBRTQC	factors	are	marked	in	bold.
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Since	IQC	and	serum	samples	hardly	reflect	the	stability	of	the	
detection system in the whole process, we then aimed to use the 
optimal	EWMA	and	median	methods	to	monitor	the	fluctuation	of	
the	inter-		and	intraanalyzers.	The	EWMA	algorithm	appeared	to	per-
form much better than the median method in the application of daily 
monitoring analyzer stability, even though both methods exhibited 
similar performance on comparative assays. The deficiencies of the 
median method that led to a higher FPR became prominent when 
using applied patient data per day other than those from five ac-
cumulated	days	 for	 comparative	assays.	As	 suggested	by	Kenneth	
Goossens on the “The Percentiler” project,10 the median method was 
greatly	affected	by	population	variations	in	small-		and	medium-	sized	
samples.	Therefore,	PBRTQC	protocols	with	 the	EWMA	algorithm	
were	more	suitable	as	an	efficient	tool	for	the	real-	time	monitoring	
of analyzer comparability and stability. However, we found that we 
were more likely to detect very small changes in the detection sys-
tems, for example, kit lot variations and light calibration, when the 

IQCs	were	all	in	controls,	and	the	PBRTQCs	were	used.	We	recom-
mend	that	PBRTQCs,	especially	with	an	EWMA	algorithm,	be	con-
ducted as a supplementary procedure to expand the application of 
analyzer comparability to guarantee the performance of laboratory 
detection systems.

However, there are some limitations in our study. First, we set 
up	individual	optimal	PBRTQC	models	with	combined	patient	data	
other	than	the	data	from	the	analyzers.	As	stated	by	Zhou	et	al.24 
the	performance	of	PBRTQC	could	be	better	 if	data	were	applied	
using separate instruments. In addition, in the simulation process, 
the	intellectual	QC	rules	to	assess	the	biased	data	points	in	the	chart	
were built in the software and were confidential for the corporation. 
Finally, we monitored the stability of the analyzers for a relatively 
short	 period	 of	 1	month	 and	 only	 for	 the	 analyte	 ALT;	 this	 study	
should be continued for a longer time and for more analytes. In gen-
eral, further studies should be conducted to optimize and expand 
the	application	of	PBRTQC.

F I G U R E  3 Surveillance	of	comparability	and	stability	of	inter-		and	intraanalyzers	for	alanine	aminotransferase	(ALT)	by	(A)	the	EWMA	
method	with	data	from	the	total	population	(TP)	(B)	the	EWMA	method	with	data	from	inpatients	(IP)	(C)	the	median	method	with	data	
from	TP	and	(D)	the	median	method	with	data	from	IP.	A,	B	and	C	indicate	analyzers	A,	B	and	C,	respectively.	Unacceptable	biases	for	
intraanalyzers	were	pointed	out	with	circles	for	analyzer	A,	squares	for	analyzer	B	and	triangles	for	analyzer	C	in	the	chart.	Significant	
deviations	for	interanalyzers	were	marked	by	underlining	its	relevant	dates.	Abbreviation:	EWMA,	exponentially	weighted	moving	average
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