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Abstract: Oxidative stress, which is a result of overproduction and accumulation of free radicals, is the
main cause of several skin degenerative diseases, such as aging. Polyphenols, such as gallic acid, are an
important class of naturally occurring antioxidants. They have emerged as strong antioxidants that can
be used as active cosmetics. The purpose of this study was to develop a gallic acid-loaded cosmetic gel
formulation and characterize it using rheological, mechanical, and bioadhesive tests. Its antioxidant effect
in the stratum corneum was evaluated by a non-invasive method. According to the characterization tests,
the formulation exhibited skin adhesiveness and pseudoplastic behavior without thixotropy, rendering
it suitable for use as a cosmetic formulation. Furthermore, the non-invasive method indicated the
antioxidant effect in the stratum corneum, with the global lipid peroxide reduction being 33.97± 11.66%.
Thus, we were able to develop a promising gallic acid-loaded gel formulation that could reduce lipid
peroxides and thus combat skin oxidative stress.
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1. Introduction

The skin is constantly exposed to air, sunrays, chemical pollutants, and several other mechanical
and chemical factors that can induce the generation of free radicals and reactive oxygen species (ROS) [1].
Free radicals are unstable chemical species comprising an unpaired electron, e.g., superoxide, hydrogen
peroxide, singlet oxygen, and peroxynitrite [2,3]. These free radicals interact with different cellular
constituents causing cellular and structural damage, thereby accelerating the aging process [1,4].

Free radicals can be combated through exogenous antioxidants applied topically. The application
of antioxidant substances can control the amount of free radicals formed daily. The literature reports
many groups of antioxidants, such as flavonoids, phenolic acids, simple phenols, coumarins, tannins,
lignins, and tocopherols. Phenolic acids are one of the most interesting antioxidants that can be applied
topically [5,6].
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Phenolic compounds are formed during secondary metabolism in plants. They have other
functions, such as plant defense. Chemically, these compounds are defined as substances that have an
aromatic ring with one or more hydroxylic substituents, including their functional groups, which have
a variable structure, allowing them to be multifunctional [7–10].

Gallic acid (GA), corresponding to an antioxidant compound belonging to the group of phenolic acids,
occurs in a wide variety of plant species. GA is known to possess anti-inflammatory, anticarcinogenic,
antifungal, and antioxidant activities, in addition to being a metalloproteinase inhibitor [11].

Several in vitro assays, such as 2,2-diphenylpicrylhydrazyl, ferric reducing antioxidant power,
beta-carotene, oxygen radical absorbance capacity, and 2,2′-azino-bis-(3-ethylbenzothiazoline-
6-sulfonic acid) assays, have indicated that GA possesses greater antioxidant efficiency than
popular antioxidants such as ascorbic acid, trolox, uric acid, caffeine, sesamol, protocatechuic acid,
sinapinic acid, capsaicin, and melatonin [12–15].

Monteiro e Silva & Leonardi [16] also demonstrated that GA exhibits great retention on the skin
surface, which improves (4-fold) when associated with iontophoresis. These interesting characteristics
of GA make this compound suitable as an active cosmetic with antioxidant action. Nevertheless, it is
necessary to develop a GA-loaded cosmetic product in such a way as to ensure the safety and efficacy
of the final product [17].

In line with this, there has been great interest in the use of gel formulation formed by
acryloyldimethyl taurate polymer due to both the gelling and biocompatible properties of this polymer,
which make it an interesting candidate for the GA-loaded gel formulation [18,19]. The early stages
of the product design include the evaluation of the fundamental and functional properties of active
compounds to identify their potential effects [20–24]. Once an active substance and the cosmetic
product are characterized, it is necessary to ensure its biological viability. Therefore, efficacy studies
involving active cosmetics and products must be performed to guarantee a product with high quality.

There are few non-invasive methodologies involving human beings to evaluate cosmetic
efficacy [25–27]. Thus, the ex vivo methodology proposed in this research was based on the study by
Alonso et al. [25], which was based on a thiobarbituric acid-reactive species (TBARS) assay with minor
modifications to measure the lipid peroxides present in the stratum corneum.

Thereby, this study aimed to evaluate the antioxidant effect of a GA-loaded gel formulation in the
stratum corneum by a non-invasive method employing human volunteers.

2. Materials and Methods

2.1. Gallic Acid Gel Formulation

Gel was prepared with hydrophilic polymers, to which GA was added. Acryloyldimethyl
taurate was used as the polymer that was dispersed into aqueous solution with propylene glycol as
humectant and izotyazolinones as preservative. Then, NaOH (0.1%) was added to correct the final
pH (7.0). GA [0.6% (w/w)] was incorporated into the formulation (Table 1). This formulation was
chosen because it showed promising antioxidant performance, as evidenced in previous research by
Leonardi et al. (IFSCC, 2014). The ingredients used to prepare the formulation were provided by
Fagron Company (Sao Paulo, Brazil). GA was provided by Sigma Aldrich (Saint-Louis, MI, USA).

Table 1. Gel composition.

Compound Quantity (%, w/w)

Gallic Acid 0.6
Acryloyldimethyl taurate 1.50

Propylene glycol 5.00
Izotyazolinones 0.001
Distilled water 92.89
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2.2. Rheological Analysis

The rheological analyses mentioned below were performed in triplicate using a controlled-stress
AR2000 rheometer (TA Instruments, New Castle, DE, USA) with steel plate geometry (40-mm diameter)
and a sample gap of 200 µm at 32 ± 0.1 ◦C (the comfortable skin temperature [28,29]).

The gel samples were carefully applied to the lower plate to minimize sample shearing and
allowed to equilibrate for 3 min before analysis [30–37].

2.2.1. Determination of Flow Properties

The flow properties were determined using a controlled shear rate procedure ranging from 0.01 to
100 s−1 and back. Each stage lasted 120 s, with an interval of 10 s between the curves. The consistency
and flow indices were determined from the power law described in Equation (1) for quantitative
analysis of the flow behavior:

τ = κ·γ η (1)

where τ is the shear stress (Pa), γ is the shear rate (s−1), κ is the consistency index [(Pa·s)n], and η is
the flow index (dimensionless).

2.2.2. Oscillatory Analyses

The oscillatory analyses were started by the conduction of a stress sweep to determine the
viscoelastic region of the gels. The stress sweep was performed at a constant frequency of 1 Hz over
the stress range of 0.1–10 Pa. A constant shear stress of 0.5 Pa was selected to perform the frequency
sweep over 0.1–10 Hz, which was within the previously determined linear viscoelastic region for both
gels. Thus, the storage (G′) and loss (G”) moduli were recorded. The variation of G′ at low frequencies
in a log–log plot of G” versus oscillation frequency followed the power law described in Equation (2):

G’ = S·ωn (2)

where G′ is the storage modulus (Pa), S is the formulation strength (Pa·s),ω is the oscillation frequency
(Hz), and n is the viscoelastic exponent (dimensionless).

2.3. Texture Profile Analyses

Texture profile analyses (TPA) of the gels were performed using a TA-XT plus texture analyzer
(Stable Micro Systems, Surrey, UK) in TPA mode. The gels (8 g) were placed in the centrifuge tubes
(Falcon, BD®, Franklin Lakes, NJ, USA) and centrifuged for 5 min (Sorval TC 6 centrifuge, Du Pont,
Newtown, CT, USA) to eliminate air bubbles. The test started lowering (1 mm·s−1) the cylindrical
analytical probe (1 mm diameter) until it reached the sample. Both gels were compressed twice
(0.5 mm·s−1; depth 10 mm; delay period 5 s). Hardness, compressibility, adhesiveness, and cohesion
parameters were calculated from force-time curves using the Expert Texture Exponent 32 software
(Stable Micro Systems, Surrey, UK). Seven replicates were analyzed at 25.0 ± 0.5 ◦C [30,32].

2.4. In Vitro Evaluation of Bioadhesive Force

The bioadhesive force between the pig ears’ skin and the gels was assessed by detachment test
using a TA-XT plus texture analyzer (Stable Micro Systems, Surrey, UK). Fresh porcine ear skin was
obtained from a local slaughterhouse and washed with water at 25 ± 0.5 ◦C. The undamaged skins
were removed from the cartilage with a scalpel and a 400-µm-thick layer of stratum corneum and
epidermis was separated from the adipose tissue with a dermatome (Nouvag TCM 300, Goldach,
Switzerland). The prepared skin was thawed in physiological saline solution, containing 0.9% (w/v)
NaCl (Merck, Darmstadt, Germany), at 25 ± 0.5 ◦C for 30 min; then, its hair was cut with a scissor
and it was attached to the lower end of a cylindrical probe (diameter 10 mm) with a rubber ring.
The gel samples were packed into shallow cylindrical vessels and the analytical probe with the skin
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was lowered at a constant speed (1 mm·s−1) onto the surface of the sample. The skin and the sample
were kept in contact for 60 s and no force was applied during this interval. After 60 s, the skin was
drawn upward at 0.5 mm·s−1 until the contact between the surfaces was broken. The bioadhesive
force of the hydrogels was measured with the maximum detachment force as the resistance to the
withdrawal of the probe, which reflects the bioadhesion characteristic. Seven replicates were analyzed
at 32 ± 0.5 ◦C [30,32].

2.5. Non-Invasive TBARS Assay to Quantify Reduction of Lipid Peroxides by Gallic Acid Formulation

Men or women older than 18 years of age with skin types II, III, and IV from the Federal University
of Sao Paulo (UNIFESP) with photoaging were included in this study. The mean age of the volunteers
was 23.6 ± 3.1 years (range 19–28 years). All subjects gave their informed consent for inclusion
before they participated in the study. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee of UNIFESP (Protocol #631.670) on
30 April 2014. A skin area of 18 cm × 5 cm was marked on the volunteers’ forearms. The volunteers
applied 200 mg of the gel formulation containing GA for three consecutive days on one forearm and
the gel formulation without any antioxidant compound on the other forearm as control. The gel was
prepared with 0.6% GA and 1.5% ammonium acryloyldimethyl taurate. The volunteers refrained from
using any cosmetics, body oils, sunscreens, or moisturizers on their arms for 3 days before the study.

The lipid peroxides in the stratum corneum were quantified after the third day of gel application.
For this, the volunteers were submitted to the analysis using the tape stripping technique on the
stratum corneum in each forearm on the third day in a conditioned room at 25± 1 ◦C. Twenty adhesive
tapes were pressed onto the skin for 5 s and stripped in one quick action. The tapes were placed on
glasses and exposed to UV solar radiation for 120 min (3.054 J/min·cm2, Atlas Suntest CPS, Chicago,
IL, USA) [26,29].

TBARS assay was performed as reported by Valenzuela [38] to quantify the lipid peroxides
present in the stratum corneum. The TBARS were quantified by spectrophotometry (Thermo Scientific,
Waltham, MA, USA) at 534 nm. At low pH or high temperature, malonaldehyde reacts rapidly
with thiobarbituric acid, forming a complex (MDA-TBA) with fluorescence. A calibration curve
with pure malonaldehyde bis(dimethyl acetate) (0–10 µM) was prepared to indirectly quantify skin
peroxidation [26,29]. The lipid peroxides in the stratum corneum samples were extracted (applying
3 mL of methanol and sonicating for 30 min) and 1.0 mL was added to aliquots of 2 mL of a
solution containing 0.4% TBA (Sigma, St. Louis, MO, USA) and 15% tricloroacetic acid (TCA) (Merck,
Darmstadt, Germany) in 100 mL of HCl solution (0.25 M). This mixture was incubated for 1 h in a
boiling water bath. The samples were analyzed by spectrophotometry at 534 nm.

3. Results and Discussion

3.1. Rheological Study

Rheology is an important tool for evaluating the flow behavior of formulations in order to develop
a quality and useful cosmetic product with appropriate clinical applications [33].

Figure 1 demonstrates that both the gels present behaviors of non-Newtonian pseudoplastic
fluids, because the flow rheograms show the non-proportionality of the shear rate and shear stress,
besides their flow indexes (n) are less than one, as shown in Table 2. Moreover, Table 2 also shows that
both gels have similar consistency indexes (K), suggesting that the loading of GA does not interfere
with the flow behavior of this gel.
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Table 2. Flow index (n) and consistency index (K) of both gel (gel) and GA-loaded gel (gel + gallic acid). 

Formulation Flow index (n) Consistency index (K) 
Gel + Gallic Acid 0.400 ± 0.005 12.77 ± 0.31 

Gel 0.417 ± 0.008 9.75 ± 0.31 

Neither of the gels exhibited thixotropy in the flow rheograms, because the upcurve overlapped 
with the downcurve. 

This characteristic is desirable for cosmetic products, as their topical administration is facilitated 
by the decrease in gel viscosity on application of shear force due to the particles aligning themselves 
in the direction of flow. However, when one stops applying this force, the gel quickly returns to a 
more viscous initial structural configuration in a time-independent manner, which aids the adhesion 
of these gels to the skin [30,32,34]. 

The frequency sweep test investigates the change in the viscoelastic properties of the gel over 
frequency to understand phase transitions associated with molecular rearrangement in aqueous 
environments [31]. This test analyzes the elastic response component (G′, storage modulus) and the 
viscous response component (G″, loss modulus) of formulations. G′ measures the deformation energy 
stored during the shear process (the stiffness of the sample) and G″ measures the energy dissipated 
during the shear process (liquid-like response of the sample). If G″ > G′, the formulation behaves as a 
viscous liquid, whereas if G″ < G′, it behaves as an elastic solid.  

Figure 2 indicates that G′ of GA-loaded gel prevailed over G″ (G′ > G″); in contrast, the GA-
unloaded gel was observed to be more viscous than elastic (G′ < G″). Therefore, the GA-unloaded gel 
behaves as a viscous liquid, while the GA-loaded gel behaves as elastic solid. 
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Figure 1. Flow rheograms of gel (gel) and GA-loaded gel (gel + gallic acid). Symbols representupcurve
and white symbols represent downcurve. SDs have been omitted for clarity; however, in all cases,
the coefficient of variation of triplicate analyses was less than 10%. Data were collected at 32 ± 0.5 ◦C.

Table 2. Flow index (n) and consistency index (K) of both gel (gel) and GA-loaded gel (gel + gallic acid).

Formulation Flow index (n) Consistency index (K)

Gel + Gallic Acid 0.400 ± 0.005 12.77 ± 0.31
Gel 0.417 ± 0.008 9.75 ± 0.31

Neither of the gels exhibited thixotropy in the flow rheograms, because the upcurve overlapped
with the downcurve.

This characteristic is desirable for cosmetic products, as their topical administration is facilitated
by the decrease in gel viscosity on application of shear force due to the particles aligning themselves in
the direction of flow. However, when one stops applying this force, the gel quickly returns to a more
viscous initial structural configuration in a time-independent manner, which aids the adhesion of these
gels to the skin [30,32,34].

The frequency sweep test investigates the change in the viscoelastic properties of the gel over
frequency to understand phase transitions associated with molecular rearrangement in aqueous
environments [31]. This test analyzes the elastic response component (G′, storage modulus) and the
viscous response component (G”, loss modulus) of formulations. G′ measures the deformation energy
stored during the shear process (the stiffness of the sample) and G” measures the energy dissipated
during the shear process (liquid-like response of the sample). If G” > G′, the formulation behaves as a
viscous liquid, whereas if G” < G′, it behaves as an elastic solid.

Figure 2 indicates that G′ of GA-loaded gel prevailed over G” (G′ > G”); in contrast,
the GA-unloaded gel was observed to be more viscous than elastic (G′ < G”). Therefore,
the GA-unloaded gel behaves as a viscous liquid, while the GA-loaded gel behaves as elastic solid.
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Figure 2. Frequency sweep profile of storage modulus G’ (closed symbols) and loss modulus G” (white
symbols) of both gel (gel) and GA-loaded gel (gel + gallic acid). SDs have been omitted for clarity;
however, in all cases, the coefficient of variation of triplicate analyses was less than 10%. Data were
collected at 32 ± 0.5 ◦C.

The data obtained from Equation (2) and shown in Table 3 indicate that the incorporation of GA
also increased the gel strength (S) values and decreased the n values of the acid gallic-loaded gel.
This behavior indicates that GA promotes more entanglements and interactions in the polymer chains,
increasing the gel crosslinking density.

Table 3. Gel strength (S) and viscoelastic exponent (n) of both gel (gel) and GA-loaded gel
(gel + gallic acid).

Formulation Gel strength (S) Viscoelastic exponent (n)

Gel + Gallic Acid 7.35 ± 0.16 0.50 ± 0.01
Gel 3.37 ± 0.14 0.60 ± 0.01

Similar findings were reported in others studies with GA. Xie et al. [39] developed a method
to graft GA onto chitosan (CS) in an aqueous solution in the presence of carbodiimide and
hydroxybenzotriazol. They also reported that the viscosity after GA incorporation onto chitosan
was significantly higher than that of chitosan alone. This behavior was attributed to the covalent
crosslinking junctions produced by the oxidation of GA groups. Zürcher and Graule [40] studied the
influence of dispersant structures, such as GA, on the rheological properties of highly concentrated
zirconia dispersions. They also noted that the dispersions containing GA showed a two-fold increase
in viscosity in comparison to the dispersions without GA. A possible explanation for the increase in
viscosity is modification of the surface properties of the particles with GA, which led to an increase in
van der Waals attraction.

3.2. Texture Profile Analyses

TPA is a rapid and direct analytical technique that can be applied to the mechanical
characterization of cosmetic products. The mechanical parameters that can be evaluated in TPA are
hardness (force required to attain a given deformation), compressibility (the force per unit time required
to deform the product during the first compression cycle), and cohesion (the ratio of the positive force
area during the second compression to that during the first compression). Such parameters can affect
the applicability of the cosmetic product at the administration site, therapy outcome, spreadability,
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and stability, as well as provide information related to the ease of removal of the product from a
container [30].

Table 4 shows that GA did not alter the mechanical properties of the gel. Both gels had low
hardness and compressibility values compared with the values of hydrogels used in our previous
studies. This is acceptable, as these hydrogels were composed of carbopol 974P and polycarbophil
polymers that formed three dimensional macromolecular networks, which imparted hardness to the
gels. Thus, a greater force was required to compress them [30].

Table 4. Mechanical properties (hardness, compressibility, and cohesiveness) of both gel (gel) and
GA-loaded gel (gel + gallic acid). Each value represents the mean (±SD) of at least seven replicates at
25 ◦C.

Formulation Hardness (mN) Compressibility (mN·s) Cohesion

Gel + Gallic Acid 11.7 ± 0.001 100.2 ± 0.006 0.9 ± 0.032
Gel 11.4 ± 0.001 96.5 ± 0.006 0.8 ± 0.016

The mechanical values of bioadhesive systems for skin delivery [34,37] showed hardness (~16 mN)
and compressibility (about 200 mN·s) values close to those of the gels developed here. Moreover,
the mechanical values for hydrogels composed of carbomer homopolymer type A (C971) [32], which is
a lightly cross-linked polyacrylic acid polymer used in topical low-viscosity systems, is also close to
our present results.

Both GA-loaded and unloaded gels have acceptable mechanical values for cosmetic purposes,
as they need to be easily compressible for easy spreadability [32]. Such gels exhibit a high cohesiveness
value, which indicates that their structure is stable, as its original structure is quickly restored after the
first compression. This confirms the abovementioned rheological results indicating that this gel has an
unbreakable matrix and is easy to handle and administer.

3.3. Bioadhesion Studies

Investigating the bioadhesive parameters of cosmetic products is important for predicting the
clinical performance of the formulation, as it demonstrates the interaction between the formulation
components and the cellular components of the skin, which can result in improving the local action of
the cosmetic active ingredient [30,36,37].

Bioadhesion is closely related to the rheological behavior of the formulation, because elastic
formulations with a high consistency index tend to have high bioadhesion values. Although in
GA-loaded gels, G′ > G”, and S values are high, Table 5 shows that the bioadhesion of this gel is
significantly lower than that of the GA-unloaded gel (p < 0.05) using Student’s t-test. This may be due
to the strong bond between GA and the gel structures blocking the interaction between the GA-loaded
gels and the skin cells. However, the bioadhesion values of both the gels were within the range for
topical formulations (10–90 mN·s) [30,33–35].

Table 5. Parameters of in vitro bioadhesion test of both gel (gel) and GA-loaded gel (gel + gallic acid).
Each value represents the mean (±SD) of at least seven replicates. Data were collected at 32 ± 0.5 ◦C.

Formulation Work of bioadhesion (mN·s)

Gel + Gallic Acid 25.8 ± 0.57
Gel 110.3 ± 0.15

The results revealed that this gel has promising physical chemical properties for use as a
GA-loaded cosmetic.
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3.4. Non-Invasive TBARS Assay to Quantify Lipid Peroxide Reduction by Gallic Acid Formulation

In the literature, several in vivo methodologies have been reported to demonstrate the efficacy of
many antioxidant compounds. However, all these methodologies were characterized to be invasive
for volunteers [25–27]. Hence, this proposed non-invasive methodology could be applied to assess the
lipid peroxidation in the stratum corneum without directly exposing the volunteers to UV radiation.

The linearity of standard MDA samples was observed in a concentration range of 0–10 M.
A general regression equation was obtained from the experimental analysis: y = 0.1459x + 0.2114
(correlation coefficient, R2 = 0.999).

Table 6 shows that the global lipid peroxide reduction was 33.97 ± 11.66% after the application of
GA-loaded gel formulation on the forearms of human volunteers. This finding was as encouraging
as previous in vitro studies, which reported a residual antioxidant activity of the GA-loaded gel
associated with cathodic iontophoresis [16].

Table 6. Lipid peroxide reduction (%).

Volunteer Lipid peroxide reduction (%) Mean ± SD

1 23.61 ± 1.26
2 25.74 ± 4.9
3 28.83 ± 4.9
4 16.84 ± 3.9
5 43.28 ± 2.3
6 49.00 ± 1.3
7 40.21 ± 5.1
8 44.30 ± 4.6

Therefore, this study could demonstrate that the topical application of the GA-loaded gel
formulation may represent an attractive strategy for skin protection against oxidative stress induced
by different agents.

4. Conclusions

Rheological, mechanical, and bioadhesion studies indicated that the GA-loaded gel formulation
exhibits pseudoplastic behavior without thixotropy, and has bioadhesive properties suitable for use in
cosmetics. The in vivo test showed that the GA-loaded gel was efficient for reducing lipid peroxides in
the stratum corneum of the volunteers. Collectively, our findings suggest that it is possible to design a
cosmetic formulation using GA as the active cosmetic with antioxidant activity.
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