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Abstract: Antiandrogen therapy is a primary treatment for patients with metastasized prostate cancer.
Whilst the biologic mechanisms of antiandrogens have been extensively studied, the operating proto-
cols used for the characterization of these drugs were not identical, limiting their comparison. Here,
the antiandrogens Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide were systematically
compared using identical experimental setups. Androgen-dependent LNCaP and LAPC4 cells as
well as androgen-independent C4-2 cells were treated with distinct concentrations of antiandrogens.
Androgen receptor (AR)-mediated gene transactivation was determined using qPCR. Cell viability
was measured by WST1 assay. Protein stability and AR localization were determined using west-
ern blot. Response to the tested antiandrogens across cellular backgrounds differed primarily in
AR-mediated gene transactivation and cell viability. Antiandrogen treatment in LNCaP and LAPC4
cells resulted in AR protein level reduction, whereas in C4-2 cells marginal decreased AR protein
was observed after treatment. In addition, AR downregulation was already detectable after 4 h,
whereas reduced AR-mediated gene transactivation was not observed before 6 h. None of the tested
antiandrogens displayed an advantage on the tested parameters within one cell line as opposed to the
cellular background, which seems to be the primary influence on antiandrogen efficacy. Moreover,
the results revealed a prominent role in AR protein stability. It is one of the first events triggered by
antiandrogens and correlated with antiandrogen efficiency. Therefore, AR stability may surrogate
antiandrogen response and may be a possible target to reverse antiandrogen resistance.

Keywords: prostate cancer; AR signaling; nuclear receptor; therapy resistance; proteasomes

1. Introduction

The androgen receptor (AR) is the main driving force behind the growth and progres-
sion of prostate cancer (PC), the most common carcinoma in men [1,2]. The AR belongs to
the nuclear receptor family and mediates the actions of androgens. Its topology includes
four functional domains: the N-terminal transactivation domain, the Deoxyribonucleic acid
(DNA)-binding domain, the hinge region, and the ligand-binding domain. AR signaling
is controlled by androgen binding. Consequently, androgen withdrawal causes reduced
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cell growth and induction of apoptosis [2,3]. Hence, androgen axis targeting became the
standard systemic therapy in PC [4,5]. In metastatic PC, the AR signaling blockade is
achieved by administering antiandrogens, which compete with endogenous androgens
for AR binding and inhibit AR-mediated gene transactivation [5]. According to the Euro-
pean Association of Urology (EAU) guidelines, the antiandrogens most commonly used in
clinic-based treatments are Enzalutamide (Xtandi®), Apalutamide (Erleada®), and Darolu-
tamide (Nubeqa®) [6,7]. First-generation antiandrogens such as Bicalutamide (Casodex®),
Flutamide (Eulexin®), or Nilutamide (Nilandron@) are still available but are solely used
for the treatment of the androgen flare-up phenomena, a common effect of the luteiniz-
ing hormone-releasing hormone (LHRH) agonist treatment [6,7]. All antiandrogens can
either be used independently or combined with surgical or chemical castration to obtain
maximum androgen blockade.

In the last 3 decades, several cell line models have been introduced to PC research.
These include androgen-dependent cell lines (e.g., LNCaP, LAPC4, MDA PCa 2B) and
androgen-independent cell lines (e.g., C4-2, PC3, Du145) [8]. In addition, several 2D and
3D primary human and mouse models have been developed [8–10]. These novel 2D and
3D models are closer to PC biology in patients than the established cell lines. However, cell
line models provide high genetic stability and low heterogeneity and are therefore ideally
suited for research into signaling pathways [11].

The effects of antiandrogens on AR-signaling have been investigated extensively.
However, a direct comparison of these drugs on AR-signaling is limited. The experimen-
tal procedures used for their initial characterization differ in used cell models, cellular
assays, culture conditions, incubation times, and drug concentrations. For example, Daro-
lutamide was tested with AR-HEK293 cells, and Bicalutamide was tested with LNCaP/AR
cells [12,13]. Furthermore, Darolutamide was tested with WST-1 cell viability assay and Bi-
calutamide with CyQUANT cell proliferation assays [12,14]. In addition, for Bicalutamide
testing, RPMI 1640 medium was used, whereas for Enzalutamide testing, the IMDM
medium was utilized [13,15]. Moreover, the drug concentration varies between 0–10 µM
in Enzalutamide and 0–1 µM in Bicalutamide [14,16]. The incubation time of the drugs
differs from 48 h in Apalutamide and 1–4 days in Enzalutamide [13,16]. Therefore, this
study aimed to systematically compare the current EAU recommended antiandrogens Bi-
calutamide, Enzalutamide, Apalutamide, and Darolutamide, using identical experimental
setups and drug concentrations.

2. Materials and Methods
2.1. Cell Culture

The human PC cell lines LNCaP and PC3 were obtained from the American Type
Culture Collection (ATCC). C4-2 cells were kindly provided by Prof. Thalmann (University
of Berne, Berne, Switzerland) [17]. Dr A. Cato (University of Karlsruhe, Karlsruhe, Ger-
many) provided the cell line LAPC4. PC3, LAPC4, and LNCaP were cultured as described
previously [18]. Characteristics of the cell lines are displayed in Table 1. Mycoplasma
testing was routinely performed using the Mycoalert Detection Assay (Lonza). Cell line
authentication was performed yearly by STR profiling.

Table 1. Characteristics of the used cell lines.

Cell Line Characteristics Origin Patients
Background Reference

LNCaP AR (T877A),
Androgen dependent Lymph node 50-year-old

Caucasian male [19]

C4-2 AR (T877A),
Androgen independent, LNCaP sub-cell line Lymph node 50-year-old

Caucasian male [17]

LAPC4 AR wt, Androgen dependent Lymph node non applicable [20]

PC3 Cells express no AR protein,
Androgen independent, small cell neuroendocrine carcinoma Bone metastasis 62-year-old

Caucasian male [21,22]
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2.2. Drug Treatment

Methyltrienolone (R1881) (Sigma-Aldrich, R0908-10MG, Lot Number: 085M4610V),
Bicalutamide (Selleck Chemicals LLC, Tokyo, Japan, S1190, Lot Number: 5), Enzalutamide
(Astellas Pharma, Tokyo, Japan, 3343, Lot Number: RS-8BK0189-4), Apalutamide (Selleck
Chemicals LLC, Tokyo, Japan, S2840, Lot Number: 2), and Darolutamide (Selleck Chem-
icals LLC, S75559, Tokyo, Japan, Lot Number: 1) were dissolved in DMSO as a 100 mM
stock solution and stored in aliquots at −80 ◦C. As R1881 is not metabolized as rapidly as
the natural 5α-dihydrotestosterone, it was used as androgen for the studies [23]. Competi-
tion Binding studies have revealed an IC50 of 160 nM for Bicalutamide and 21.4 nM for
Enzalutamide in LNCaP cells [16]. In the presence of 0.45 nM of testosterone, AR luciferase
reporter gene assays revealed for Enzalutamide an IC50 of 26 nM, for Apalutamide an
IC50 of 200 nM, and for Darolutamide an IC50 of 26 nM [12]. In line with these IC50 val-
ues and previous studies, an antiandrogen concentration range of 0.01 µM to 10 µM was
chosen [24,25].

24 h after cell seeding, the medium was changed to 5% dextran-coated charcoal treated
FCS (FCSdcc; Thermo Fisher Scientific, Waltham, MA, USA) for 24 h to deplete the medium
of steroid hormones and growth factors. Subsequently, cells were treated with R1881
alone or with a combination of R1881 and antiandrogens. Treatment concentration and
duration were chosen due to previous studies revealing a maximal response after 1 nM
R1881 treatment at 16 h [26,27].

2.3. Subcellular Fractionation

For subcellular fractionation, cells were washed with ice-cold PBS and directly har-
vested in 300 µL cytoplasmic lysis buffer (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM
MgCl2, 340 mM Sucrose, 10% Glycerol, 1 mM DTT, protease inhibitor) before the addi-
tion of 0.1% Triton X-100 and incubation for 5 min on ice. Subsequently, the suspension
was centrifuged at 1300× g for 4 min at 4 ◦C to separate the nuclei from the cytoplasmic
proteins. After transferring the cytoplasmic fraction into a new reaction tube, the nuclei
pellet was washed once in 500 µL cytoplasmic lysis buffer. After repeated centrifugation,
the nuclei were lysed using 100 µL RIPA lysis buffer. According to the manufacturer’s
protocol, protein concentrations were determined using the Quick Start™ Bradford Protein
Assay (Bio-Rad, Hercules, CA, USA). After separation, NuPAGE™ LDS Sample Buffer
(4×) was added to the fractions, and the nuclei samples were sonicated. Then, 20 µg of the
fractions was used for western blot analysis. Lamin A/C (nuclear fraction) and GAPDH
(cytoplasmic fraction) detection controlled fraction quality (Figures S2–S4).

2.4. Western Blot Analysis

Cell harvest, cell lysis, protein determination, and western blot were performed as
previously described [18]. 20 µg protein lysate electrophoresis were separated by SDS-gel-
electrophorese using NuPAGE™ 4–12% Bis-Tris protein gels and subsequently transferred
to a nitrocellulose membrane using the iBlot Dry Blotting System (all Thermo Fisher
Scientific, Waltham, MA, USA). 5 µL Spectra Multicolour Broad Range (Thermo Fisher
Scientific, Waltham, MA, USA) protein standard and 1 µL MagicMark™ XP Western Protein
Standard (Thermo Fisher Scientific, Waltham, MA, USA) were used. For detection, the
membranes were incubated with WesternBright Sirius HRP substrate (Advansta, San Jose,
CA, USA), and all signals were detected by a Microchemi chemiluminescence system
(DNR Bio-Imaging Systems, Jerusalem, Israel). Densitometric analysis of experiments was
performed with the Image-Studio Lite 5.2 software (LI-COR, Lincoln, Dearborn, MI, USA).
Used antibodies are listed in Table 2. Uncropped western blot images are displayed in the
Supplementary Files, Figures S2–S10.
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Table 2. Antibodies used in the study.

Name Company Lot Dilution

Androgen Receptor (D6F11) XP Rabbit mAb Cell Signaling Technology, Cambridge, UK 9 1:5000

Lamin A/C (4C11) Mouse mAb Cell Signaling Technology, Cambridge, UK 5 1:2000

Mouse Monoclonal anti-GAPDH (6C5) Novus Biologicals, Littleton, CO, USA 19/05-G4cc-C5cc 1:10,000

PSA/Kallikrein 3 (KLK3) (D6B1) XP Rabbit mAb Cell Signaling Technology, Cambridge, UK 4 1:1000

2.5. Ribonucleic Acid (RNA) Isolation and Quantitative Real-Time PCR (qPCR)

Total RNA was isolated using the DIRECT-ZOL RNA MINIPREP (Zymo Research,
Freiburg, Germany) following the manufacturer’s instructions. Complementary DNA
(cDNA) synthesis was performed with 500 ng total RNA using the Superscript II RNase H
Reverse Transcriptase kit (Thermo Fisher Scientific, Waltham, MA, USA). The quantitative
real-time polymerase chain reaction (qPCR) was performed with GoTaq Probe qPCR
Master Mix (Promega, Mannheim, Germany) and appropriate primers for 45 cycles on
a LightCycler 480 instrument (Roche Diagnostics, Mannheim, Germany). The geometric
mean of HPRT1 and TBP was used for normalization. ∆Cp = CpGOI − CpHousekeeper

values were calculated and expressed as 2−∆Cp. Following primer assays have been
used (all Thermo Fisher Scientific, Waltham, MA, USA): AR (Hs00171172_m1), PSA/KLK3
(Hs02576345_m1), TMPRSS2 (Hs01122322_m1), PROSTEIN/SLC45A3 (Hs01026319_g1),
HPRT1 (Hs02800695_m1), TBP (Hs00427620_m1).

2.6. Measurement of Cell Viability

Cell viability was assessed using the WST-1 cell proliferation reagent (Roche Diag-
nostics, Mannheim, Germany). Cells (10,000 cells in 100 µL) were seeded into 96-well
culture plates. After 24 h, the medium was changed to a 50 µL medium containing 5%
FCSdcc (Thermo Fisher Scientific, Waltham, MA, USA) for 24 h. Subsequently, cells were
treated with the synthetic androgen R1881 or with a combination of R1881 and antian-
drogens diluted in 50 µL Medium containing 5% FCSdcc. After 72 h treatment, 10 µL
WST-1 solution was added for an additional 2 h. Subsequently, absorbance was recorded at
450 nm (Reference 620 nm) for each well using Mithras LB 940 (Berthold Technologies, Bad
Wildbad, Germany). After subtracting background absorbance, results were calculated as
x-fold of 1 nM R1881 treated cells.

2.7. Statistical Analysis

Prism 9.1.2 (GraphPad Software, San Dieg, CA, USA) was used for statistical analyses.
Differences between treatment groups were analyzed using Two-Way ANOVA with Dun-
nett’s correction for multiple comparisons. p-values of ≤ 0.05 were considered statistically
significant. All differences highlighted by asterisks were statistically significant as encoded
in figure legends (*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001). All experiments have been
performed in at least three biological replicates unless noted otherwise.

3. Results
3.1. Antiandrogens Affect AR-Mediated Gene Transactivation in a Cell-Specific Manner

To determine the effects of antiandrogens on AR-mediated gene transactivation, the
mRNA levels of three AR target genes (PSA, TMPRSS2, PROSTEIN) were detected by
qPCR and displayed as a mean change of 1 nM R1881 treated control [28–30].

In LNCaP cells, Bicalutamide, Apalutamide, and Darolutamide treatments signifi-
cantly decreased PSA mRNA to ~0.35 fold of 1 nM R1881 at 10 µM (Figure 1A). Only
Enzalutamide treatment revealed a reduction of PSA mRNA at 0.1 µM and 1 µM. Complete
steroid hormone withdrawal reduced PSA mRNA down to ~0.30 fold of 1 nM R1881.
TMPRSS2 mRNA is significantly downregulated by Bicalutamide and Enzalutamide treat-
ments to ~0.15 fold of 1 nM R1881 at 10 µM (Figure 1B), whereas Darolutamide only reduced
TMPRSS2 mRNA levels to ~0.35 fold. Moreover, Bicalutamide and Enzalutamide already
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reduced TMPRSS2 mRNA levels at 0.1 µM, whereas Darolutamide only showed effects
at 10 µM. Complete steroid hormone withdrawal led to a reduction of TMPRSS2 mRNA
down to ~0.10 fold of 1 nM R1881. All antiandrogens used in this study reduce PROSTEIN
mRNA levels compared to the 1 nM R1881 control (Figure 1C). While Bicalutamide and
Enzalutamide reduce PROSTEIN mRNA levels down to ~0.10 fold, Apalutamide and
Darolutamide reduce PROSTEIN mRNA levels only down to ~0.40 fold. Complete steroid
hormone withdrawal reduced PROSTEIN mRNA down to ~0.15 fold of 1 nM R1881.

Life 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

encoded in figure legends (*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001). All experiments have been 
performed in at least three biological replicates unless noted otherwise. 

3. Results 
3.1. Antiandrogens Affect AR-Mediated Gene Transactivation in a Cell-Specific Manner 

To determine the effects of antiandrogens on AR-mediated gene transactivation, the 
mRNA levels of three AR target genes (PSA, TMPRSS2, PROSTEIN) were detected by 
qPCR and displayed as a mean change of 1 nM R1881 treated control [28–30]. 

In LNCaP cells, Bicalutamide, Apalutamide, and Darolutamide treatments signifi-
cantly decreased PSA mRNA to ~0.35 fold of 1 nM R1881 at 10 µM (Figure 1A). Only 
Enzalutamide treatment revealed a reduction of PSA mRNA at 0.1 µM and 1 µM. Com-
plete steroid hormone withdrawal reduced PSA mRNA down to ~0.30 fold of 1 nM R1881. 
TMPRSS2 mRNA is significantly downregulated by Bicalutamide and Enzalutamide 
treatments to ~0.15 fold of 1 nM R1881 at 10 µM (Figure 1B), whereas Darolutamide only 
reduced TMPRSS2 mRNA levels to ~0.35 fold. Moreover, Bicalutamide and Enzalutamide 
already reduced TMPRSS2 mRNA levels at 0.1 µM, whereas Darolutamide only showed 
effects at 10 µM. Complete steroid hormone withdrawal led to a reduction of TMPRSS2 
mRNA down to ~0.10 fold of 1 nM R1881. All antiandrogens used in this study reduce 
PROSTEIN mRNA levels compared to the 1 nM R1881 control (Figure 1C). While Bicalu-
tamide and Enzalutamide reduce PROSTEIN mRNA levels down to ~0.10 fold, Apalu-
tamide and Darolutamide reduce PROSTEIN mRNA levels only down to ~0.40 fold. Com-
plete steroid hormone withdrawal reduced PROSTEIN mRNA down to ~0.15 fold of 1 nM 
R1881. 

 
Figure 1. Influence of antiandrogens on the AR-mediated gene transactivation on androgen-dependent (LNCaP, LAPC4)
and androgen-independent (C4-3) cell lines. To determine AR-mediated gene transactivation, modulation of mRNA levels
of four AR target genes (PSA, TMPRSS2, PROSTEIN) were detected by qPCR and displayed as a mean change of 1 nM
R1881. mRNA levels of AR target genes were normalized to the geometric mean of TBP and HPRT1. (A–C) Relative change
of the AR target genes PSA (A), TMPRSS2 (B), and PROSTEIN (C) after 16 h of 1nM R1881 and Bicalutamide, Enzalutamide,
Apalutamide, or Darolutamide treatment in the cell lines LNCaP. (D–F) Relative change of the AR target genes PSA (D),
TMPRSS2 (E), and PROSTEIN (F) after 16 h of 1nM R1881 and Bicalutamide, Enzalutamide, Apalutamide, or Darolutamide
treatment in the cell lines C4-2. (G–I) Relative change of the AR target genes PSA (G), TMPRSS2 (H), and PROSTEIN (I) after
16 h of 1nM R1881 and Bicalutamide, Enzalutamide, Apalutamide, or Darolutamide treatment in the cell lines LAPC4.
Values are expressed as mean ± SEM of at least three independent experiments. All differences highlighted by asterisks
were statistically significant (*: p ≤ 0.05; **: p ≤ 0.01; *** p ≤ 0.001).
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In the androgen-independent LNCaP sub-cell line C4-2, all tested antiandrogens
reduced PSA mRNA only down to ~0.45 fold of 1 nM R1881 at 10 µM (Figure 1D) and
complete steroid hormone withdrawal reduced PSA mRNA down to ~0.25 fold. In line with
this observation, all tested antiandrogens reduced TMPRSS2 mRNA to ~0.50 fold of 1 nM
R1881 at 10 µM (Figure 1E) and complete steroid hormone withdrawal reduced TMPRSS2
mRNA to ~0.25 fold. Bicalutamide and Enzalutamide reduced PROSTEIN mRNA levels to
~0.30 fold at 10 µM, whereas Apalutamide and Darolutamide reduced PROSTEIN mRNA
levels only to ~0.45 fold. Complete steroid hormone withdrawal reduced PROSTEIN
mRNA to ~0.25 fold of 1 nM R1881.

Antiandrogen treatment of the cell line LAPC4 resulted in downregulation of PSA
mRNA to ~0.45 fold of 1 nM R1881 at 1 µM and ~0.05 fold at 10 µM. Darolutamide
effectively reduced PSA mRNA levels down to 0.30 fold at 0.1 µM (Figure 1G). Complete
steroid hormone withdrawal led to a reduction of PSA mRNA down to ~0.05 fold of
1 nM R1881. Bicalutamide and Enzalutamide treatment reduced TMPRSS2 mRNA levels
down to ~0.30 fold of 1 nM R1881 at 1 µM and down to ~0.10 fold at 10 µM, whereas
Apalutamide and Darolutamide showed only a reduction of TMPRSS2 mRNA down to
~0.50 fold at 10 µM (Figure 1H). Complete steroid hormone withdrawal led to a decrease
of TMPRSS2 mRNA down to ~0.45 fold of 1 nM R1881. Regulation of PROSTEIN mRNA
levels by antiandrogen treatment in LAPC4 cells follow a similar pattern as TMPRSS2
mRNA. Bicalutamide and Enzalutamide reduce PROSTEIN mRNA down to ~0.10 fold at
10 µM, Apalutamide and Darolutamide down to ~0.40 fold at 10 µM, and complete steroid
hormone withdrawal led to a reduction of PROSTEIN mRNA down to ~0.35 fold of 1 nM
R1881 (Figure 1I).

These cell line comparisons revealed that C4-2 cells were affected with the lowest and
LAPC4 cells with the highest sensitivity to antiandrogen treatment (Figure S1).

3.2. Cell Viability Is Affected in a Cell-Specific Manner by Antiandrogens

In LNCaP cells, only Enzalutamide treatments resulted in a concentration-dependent
decrease in cell viability (~0.55 fold) which was similar to the level of complete steroid
hormone withdrawal (~0.53 fold of 1 nM R1881), starting at a concentration of 1 µM and
peaking at 10 µM (Figure 2A). The other antiandrogens only inhibited cell viability at
10 µM in LNCaP cells down to ~0.70 fold.

In C4-2 cells, Bicalutamide treatment resulted in a significant decrease in cell viability
at 10 µM to ~0.70 fold (Figure 2B). Therefore, only Bicalutamide reduced cell viability to a
level similar to complete steroid hormone withdrawal (~0.75 fold of 1 nM R1881).

Similar to the results seen in LAPC4 cells on AR-activity, all anti-androgen treatments
only caused a significant reduction in cell viability (~0.50 fold) when used at 10 µM. Except
for Enzalutamide, a decrease in cell viability starts at a concentration of 0.1 µM and peaks
at 10 µM (Figure 2C). Only Apalutamide already peaked at a concentration of 1 µM.

Comparison of the influence of the tested antiandrogens on cell viability reveals that
the cell line C4-2 responded with the lowest and LAPC4 with the highest sensitivity to
antiandrogen treatment (Figure 2D–G).

3.3. Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide Reduce Nuclear AR Protein
Levels after Treatment

To assess the impact of antiandrogens on AR localization, LNCaP, C4-2, and LAPC4
cells were starved for 24 h followed by non-treatment, 1 nM R1881 treatment, and differ-
ent concentrations of antiandrogens for 2 h. Subsequently, cells were fractionated, and
AR levels were determined in nuclear and cytoplasmic fractions. Treatment with 1 nM
R1881 resulted in a significant increase of nuclear AR levels in all cell lines (Figure 3A,B).
Although not statistically significant, nuclear AR levels in LNCaP cells were reduced after
10 µM Darolutamide treatment (Figure 3C). All other tested antiandrogens significantly
reduced nuclear AR levels at a concentration of 10 µM, which was comparable to complete
steroid hormone withdrawal (~0.15 fold of 1 nM R1881).
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Figure 2. The cellular background is the primary driver of antiandrogen mediated effect on cell viability: (A–C) Relative
change of cell viability after 72 h of 1 nM R1881 and Bicalutamide, Enzalutamide, Apalutamide, or Darolutamide treatment
in the cell lines LNCaP (A), C4-2 (B), LAPC4 (C). The antiandrogen comparison revealed marginal differences between the
used antiandrogens in the individual cell lines (D–G). Cell line response comparison between LNCaP, C4-2, and LAPC4
cells after treatment with 1 nM R1881 and Bicalutamide (D), Enzalutamide (E), Apalutamide (F), or Darolutamide (G). The
cell line comparison revealed significant differences between the responses to antiandrogen treatment. Cell viability was
assessed using the WST-1 cell proliferation reagent (Roche) 72 h after treatment. Values are presented as relative values of
1 nM R1881 treated cells and expressed as mean ± SEM of at least three independent replicates. All differences highlighted
by asterisks were statistically significant (*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001).

In C4-2 cells (Figure 3D), the presence of antiandrogens also resulted in a significant
reduction in nuclear AR levels at a concentration of 10 µM, comparable to complete steroid
hormone withdrawal (~0.30 fold of 1 nM R1881). At a concentration of 1 µM, Enzalutamide
was already able to reduce nuclear AR levels to a similar extent.

In LAPC4 cells (Figure 3E), all antiandrogens significantly decreased nuclear AR levels
at a concentration of 10 µM to a similar extent as complete steroid hormone withdrawal
(~0.45 fold of 1 nM R1881). At a concentration of 1 µM, Bicalutamide and Apalutamide
were already able to reduce nuclear AR levels to a similar extent.

Conversely, no significant cytoplasmic AR was observed after antiandrogen treatment
(Figure S5).

3.4. Influence of Antiandrogen Treatment on AR mRNA and Protein Level

To measure the impact of antiandrogen incubation on AR mRNA levels, LNCaP, C4-2,
and LAPC4 cells were starved for 24 h followed by treatment with 1 nM R1881 and different
concentrations of antiandrogens for 16 h. None of the antiandrogens mediated any change
in AR mRNA levels in the tested cell lines (Figure 4A–C).
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Figure 3. Antiandrogen treatment reduces nuclear AR protein levels. (A) Representative western blot of nuclear AR and
Lamin A/C protein in LNCaP, C4-2, and LAPC4 after 1 nM R1881 treatment. All cell lines response with a significant
increase of nuclear AR after R1881 treatment. (B) Relative change of nuclear AR protein after treatment with 1nM R1881 (B).
(C–E) Relative change of nuclear AR protein after treatment with 1 nM R1881 and Bicalutamide, Enzalutamide, Apalutamide,
or Darolutamide in LNCaP (C), C4-2 (D), and LAPC4 (E). All cell lines responded with a decrease of nuclear AR protein 2 h
after antiandrogen treatment in a cell line-dependent manner. Lamin A/C (nuclear fraction) and GAPDH (cytoplasmic
fraction) detection controlled fraction quality (Figures S2–S4). Values are presented as relative values of 1 nM R1881 treated
cells and expressed as mean ± SD of at least three independent experiments. All differences highlighted by asterisks were
statistically significant (*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001).
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Figure 4. Antiandrogen treatment does not change AR mRNA level: Relative change of AR mRNA levels after treatment
with 1 nM R1881 and Bicalutamide, Enzalutamide, Apalutamide, or Darolutamide in LNCaP (A), C4-2 (B), and LAPC4 (C).
The antiandrogen treatment did not influence AR mRNA levels 16 h after treatment. Changes in mRNA levels have been
assessed using qPCR. Values are presented as relative values of 1 nM R1881 treated cells and expressed as mean ± SEM of
at least three independent experiments.
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To assess the influence of antiandrogens on AR and PSA protein levels, the cell lines
were starved for 24 h followed by treatment with non-treatment, 1 nM R1881 treatment, and
different concentrations of antiandrogens for 72 h. To determine changes in protein levels,
western blot analyses on AR, PSA, and GAPDH were performed (Figure 5A–D). Changes
in PSA levels were used as antiandrogen treatment control. All cell lines demonstrated
decreased PSA levels after antiandrogen treatment, confirming antiandrogen response
(Figure S5D).
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Figure 5. Influence of antiandrogen treatment on AR protein levels. (A–D) Representative western blots of AR protein,
PSA, and GAPDH protein in LNCaP, C4-2, LAPC4, and PC3 after 1 nM R1881 and Bicalutamide (A), Enzalutamide (B),
Apalutamide (C), or Darolutamide (D) treatment. PSA served as antiandrogen treatment control. PC3 cells were used as a
negative control for PSA and AR. (E–G) Relative change of AR protein after treatment with 1 nM R1881 and Bicalutamide,
Enzalutamide, Apalutamide, or Darolutamide in LNCaP (E), C4-2 (F), and LAPC4 (G). Cell line response comparison be-
tween LNCaP, C4-2, and LAPC4 cells of AR protein stability after treatment efficiency of Bicalutamide (H), Enzalutamide (I),
Apalutamide (J), and Darolutamide (K). Changes in AR protein level have been assessed using western blot 72 h after
treatment. Values are presented as relative values of 1 nM R1881 treated cells and expressed as mean ± SD of at least three
independent experiments. All differences highlighted by asterisks were statistically significant (*: p ≤ 0.05; **: p ≤ 0.01;
***: p ≤ 0.001; ****: p ≤ 0.0001).

In LNCaP cells, besides Apalutamide, all antiandrogen treatments decreased AR
protein levels to ~0.50 fold at 10 µM (Figure 5E). Although not statistically significant, only
Enzalutamide and Apalutamide influenced AR protein levels in C4-2 cells (Figure 5F). In
LAPC4 cells, all antiandrogens used in this study resulted in a significant concentration-
dependent reduction in AR protein levels down to ~0.30 fold (Figure 5G).

When comparing the influence of the tested antiandrogens on AR protein stability,
the results revealed that the cell line C4-2 responded with the lowest and LAPC4 with the
highest sensitivity to antiandrogen treatment regarding AR protein levels (Figure 5H–K).

3.5. AR Protein Degradation Is an Early Event after Antiandrogen Treatment

As changes in AR protein stability have been identified as an early event after En-
zalutamide treatment, the influence of Bicalutamide, Enzalutamide, Apalutamide, and
Darolutamide on AR stability was tested in shorter periods [25]. To assess the impact of an-



Life 2021, 11, 874 10 of 15

tiandrogens on AR protein levels, LAPC4 cells were starved for 24 h followed by treatment
with non-treatment, 1 nM R1881 treatment, and 10 µM of antiandrogens for 2, 4, 6, 24, 48,
and 72 h. To determine changes in protein levels, western blot analyses on AR and GAPDH
were performed (Figure 6A,B). Densiometric analyses revealed that all tested androgens
induce an early AR protein reduction (Figure 6B). Apalutamide caused the first significant
effects after 2 h, and Bicalutamide and Apalutamide after 4 h. Darolutamide showed the
first significant effects on AR protein levels after 6 h. In contrast, reduction of the AR
target genes PSA, TMPRSS2, and PSA are less prominent after 2 h and 4 h (Figure 6C). The
first significant results on AR target genes were seen after 6 h of Bicalutamide treatment
(Figure 6C).
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senting different stages of the disease. LNCaP and LAPC4 are hormone-sensitive PC cell 
lines, whereas the LNCaP sub-cell line C4-2 represents CRPC [17,19,20]. Moreover, 
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tional activity of the receptor. This modulation of AR functionality is influenced by several 

Figure 6. AR protein degradation is an early event after antiandrogen treatment. The analysis revealed that AR protein
degradation starts before the reduction of AR-mediated gene transactivation activity. (A) Representative western blots of
AR protein and GAPDH protein in LAPC4 after 2 h, 4 h, 6 h, 24 h, 48 h, and 72 h of 1 nM R1881 and 10 µM Bicalutamide,
10 µM Enzalutamide, 10 µM Apalutamide, or 10 µM Darolutamide treatment. (B) Relative change of AR protein after
treatment with 1 nM R1881 and Bicalutamide, Enzalutamide, Apalutamide, or Darolutamide in LAPC4. Values are presented
as relative values of 1 nM R1881 treated cells and expressed as mean ± SD of at least three independent experiments.
(C) Relative change of AR-mediated gene transactivation activity after 2 h, 4 h, and 6 h treatment with 1 nM R1881 and 10 µM
Bicalutamide, 10 µM Enzalutamide, 10 µM Apalutamide, or 10 µM Darolutamide treatment in LAPC4 cells. To determine
AR-mediated gene transactivation, modulation of mRNA levels of four AR target genes (PSA, TMPRSS2, PROSTEIN) were
detected by qPCR and displayed as a mean change of 1 nM R1881. Values are presented as relative values of 1 nM R1881
treated cells and expressed as mean ± SD (western blot) or mean ± SEM (qPCR) of at least three independent experiments.
All differences highlighted by asterisks were statistically significant (*: p ≤ 0.05; **: p ≤ 0.01).

4. Discussion

AR signaling plays an essential role in prostate development and progression of PC
and thus is a critical target in PC therapy [3,31,32]. For metastatic PC, the antiandrogens
Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide have shown promising
therapy results [33–37]. However, even though these antiandrogens have been clinically
investigated in highly controlled and consistent studies, their mechanism of action has been
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studied inconsistently. Therefore, this study aimed to compare the effects of the antiandro-
gens Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide on AR-mediated gene
transactivation, AR localization, AR expression, and cell viability, in vitro systematically.
For this purpose, the cell lines LNCaP, LAPC4, and C4-2 were used, representing different
stages of the disease. LNCaP and LAPC4 are hormone-sensitive PC cell lines, whereas
the LNCaP sub-cell line C4-2 represents CRPC [17,19,20]. Moreover, LAPC4 expresses a
wild-type AR, whereas LNCaP and C4-2 express mutated AR [8].

As the AR is the primary target of antiandrogens, they directly regulate the tran-
scriptional activity of the receptor. This modulation of AR functionality is influenced by
several factors such as the formation of heat shock protein (HSP) complexes, receptor
dimerization, nuclear translocation, DNA binding, reduction of coactivator binding, and
promotion of corepressor interaction [4,38]. The data presented here reveals that all tested
antiandrogens reduce AR functionality in a concentration-dependent manner, confirmed by
previous studies reporting AR inhibition by antiandrogens [13,16,39]. However, a 5–10 fold
increased inhibitory effect of Enzalutamide, Apalutamide, and Darolutamide compared to
Bicalutamide has been reported [13,16,39]. In this study, there was no significant advantage
of any antiandrogen regarding the inhibition of AR functionality. The data revealed that cell
line-specific characteristics had more effect on antiandrogens’ efficiency than the chemical
compound itself. For example, Bicalutamide is the most potent antiandrogen in LNCaP
cells and C4-2 cells, whereas all antiandrogens are similarly efficient in LAPC4 cells. In
general, LAPC4 cells display the highest sensitivity, and C4-2 cells the lowest sensitivity
to antiandrogen treatment of the tested cell lines. The comparable effects also reflect the
influence of the tested antiandrogens on AR-mediated gene transactivation on cell viability.
This result suggests that the cellular background of the cell lines has a significant impact
on the molecular and cellular mode of action of the antiandrogens.

Among other mechanisms, sensitivity to antiandrogens is mediated by AR regulation
and genetic changes, including AR overexpression, AR amplification, and AR somatic
point mutations [32]. Point mutations within the AR gene have been shown to confer
antiandrogen resistance, change ligand specificity, and receptor transcriptional activity [40].
The AR mutation F877L/F876L has been identified in Enzalutamide and Apalutamide
treated patients. Enzalutamide and Apalutamide binding to the F877L mutated AR protein
alter the antagonistic effects of the antiandrogens to agonistic effects [32,40–42]. Other
AR mutations associated with low antiandrogen response are L702H, W742C/L, and
T878A [40,42]. The hormone-sensitive cell line LNCaP and its castration-resistant sub-
cell line C4-2 have harbored the T878A mutation (published initially as T868A) in the
ligand-binding domain of the AR, whereas LAPC4 cells express the wildtype AR [8,20,43].
Thus, the T877A mutation in the AR may explain the diminished sensitivity of LNCaP
and C4-2 cells to antiandrogen efficacy. Besides, in contrast to the LAPC4 cells and LNCaP
cells, C4-2 cells express the ligand-independent AR splice variant V7 protein reported to
mediate antiandrogen resistance [44,45]. Therefore, AR splice variants could also lead to
the low antiandrogen response of C4-2 cells, as demonstrated in this study. However, other
AR-associated factors such as AKT, STAT3, p300, and glucocorticoid receptor cannot be
excluded in these antiandrogen resistance mechanisms [27,32,46].

Inhibition of AR translocation to the nucleus by antiandrogens is essential to prevent
DNA binding and coactivator recruitment of the ligand-receptor complex and thus the
transcriptional activity of the AR [3]. In contrast to second-generation antiandrogens,
Bicalutamide has been reported not to inhibit AR nuclear translocation in the presence
of R1881 [12,13,47]. However, the second-generation antiandrogens Enzalutamide, Apa-
lutamide, and Darolutamide have been shown to suppress this nuclear translocation of
the AR [3]. The data presented in this study revealed reduced nuclear AR protein after
treatment with all tested antiandrogens at 10 µM. This result was not expected, as previous
studies excluded the inhibition of the AR translocation into the nucleus by Bicalutamide [3].
However, the data from Clegg et al. already indicated a role of Bicalutamide in nuclear
translocation, but less compared to Apalutamide or Enzalutamide [13]. Thus, changes
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in nuclear translocation should alter AR protein levels in both nuclear and cytoplasmic
departments. Here, only a change in nuclear protein level after antiandrogen treatment
could be observed, indicating a possible role of AR protein turnover in the regulation of
nuclear AR. This hypothesis is in line with the observations by Lv et al. demonstrating
that targeting the AR androgens cause MDM2 mediated nuclear AR degradation and not
nuclear AR export [48]. Other studies with Enzalutamide, Apalutamide, and Darolutamide
also confirmed reduced nuclear protein than in AR translocation to the cytoplasm [13,39,49].
This data is strengthened by the results of this study showing no increase in cytoplasmic
AR levels after antiandrogen treatment compared to R1881 treated controls. Altogether,
these studies and the data presented here suggest a pivotal role of nuclear AR protein
stability in the mode of action of the tested antiandrogens.

AR protein levels are influenced by antiandrogen treatment [50]. In accordance with a
previous study, the unaltered AR mRNA levels suggest that antiandrogens do not affect
AR expression, but rather AR protein turnover, as AR stability [25]. Several mechanisms
of AR protein regulation after androgen withdrawal and antiandrogen treatment have
been described and linked to therapy resistance [51]. High levels of PIAS1 and STAT5, for
example, enhance AR protein stability and therefore impair drug efficiency in the presence
of Abiraterone and Enzalutamide [50,52]. Moreover, HSPs have been reported to stabilize
AR protein and thus affect the antiandrogen’s inhibitory effects on the AR functionality [53].
High AR protein stability has also been linked to the castration-resistant cell line C4-2 after
androgen withdrawal [54]. Here, treatment with all examined antiandrogens resulted in cell
line-specific AR protein degradation response. C4-2 responded with the lowest sensitivity
and LAPC4 with the highest sensitivity to antiandrogen treatment. The similarity to the AR
functionality and cell viability results suggests a possible role of AR protein stability in the
cellular response of PC to antiandrogens. Previously, a role of proteolytic degradation of
the AR protein after Enzalutamide treatment has been identified in the cell line LNCaP [25].
The data revealed an Enzalutamide treatment-induced reduction in AR protein levels after
4 h accompanied by decreased cell proliferation. In addition, this study showed reduced
AR protein levels in less than 6 h after treatment with all tested antiandrogens. Since this
reduction of AR protein appears to occur before any modulation in AR functionality, it can
be concluded that the reduction of AR protein levels has an early and substantial role in the
mode of action of antiandrogens. This conclusion may also explain the promising results
of AR degrading agents in CRPC and Enzalutamide resistant cell line models [5,54]. The
precise mechanism of how antiandrogens regulate AR protein levels appears complex, and
data on this is still limited. A better understanding of this mechanism may help to develop
novel therapeutic strategies to increase antiandrogen efficiency, prevent therapy resistance,
or re-sensitize antiandrogen resistant PC to antiandrogens. Since this understanding is of
immense clinical relevance, further investigations should be conducted.

5. Conclusions

This study compared the AR inhibitory efficacy of the antiandrogens Bicalutamide,
Enzalutamide, Apalutamide, and Darolutamide. The data demonstrated that all tested
antiandrogens inhibit AR signaling to a similar extent. Significant differences were not
found in comparing antiandrogens but were evident in cell line-specific differences in cell
responses. Therefore, the cellular background, especially AR mutations, may represent
an essential factor in antiandrogen efficiency. In addition, this study was able to show
a correlation between the level of antiandrogen-induced AR protein reduction and the
response of the cell lines to antiandrogen treatment and therefore identifies AR turnover as
a possible indicator for antiandrogen treatment response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11090874/s1, Figure S1: Cell line comparison of the influence of antiandrogens on the
AR-mediated gene transactivation, Figure S2–S4: Nuclear und cytoplasmic fraction quality blots,
Figure S5: Densitometry analysis of AR protein levels in the cytoplasmic fraction and PSA protein
levels after antiandrogen treatment. Figure S6–S10: Uncropped western blot images.
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