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Abstract: Understanding the physical arrangement of subunits within protein complexes potentially
provides valuable clues about how the subunits work together and how the complexes function.
The majority of recent research focuses on identifying protein complexes as a whole and seldom
studies the inner structures within complexes. In this study, we propose a computational framework
to predict direct contacts and substructures within protein complexes. In this framework, we first
train a supervised learning model of l2-regularized logistic regression to learn the patterns of direct
and indirect interactions within complexes, from where physical subunit interaction networks are
predicted. Then, to infer substructures within complexes, we apply a graph clustering method
(i.e., maximum modularity clustering (MMC)) and a gene ontology (GO) semantic similarity based
functional clustering on partially- and fully-connected networks, respectively. Computational
results show that the proposed framework achieves fairly good performance of cross validation and
independent test in terms of detecting direct contacts between subunits. Functional analyses further
demonstrate the rationality of partitioning the subunits into substructures via the MMC algorithm
and functional clustering.

Keywords: protein complexes; complex substructure; machine learning; l2-regularized logistic regression;
graph clustering; functional clustering

1. Introduction

Protein complexes have their individual gene products spatiotemporally arranged in place to form
the structures required for specific biological activities [1]. Systematically investigating the disorder
of subunits within protein complexes is crucial to elucidate the underlying mechanisms of various
diseases [2]. In recent years, the majority of research, including experimental and computational
methods, focuses on identifying protein complexes as a whole. For instance, the experimental
techniques, e.g., tandem affinity purification with mass spectrometry (TAP-MS) and co-fractionation
mass spectrometry (CF-MS), have been frequently used to detect protein complexes. In addition, many
computational methods have been proposed to rapidly provide global landscape of genome-scale
protein complexes. The well-known databases of protein complexes include MIPS [3], CORUM [4],
HPRD [5] and Reactome [6,7]. MIPS [3] collects the protein complexes of Saccharomyces cerevisiae.
CORUM [4] is a public repository of experimentally-characterized protein complexes from mammalian
organisms. HPRD [5] provides a set of experimentally verified protein complexes from Homo sapiens.
Reactome [6,7] provides a large number of co-complexed protein pairs from Homo sapiens. Interested
readers can refer to References [8,9] for comprehensive surveys of the experimental techniques,
computational methods and databases. However, most of these studies seldom explore the hierarchical
substructures and interactions between subunits within complexes.
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To our knowledge, there are only several studies that investigate the inner structure of complexes.
For instance, Gavin et al. [1] propose a socio-affinity index to partition proteins in complexes into
core components and attachments. Aloy et al. [10] provide a fine resolution to the interactions
between subunits within complexes via homology modeling and electron microscopy. However,
both methods could not identify the direct contacts between subunits. Drew et al. [11] propose a sparse
graphical model learning framework to predict physical interactions from CF-MS data via covariation
pattern of protein abundances, and then map the physical interactions into protein complexes to infer
the substructures. Friedel et al. [12] derive scored protein–protein interaction (PPI) networks from
TAP-MS data, on which the calculation of maximum spanning trees (MST) for physical interaction
prediction is based. The MST is further partitioned into disjoint sub-complexes according to the
weights of interactions.

To gain knowledge about inner substructures of protein complexes, we systematically designed
a two-step computational model. The first step was to predict the physical interactions between
subunits within complexes, and the second step was to partition the subunit interaction networks
into sub-complexes via graph clustering. In the first step, we needed to cautiously restrict the
physical interactions within complexes (called complex-scale physical interactions) rather than between
genome-scale individual proteins (called interactome-scale physical interactions). Both methods [11,12]
predict direct protein interactions from global-view CF-MS proteomic data and further infer the inner
substructures within protein complexes. To date, most of the existing computational methods focus on
predicting interactome-scale physical interactions [13–15], and no computational methods have been
proposed to predict physical subunit interactions within complexes. From a computational point of
view, these two problems are distinct in the modeling process. First, complex-scale interactions are
more restricted within complexes while interactome-scale interactions take place in the same organelle
among genome-scale proteins. The patterns of physical interactions are potentially different. Secondly,
the subunits within complexes basically assume indirect interactions though not direct contact, while the
genome-scale proteins that do not physically interact are probably not to be functionally associated at
all. As such, the modeling process for complex-scale physical interactions is quite different in terms of
constructing training data.

The second step was to infer sub-complexes from the predicted networks of physical subunit
interactions within complexes. Drew et al. [11] calculate the conditionally dependent PPIs to predict
direct contacts and group the directly-contacted subunits into sub-complexes. Friedel et al. [12] use the
weights of maximum spanning trees (MST) to cluster proteins into disjoint sub-complexes. Actually,
the sub-complexes are potentially hierarchically-organized and overlapped. For super-complexes
with a large number of subunits, we needed to resort to sophisticated graph clustering methods to
gain fine-grained resolution of the inner structures of complexes. Recently, many graph clustering
algorithms have been proposed to identify protein complexes from genome-scale PPI networks or
CF-MS proteomic data [8,9]. For instance, the well-accepted Markov clustering (MCL) method [16]
simulates random walks on PPI networks via expansion and inflation operators to extract dense regions
as protein complexes. Different from these methods, we attempted to conduct graph clustering on the
physical subunit interaction networks within complexes.

In this study, we propose a computational framework that combined supervised learning and
graph clustering to predict physical subunit interactions and infer substructures within human protein
complexes. The direct and indirect interactions of training data were restricted within complexes.
A graph clustering method, named maximum modularity clustering (MMC) [17], was used to infer inner
substructures from the predicted physical subunit interaction networks within complexes. As shown
by Noack et.al [17], MMC demonstrates good performance in inferring hierarchically-organized and
overlapped clusters. For fully-connected networks of physical subunit interaction, we used a functional
clustering method to infer sub-complexes.
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2. Materials and Methods

2.1. Flowchart of the Proposed Framework

We first show the flowchart of the proposed framework for easy grasp of the workflow. As illustrated
in Figure 1, this study was divided into two major phases. The first phase was to build a supervised
learning model to predict direct contacts within complexes, and the second phase was to identify
substructures via graph clustering from the predicted physical subunit interaction networks. The first
phase consisted of three steps. Firstly, to construct the positive data for training and independent test
sets, we mapped the physical PPIs from HPRD [5], BioGrid [18] and IntAct [19] onto the co-complexed
protein pairs from Reactome [6,7], CORUM [4] and HPRD [5]. The negative training data and
independent test data were randomly sampled from the indirect interactions within complexes;
secondly, each gene pair was represented with a gene ontology (GO) feature vector to train a supervised
learning model and the model was estimated via cross validation and independent test. Lastly,
we used the trained model to predict the physical subunit interaction networks within complexes from
CORUM [4].

Figure 1. Flowchart of the proposed framework.
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In the second phase, we conducted clustering on the predicted subunit interaction networks
to identify sub-complexes. For partially-connected networks, we used topological clustering via
maximum modularity clustering (MMC) [17]; and for fully-connected networks, we used functional
clustering to group genes based on GO semantic similarities.

2.2. Construction of Training and Independent Test Data

2.2.1. Positive Training and Independent Test Data

To learn the patterns of direct and indirect subunit interaction, we restricted the construction of
training data within complexes. We first obtained physical protein–protein interactions from HPRD [5],
BioGrid [18] and IntAct [19]. After filtering out the proteins that were obsolete, uncurated or had no
gene names, we obtained 57,920 non-redundant physical PPIs in total. These interactome-scale PPIs
covered genome-scale genes and thus could not be used to predict complex-scale subunit interactions
within complexes. We obtained 50,550 co-complexed protein pairs including 163 indirect interactions
from Reactome [6,7]. We mapped the 57,920 physical PPIs onto the 50,550 co-complexed pairs and
filtered out the 163 indirect interactions to obtain 9125 co-complexed physical PPIs as the positive
training data (see Supplementary File S1).

We further mapped the 57,920 physical PPIs to the co-complexed protein pairs from CORUM [4]
and HPRD [5], and obtained 3326 and 2349 co-complexed physical PPIs respectively as the positive
independent test data. We ensured that there was no overlap between the positive independent test
data and the positive training data. During data processing, only well-studied genes were kept with
the less-studied genes discarded because less-studied genes would result in a null feature vector (see
the subsection “Feature Construction”). Well-studied genes refer to the genes annotated with at least
one GO term of molecular function of biological process.

2.2.2. Negative Training and Independent Test Data

In the proposed framework, the negative class refers to indirect subunit interactions within
complexes. Besides the 163 indirect interactions from Reactome [6,7], we needed to further sample a
large number of negative training data so that the two classes were of equal size, i.e., 9125 co-complexed
indirect interactions. The remaining negative data were sampled in the space of co-complexed protein
pairs from CORUM [4] and HPED [5]. To obtain credible indirect interactions, we imposed a constraint
that the path length of the shortest paths, if any, between two co-complexed proteins was no less than
two (referred to as No-less-than-two). If no path existed between two co-complexed proteins, the path
length was assumed to infinity (∞) (referred to as No-path). In general, the indirect interactions
sampled in the No-path case were more credible than those sampled in the No-less-than-two case.
We introduced a ratio λ of No-path case to No-less-than-two case to balance the sampling of negative
data. The negative training data contained 9125 co-complexed indirect interactions (see Supplementary
File S2).

Two negative independent test sets containing 3326 and 2349 co-complexed indirect interactions
were similarly sampled from CORUM [4] and HPED [5], respectively. In addition, the indirect
interactions from KEGG [20] were used as the third negative independent test set, which contained only
four indirect interactions after filtering out the overlap with the other positive independent test sets.

2.3. Supervised Learning for Predicting Direct Contacts within Protein Complexes

2.3.1. Feature Construction

Gene ontology (GO) has been reported to be the most discriminative feature to depict protein pairs
and predict PPIs [21]. Unfortunately, GO knowledge is highly imbalanced among genes. To address
the issues about sparsity and potential unavailability of GO terms for less-studied genes/proteins,
homolog GO knowledge was transferred to enrich the genes/proteins concerned, so that each protein
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pair was depicted with two instances, i.e., target instance and homolog instance. The target instance
depicted the GO knowledge of the gene/protein itself and the homolog instance depicted the GO
knowledge of the homologs. When a gene/protein was completely not annotated, the homolog instance
could be used as a substitute. We ran PSI-BLast [22] against all species in SwissProt [23] to obtain
homologs and extract the GO terms for each gene/protein from GOA [24].

For each protein i in the training set U, we obtained the homolog set of GO terms denoted as Gi
H

and the target set of GO terms denoted as Gi
T
. The entire set of GO terms G is defined as follows.

G = ∪
i∈U

(Gi
T
∪Gi

H
). (1)

The feature vectors for target instance and homolog instance for protein pair (i1, i2) are formally
defined as follows.

R(i1,i2)
T [g] =


0, g < Gi1

T ∧ g < Gi2
T

2, g ∈ Gi1
T ∧ g ∈ Gi2

T
1, otherwise

; R(i1,i2)
H [g] =


0, g < Gi1

H ∧ g < Gi2
H

2, g ∈ Gi1
H ∧ g ∈ Gi2

H
1, otherwise

. (2)

For a GO term g ∈ G, R(i1,i2)
T [g] and R(i1,i2)

H [g] denote the component g of feature vector for the target
instance and homolog instance, respectively. The GO terms g < G are discarded. If protein pair (i1, i2)
share a common GO term g, the value of component g in both feature vector is set to 2; if neither protein
possesses the GO term g, the value is set to 0; otherwise the value is set to 1. This simple method of
feature representation intuitively represents the distribution of GO terms among two proteins without
considering the hierarchical and semantic relationship between GO terms. As compared with the
method that incorporates the ancestor GO terms in GO directed acyclic graph (DAG) [21], this simple
method can reduce the inter-feature correlations. GO semantic similarities are more appropriate to be
embedded into the kernel method [25]. Due to sparsity of GO terms, dimensionality reduction was
also not applicable to GO feature representation.

2.3.2. Supervised Learning via L2-Regularized Logistic Regression

Computational complexity and noise tolerance were two major concerns for us to choose the base
classifier. Since a regularization technique can counteract the noise from homolog knowledge transfer
and logistic regression performs well in fast training of large-scale data, we selected the well-established
l2-regularized logistic regression method [26] that is implemented in the toolbox LIBLINEAR [27] as
the classifier. In the training phase, the target and homolog instance of a protein pair both participated
in the model training. Given training data x and labels y that consist of a set of instance-label pairs
(xi, yi), i = 1, 2, . . . , l; xi ∈ Rn; yi ∈ {−1,+1}, the decision function of logistic regression is defined as
F(x) = 1/(1 + exp(−yωTx)). L2-regularized logistic regression calculates the optimum weight vector
ω via solving the following optimization problem.

min
ω

1
2
ωTω+ C

l∑
i=1

log(1 + e−yiω
Txi), (3)

where C denotes the penalty parameter or regularizer. The second term penalizes potential noise/outlier
fitting. The prime optimization problem as defined by Equation (3) is solved via its dual form as follows.

min
α

1
2α

TQα+
l∑

i:αi>0
αi logαi +

∑
i:αi<C

(C− αi) log(C− αi) −
l∑
i

C logC

subject to ≤ αi ≤ C, i = 1, . . . , l
(4)

where αi denotes the Lagrangian operator and Qi j = yiy jxT
i x j.
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In the test or prediction phase, the decision function F(x) yields two outputs F(R(i1,i2)
T ), F(R(i1,i2)

H )

for each protein pair (i1, i2), which are combined into one final decision value as defined below.

Decision_value(i1, i2) =

 F(R(i1,i2)
T ), i f |F(R(i1,i2)

T )| > |F(R(i1,i2)
H )|

F(R(i1,i2)
H ), otherwise

, (5)

where |•| denotes absolute value. The final label for the test protein pair (i1, i2) is defined as follows.

L(i1, i2) =


1, Decision_value(i1, i2) > 0∧Decision_value(i1, i2)−0.5 > δ
−1, Decision_value(i1, i2) < 0∧−Decision_value(i1, i2)−0.5 > δ
∝, otherwise

, (6)

where the threshold δ is used to filter out those weak positive predictions, and ∝ denotes undetermined
status that will be discarded.

2.4. Graph Clustering for Sub-Complexes Discovery

2.4.1. Topological Clustering via Maximum Modularity Clustering

As illustrated in Figure 1, the second phase of the proposed framework was to cluster the physical
subunit interaction networks into sub-complexes. For partially-connected networks, we used a graph
clustering method to discover sub-complexes. It was noted that the two phases were related via the
predicted networks of physical subunit interaction, which was the output of the first phase and the
input of the second phase. Nevertheless, the computational methods adopted in the two phases were
independent with the mathematical symbols valid within their own scopes. In this study, we used
the maximum modularity clustering method (MMC) [17] to infer the inner substructures within
complexes. This graph clustering method heuristically searches the optimal partitioning of a graph
via iterative coarsening and refining operators. The coarsening operator merges clusters, while the
refining operator iteratively moves individual vertices between the resulting clusters according to the
criteria of modularity increase (MI).

Assuming that a graph (V, f ) consists of a vertex set V and a function f : V ×V → N , the function
f assigns an edge weight to each vertex pair. The degree of vertex v is defined as deg(v) =

∑
u∈V f (u, v).

The degree of a set of vertices is generalized as deg(V) = f (V, V) =
∑

u∈V,v∈V f (u, v). The aim of
graph clustering is to partition the vertex set V into non-empty subsets C = {C1, . . . , Ck} partitions.
In the null model where the end-vertices of 1/2deg(V) edges are chosen at random, each vertex pair
(u, v) ∈ V2 has the edge weight f (u, v) binomially distributed and the expected value of edge weight is
deg(u)deg(v)/deg(V)2. This conclusion could be generalized to an edge set [28]. The modularity of
the clustering C = {C1, . . . , Ck} is defined as follows.

Q(C) :=
∑
Ci∈C

( f (Ci, Ci)/ f (V, V) − dev(Ci)
2/dev(V)2). (7)

The first term is the actual fraction of intra-cluster edge weight and the second term specifies the
expected fraction of intra-cluster edge weight in the null model. Then the modularity increase caused
by the coarsening operator that merges cluster Ci and C j is defined as follows.

∆QCi,C j := 2 f (Ci, C j)/ f (V, V) − 2dev(Ci)dev(C j)/dev(V)2. (8)

The modularity increase caused by the refining operator that moves a vertex v from its cluster Ci
to another cluster C j is defined as follows.

∆Qv−>C j := 2( f (v, C j) − f (v, Ci − v))/ f (V, V) − 2(dev(v)dev(C j) − deg(v)dev(Ci − v))/dev(V)2. (9)
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The coarsening and refining operator iterate greedily until no modularity increase (∆QCi,C j < 0,
∆Qv−>C j < 0) to achieve maximum modularity.

2.4.2. Functional Clustering via GO Semantic Similarities

For fully-connected subunit interaction networks, the topological clustering method was no longer
applicable. Instead, we employed functional clustering to understand the functional associations
between subunits within complexes. In this study, we used GO semantic similarities to group closely
associated subunits into sub-complexes. Wang et al. [29] proposed a measure called S-value to measure
the semantic similarity between two GO terms. The S-value of a GO term is defined through its closest
ancestor and children GO terms in GO directed acyclic graph (DAG). Then the S-values of common
ancestor GO terms is used to define the semantic similarity between two GO terms. Given a GO term
A and its DAGA = (A, TA, EA), where TA denotes the GO term set that includes A and its ancestor GO
terms in GO DAG and EA denotes the set of edges, for any GO term t ∈ DAGA, the S-value of t related
to A is defined as below.

SA(t) =
{

1, t = A
max

{
we × SA(t′)

∣∣∣t′ ∈ childreno f (t)
}
, t , A

, (10)

where we denotes the weight of the edge linking term t to its child term t′, assuming 0.8 and 0.6 for is-a
and part-of relations, respectively. The semantic value of GO term A is defined as follows.

SV(A) =
∑
t∈A

SA(t). (11)

Based on Formulae (10,11), the semantic similarity between GO term A and B is defined below.

SGO(A, B) =

∑
t∈TA∩TB

(SA(t) + SB(t))

SV(A) + SV(B)
. (12)

GO semantic similarities could be aggregated to define gene similarity via the methods of maximum,
average and best-match average [29]. In this study, we only roughly gain knowledge of coarse-level
modular organizations within complexes and hence we adopt the maximum strategy to calculate
gene functional similarities. Given two genes g1, g2 with GO term set GO1 =

{
go11, go12, . . . , go1m

}
and

GO2 =
{
go21, go22, . . . , go2n

}
, respectively, the functional similarity between g1 and g2 is calculated via

max strategy as follows.
Sim(g1, g2) = max

1≤i≤m,1≤ j≤n
SGO(go1i, go2 j). (13)

2.5. Experimental Setting and Model Evaluation

2.5.1. Supervised Learning

The l2-regularized logistic regression model is evaluated under three experimental settings,
namely combined-instance, homolog-instance and target-instance. The combined-instance setting uses
both target instances and homolog instances to evaluate the model; the homolog-instance setting uses
homolog instances alone to evaluate whether the model is robust against GO unavailability; and the
target-instance setting uses target instances to estimate the baseline performance. We adopted five
performance metrics, i.e., receiver operating characteristic (ROC) and area under the curve (AUC)
(ROC-AUC), precision (PR), specificity (SE), Matthews correlation coefficient (MCC) and F1 score.
Among these metrics, PR, SE and MCC were derived from a confusion matrix M, where its element
Mi, j records the counts that class i are classified to class j. For the convenience of calculation, we first
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derived several intermediate variables from M via Formula (14). The we calculated the class-specific
metrics PRl, SEl and MCCl via Formula (15). The overall MCC is calculated via Formula (16).

pl = Ml,l, ql =
L∑

i=1,i,l

L∑
j=1, j,l

Mi, j, rl =
L∑

i=1,i,l
Mi,l,sl =

L∑
j=1, j,l

Ml, j

p =
L∑

l=1
pl, q =

L∑
l=1

ql, r =
L∑

l=1
rl, s =

L∑
l=1

sl

(14)

PRl =
pl

pl+rl
, l = 1, 2 . . . , L

SEl =
pl

pl+sl
, l = 1, 2 . . . , L

MCCl = (plql − rlsl)/
√
(pl + rl)(pl + sl)(ql + rl)(ql + sl), l = 1, 2 . . . , L

(15)

Acc =
∑L

l=1 Ml,l/
∑L

i=1
∑L

j=1 Mi, j

MCC = (pq− rs)/
√
(p + r)(p + s)(q + r)(q + s)

(16)

where L denotes the number of labels. For binary classification, L is equal to two. The AUC score
was calculated on the basis of the decision values calculated via Formula (5). The F1 score is defined
as follows:

F1 score = 2× PRl × SEl/PRl + SEl, l = 1 denotes the positive class. (17)

2.5.2. Graph Clustering

To measure the performance of graph clustering, we used a Jaccard index to estimate how well
the predicted set of sub-complexes P matchec the actual set of sub-complexes C.

Jaccard(P, C) = |P∩C|/|P∪C|. (18)

Given a threshold ξ, we deem P matches C if Jaccard(P, C) ≥ ξ is satisfied (ξ generally assumes 0.5).
Accordingly, the metrics of precision, recall and F-score for graph clustering are defined as follows.

Precision =
∣∣∣∣{Pi ∈ P

∣∣∣∃C j ∈ C, Jaccard(Pi, C j) ≥ ξ
}∣∣∣∣/|P|

Recall =
∣∣∣∣{Ci ∈ C

∣∣∣∃P j ∈ P, Jaccard(P j, Ci) ≥ ξ
}∣∣∣∣/|C|

F-score = 2× Precision×Recall/Precision + Recall

(19)

3. Results

3.1. Performance of Predicting Physical Subunit Interactions within Complexes

As mentioned in the subsection “Negative training and independent test data”, the negative data
were sampled from two sources: (1) the co-complexed protein pairs that no path existed between them
in human physical PPI networks (No-path); and (2) the co-complexed protein pairs connected via
paths whose path lengths all were no less than two (No-less-than-two). The sampling ratio λ between
No-path and No-less-than-two was empirically determined. The computational results showed that
the model achieved optimum performance of cross validation and independent test at the ratio λ = 4
and the negative class is provided in Table 1.

As illustrated in Figure 2A, the ROC curves of the three experimental settings nearly coincided
and the proposed framework achieved fairly high AUC scores. The results showed that homolog
knowledge transfer via homolog instances was effective and the model could work when the concerned
genes/proteins were hardly annotated. As shown in Figure 2B, the proposed framework achieved
satisfactory performance on the positive and negative independent test data from CORUM [4] and
HPRD [5]. In addition, three out of four experimentally verified indirect interactions from KEGG [20]
were validated by the proposed framework. The encouraging performance on the negative class



Biomolecules 2019, 9, 656 9 of 16

showed that the negative data sampling strategy adopted by the proposed framework was rational
and credible.

The performance measured via precision, sensitivity and MCC on the positive and negative class
is provided in Table 1. The results showed that the proposed framework performed very well on
both classes and showed low risk of bias the three experimental settings. The performance of cross
validation and independent test showed that the proposed framework could satisfactorily identify
physical subunit interactions and facilitate further inferring the inner substructures within complexes.

Figure 2. Performance of 5-fold cross validation (A) and independent test (B).

Table 1. Performance of cross validation and independent test.

Cross
Validation

Size
Combined-instance Homolog-instance Target-instance

PR SE MCC PR SE MCC PR SE MCC

Direct contact 9125 0.8553 0.8830 0.7627 0.8554 0.8830 0.7629 0.8613 0.8830 0.7673
Indirect contact 9125 0.8790 0.8506 0.7611 0.8792 0.8508 0.7613 0.8786 0.8562 0.7655

(Acc; MCC) (86.68%; 0.7616) (86.69%; 0.7618) (86.96%; 0.7663)
(ROC-AUC) (0.9308) (0.9309) (0.9320)

F1 Score 0.8740 0.8690 0.8720

Independent test
HPRD CORUM KEGG

(+83.99%; −86.38%) (+83.10%; −86.26%) ( ; −75.00%)

Note: sign + denotes positive recall/recognition rate and sign – denotes negative recall/recognition rate.

3.2. Inferring Substructures within Complexes from CORUM [4]

3.2.1. Identifying Physical Interactions within Complexes from CORUM [4]

We used the trained model to further predict the physical subunit interactions within complexes
from CORUM [4]. After removing the complexes that contained fewer than three subunits, we totally
obtained 1428 complexes from CORUM [4]. For a complex with N subunits, there are potentially
maximum N × (N − 1)/2 physical interactions or edges, i.e., a complete graph. For a complex that is
predicted to possess M physical subunit interactions, we define the connection degree as 2M/N × (N − 1) to
measure the graph density. According to the computational results, 57.21% of complexes were predicted
to have fully-connected subunits, 39.29% of complexes were predicted to have partially-connected
subunits and the remaining 3.5% of complexes were predicted to have completely-isolated subunits.
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In Figure 3, the relationships between predicted connection degrees (A) and the size of complexes (B)
are illustrated, wherein the horizontal axis denotes the complexes from CORUM [4] with the predicted
connection degrees in descending order. From Figure 3A,B, we can see that the majority of predicted
fully-connected complexes contained a small number of subunits and most of the large complexes
were predicted to have fewer physical interactions. The 3.5% of complexes whose subunits were
predicted to be fully isolated were potentially bridging or boundaries across complexes, or no physical
interactions were predicted just because of false negative predictions.

Figure 3. Percentage of predicted physical interactions within complexes in CORUM [4]. (A) The
predicted connection degrees of complexes in CORUM [4] in descending order; (B) the actual size of
corresponding complexes in CORUM [4].

3.2.2. Inferring Substructures within Partially-Connected Complexes via Mmc Algorithm

For the complexes whose subunits are predicted to be partially connected, we used the maximum
modularity clustering method (MMC) [17] to identify the modularity. As shown in Figure 3A, about 40%
complexes potentially demonstrated inner topological modularity. Take centromere chromatin complex
(CEN complex) for an example. The complex was composed of 37 subunits and was predicted to possess
50.60% connection degree. According to Schalch et al. [30], a centromere serves as the attachment site
for microtubules to mediate chromosome segregation during mitosis and meiosis. The centromere
core and its flanking pericentric heterochromatin form a structure that exposes CENP-A-containing
chromatin to the surface to interact with the kinetochore and microtubules. In this study, the MMC
method split the CEN complex into four clusters as shown in Figure 4A. As illustrated in Figure 4B,
the inner topological visualization shows that the intra-cluster links were sparse while the inter-cluster
links were dense, indicating potentially heavy signaling traffic between sub-complexes.

We further conducted functional GO enrichment analyses of the four sub-complexes within the
CEN complex. Top five GO terms were provided for each sub-complex. As illustrated in Figure 5A,
the sub-complex {CBX8, KIF23,..., DDB1}, corresponding to the nodes in green in Figure 4A, had its
subunits majorly involved in the processes of cell division, e.g., GO:0051301 cell division; GO:0007018
microtubule-based movement; GO:0051256 spindle midzone assembly involved in mitosis, etc.
As illustrated in Figure 5B, the sub-complex {CENPA, ZC3H13, ..., SMARCA5} had its subunits involved
in centromere activity, e.g., GO:0034080 CenH3-containing nucleosome assembly at centromere;
GO:0007062 sister chromatid cohesion; GO:0051382 kinetochore assembly, etc. As illustrated in
Figure 5C,D, the other two sub-complexes had their subunits involved in the processes of regulation
of transcription, e.g., GO:0006355 regulation of transcription, DNA-dependent; GO:0000398 nuclear
mRNA splicing, via spliceosome; GO:0010468 regulation of gene expression, etc.
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Figure 4. Inferred hierarchical sub-complexes via Matthews correlation coefficient (MCC) graph
clustering (A) and the inner topological visualization (B) within centromere chromatin (CEN) complex
from CORUM [4] (37 subunits).

Figure 5. Gene ontology (GO) enrichment analyses of the sub-complexes (A) {CBX8, KIF23, . . . , DDB1};
(B) {CENPA, ZC3H13, . . . , SMARCA5}; (C) {HSPA8,RSF1, . . . ,CENPI}; (D) {CENPC, SUPT16H, . . . ,
CENPL} within the CEN complex inferred via the MMC algorithm.

3.2.3. Inferring Substructures within Fully-Connected Complexes via Functional Clustering

As illustrated in Figure 3A, about 57% of the complexes from CORUM [4] were predicted to have
their subunits fully connected (i.e., connection degree equal to or extremely close to one). For these
complexes, topological clustering was not applicable and GO semantic similarity based functional
clustering was used instead to infer the inner substructures. Take ALL-1 supercomplex for an example.



Biomolecules 2019, 9, 656 12 of 16

The complex was composed of 28 subunits with predicted connection degree equal to 95.77%. ALL-1
is a histone methyltransferase that assembles a supercomplex to get involved in transcriptional
regulation [31]. Most subunits of the supercomplex are components of human transcription complexes
TFIID (including TBP), SWI/SNF, NuRD, hSNF2H and Sin3A. The other subunits are involved in
RNA processing or in histone methylation. If we roughly decomposed ALL-1 complex into three
sub-complexes, functional clustering inferred the hierarchically organized sub-complexes as shown in
Figure 6.

Figure 6. Predicted physical interactions via supervised learning and inferred hierarchical sub-
complexes via GO semantic similarity based functional clustering within ALL-1 supercomplex from
CORUM [4] (28 subunits).

Further GO enrichment analyses of the sub-complexes within ALL-1 supercomplex are
illustrated in Figure 7A–C. The sub-complex {EFTUD2, SYMPK} was mainly involved in the
processes of mRNA processing (GO:0006397), translation (GO:0006412), nuclear mRNA splicing
via spliceosome (GO:0000398), etc. (see Figure 7A). The sub-complex {CPSF2, HDAC2, SAP18} was
mainly involved in the processes of histone deacetylation (GO:0016575), regulation of transcription
DNA-dependent (GO:0006355), mRNA processing (GO:0006397), dendrite development (GO:0016358),
etc. (see Figure 7B). The last sub-complex was mainly involved in regulation of transcription
(e.g., GO:0006355 regulation of transcription, DNA-dependent; GO:0016568 chromatin modification;
GO:0045944 positive regulation of transcription from RNA polymerase II promoter, etc.) (see Figure 7C).
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Figure 7. GO enrichment analysis of the GO semantically inferred sub-complexes within complete
ALL-1 supercomplex (28 subunits). A. The sub-complex {EFTUD2,SYMPK}. B. The sub-complex
{CPSF2,HDAC2,SAP18}. C. The sub-complex {RAN, MTA2, . . . , KMT2A}.

3.3. Comparison with the Related Work

3.3.1. Predicting Physical Interactions within Complexes

To our knowledge, there are only two studies on inferring direct contacts and substructures
within complexes [11,12]. Both methods first predict physical subunit interactions within complexes.
Different from this proposed framework, the two methods [11,12] use the interactome-scale physical
protein–protein interactions as positive training data to reconstruct genome-scale physical PPIs,
which are further mapped into complexes to infer direct contacts between subunits. However,
the patterns of direct and indirect interactions within complexes are potentially quite different. In this
proposed framework, the direct and indirect interactions in the training data were both restricted
within complexes, so that the trained model was more biologically sound and interpretable.

The two methods [11,12] do not provide the performance metrics of cross validation such as
precision, recall, MCC and AUC scores. Furthermore, they neither provide the performance of
independent test. Friedel et al. [12] report 49.1% true positive rate at 13.6% false positive rate. As shown
in Figure 2A, the proposed framework achieved nearly 80% true positive rate at 13.6% false positive
rate. This result showed that the proposed framework outperformed the related work in identifying
direct contacts within complexes.

3.3.2. Inferring Substructures within Complexes

The two related studies [11,12] divide the direct-contact subunits into sub-complexes without
considering the hierarchical or overlap substructures within complexes. Similar to complexes
identification, sub-complexes discovery also needs sophisticated graph clustering techniques. For the
fully-connected complexes with connection degrees equal to or very close to one, the two related
studies [11,12] cannot identify the inner substructures, but this proposed framework explicitly solved the
problem via GO semantic similarity based functional clustering. To our knowledge, no experimentally
verified sub-complexes are available to evaluate the performance of the proposed framework and
related methods.

Nevertheless, we still compared the maximum modularity clustering method (MMC) [17] used
by this proposed framework with the well-accepted Markov clustering (MCL) method [16] on the
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complexes from CORUM [4] and HPRD [16]. We first binarized the complexes from CORUM [4]
and HPRD [5] into co-complex networks and then compared MMC with MCL to find out which
method could best recover the known complexes from the co-complex networks. As shown in Table 2,
11.71% and 11.78% of the reference complexes from CORUM [4] and HPRD [5] were exactly predicted
by MMC [17] (ξ = 1, recall metric), respectively; and 32.57% and 16.67% of the predicted clusters
exactly matched the reference complexes from CORUM [4] and HPRD [5] (ξ = 1, precision metric),
respectively. However, MCL [14] at most predicted 1.16% of the reference complexes from CORUM [4]
and HPRD [5] and yielded a large number of singleton clusters accounting for at least 50% of the
entire clusters.

If the Jaccard index threshold ξ was set 0.5, 52.34% and 54.26% of the reference complexes
from CORUM [4] and HPRD [5] matched the predicted clusters (ξ = 0.5, recall metric), respectively;
and 80.99% and 77.68% of the predicted clusters matched the reference complexes from CORUM [4]
and HPRD [5] (ξ = 0.5, precision metric), respectively. These results showed that the MMC method [17]
excelled the commonly-used MCL method [16] and was a good solution to identifying substructures
within complexes.

Table 2. Graph clustering performance on CORUM [4] and HPRD [5].

Exact Match (ξ=1) Match (ξ=0.5)

Precision Recall F-score Precision Recall F-score

CORUM 0.3257 0.1171 0.2294 0.8099 0.5234 0.6359

HPRD 0.1667 0.1178 0.1381 0.7768 0.5426 0.6389

4. Discussion

A fine-grained resolution of direct subunit contacts and inner substructures within complexes
is significant to understanding how complexes work. To the best of our knowledge, there are very
few computational studies on predicting substructures within complexes to date. The two related
studies [11,12] use the interactome-scale physical protein–protein interactions (PPI) as training data to
predict genome-scale physical PPIs, which are further mapped into complexes to infer direct subunit
contacts. However, the interactome-scale and complexes-scale physical PPI patterns are potentially
quite different. In this study, we proposed a computational framework to learn the patterns of direct
and indirect subunit interactions within complexes and further identified the inner substructures
via graph and functional clustering. The sampling of direct and indirect PPIs was restricted within
complexes to train an l2-regularized logistic regression model. The computational results of cross
validation and independent test show that the proposed framework outperformed the related methods
in terms of predicting direct subunit contacts within complexes.

Topological clustering of directly-contacted subunits requires sophisticated graph clustering
techniques to infer the hierarchical and overlap substructures within complexes. In this study, we employed
the maximum modularity clustering method (MMC) to infer sub-complexes from the predicted
networks of physical subunit interaction. For the fully-connected complexes, we used GO semantic
similarity based functional clustering to infer the inner substructures. As compared to the related
studies, this proposed framework demonstrated two major advantages. First, the sampling of direct
and indirect subunit interactions was restricted within complexes, so that the trained model was more
biologically interpretable. Second, we used MMC method and functional clustering method to infer
the hierarchical and overlap substructures within partially-connected and fully-connected complexes,
respectively. The predicted direct contacts and substructures within complexes potentially provide
valuable clues for future biomedical research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/11/656/s1,
Supplementary Files S1–S3: positive and negative training data.
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