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Abstract: Accurate semantic image segmentation from medical imaging can enable intelligent
vision-based assistance in robot-assisted minimally invasive surgery. The human body and surgical
procedures are highly dynamic. While machine-vision presents a promising approach, sufficiently
large training image sets for robust performance are either costly or unavailable. This work examines
three novel generative adversarial network (GAN) methods of providing usable synthetic tool
images using only surgical background images and a few real tool images. The best of these three
novel approaches generates realistic tool textures while preserving local background content by
incorporating both a style preservation and a content loss component into the proposed multi-level
loss function. The approach is quantitatively evaluated, and results suggest that the synthetically
generated training tool images enhance UNet tool segmentation performance. More specifically,
with a random set of 100 cadaver and live endoscopic images from the University of Washington
Sinus Dataset, the UNet trained with synthetically generated images using the presented method
resulted in 35.7% and 30.6% improvement over using purely real images in mean Dice coefficient
and Intersection over Union scores, respectively. This study is promising towards the use of more
widely available and routine screening endoscopy to preoperatively generate synthetic training tool
images for intraoperative UNet tool segmentation.

Keywords: robot-assisted minimally invasive surgery; surgical tool segmentation; generative adver-
sarial networks; UNet; medical imaging

1. Introduction

Computer vision and machine learning have experienced rapid development and
growth in the last decade. While applications in the medical imaging field are growing,
challenges still exist. This manuscript focuses on the use of the UNet, the most widely
adopted image segmentation tool for medical imaging. In the context of robot-assisted
minimally invasive procedures, accurate surgical tool segmentation is a key component of
numerous computer-assisted interventions [1], and may enable robust reconstruction [2]
potentially from multiple simultaneous viewpoints [3,4]. Due to the challenges of dynamic
deformation, specular reflections, and partial blurriness [5], accurate tool segmentation
often requires large surgical image data sets to achieve desirable segmentation performance
through data-driven approaches. Such data sets are difficult to acquire due to lack of expert
annotation, under-representation of rare conditions, and poor standardization. Further-
more, large surgical image data sets are expensive and oftentimes impractical to acquire
from clinical robot-assisted minimally invasive surgeries [6]. Concerns include potential
interruption of operation workflow as well as sterilization and data privacy concerns.
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1.1. UNet in Medical Image Segmentation

The primary purpose of medical image segmentation tasks is to separate different
objects or anatomical structures of interest from the rest of the image. These structures
often need to be isolated for proper diagnosis of conditions [7] or to remove occluding
elements. The use of image segmentation tools, and UNet in particular, is most prominent
in the medical imaging field for cardiovascular and brain systems. These anatomical
structures are oftentimes imaged using 3D imaging methods, such as with computed
tomography (CT) and magnetic resonance imaging (MRI), and thus the UNet has been
adapted to a variety of medical imaging modalities.

Brain tumor imaging is most prominently achieved with MRI, and identifying the
boundaries of cancerous and healthy tissue is necessary for proper resection of the dis-
eased tissue. Several implementations of UNet have been developed and implemented to
successfully segment brain tumor structures in MRI [8–11]. Similarly, UNet has been used
in neural MRI to identify and segment brain lesions [12,13] and to analyze brain develop-
ment [14,15]. Three-dimensional imaging of the cardiovascular system exhibits a broader
range of imaging modalities, including CT and MRI. Lung and pulmonary structures
were segmented using the UNet on CT scans [9,16–18] and cardiovascular structures with
MRI [19–22]. Three-dimensional UNet segmentation has also been used for segmentation
of liver tumors in CT scans [23,24] and MRI [25], prostate and breast cancer in MRI [26,27],
multi-organ segmentation from CT [28–30], and osteosarcoma [31] and vertebrae [32] from
CT. The application of UNet for 2D medical image segmentation covers a range of tasks,
including skin lesion segmentation [33], segmentation in microscopy [16,34–36], and retinal
imaging [37–40] to name a few. Endoscopic imaging is the modality of interest for 2D
image segmentation, with several uses of UNet for these types of images [41,42].

1.2. Endoscopic Surgical Tool Segmentation

In robot-assisted minimally invasive surgery, the endoscope is typically the primary
imaging modality, and in itself provides a restricted field of view [43]. Understanding the
surgical tool location within the endoscope frame and with respect to the surgical anatomy
can be of vital importance to provide intelligent, computer-aided assistance or intervention.
Tool proximity and localization with respect to anatomy can, for example, inform operation
procedure or even be used to isolate imaging of the anatomy for image registration and
reconstruction. Several auxiliary sensing methods can be used for tool pose estimation,
including robot kinematic information [44] and electromagnetic tracking [45]. However,
endoscopic and image-based methods coincide with the operator’s frame of reference and
do not require augmentations to the surgical tools or instruments. With sophisticated devel-
opments in deep learning, the use of machine vision is an attractive avenue for tool tracking
and segmentation. However, the lack of sufficient and established endoscopic image data
and standard evaluation or ranking are challenges. Within the available datasets, imaging
may be sourced from simulation environments [46], a phantom [47], ex vivo [48,49], or
in vivo [50]. Furthermore, the image resolutions, surgical operation type, task conditions
(e.g., lighting, smoke, occlusions, and blur), image set size, and tool labeling (e.g., tool
tip or bounding box) vary between datasets. Several natural image features can be used
for tool detection and segmentation. Image color can provide a natural feature for dis-
crimination [51–53], and the image gradient, textures and shapes can also be used [54–56].
Early approaches used these features to assist in tool detection and segmentation using
support vector machines [54,57] and decision forests [50]. More recently, neural network
and UNet-based methods have emerged as promising directions [58–63].

1.2.1. Surgical Image Augmentation

Lacking sufficient numbers of real data has been addressed in conventional vision
applications with various synthetic image generation approaches [64–66]. Unfortunately,
most use simple morphological augmentations [67] unsuitable for surgical images, which
are rich with the complex and diverse features of real human tissue [68]. The problem re-
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mains an open challenge, and several approaches exist in the literature. Surgical simulators,
such as the 3D-slicer [69], the RobotiX mentor [70], the dV-Trainer [71], and the AMBF [72],
enable users to readily capture large quantities of synthetic training images. However,
because these images depict a purely artificial scene, they often lack the visual artifacts
and imperfections required to train strong tool segmentation models [73,74]. It is possible
to convert the working domain to a synthetic one by training the segmentation network
on a large set of synthetic images and real test images converted to synthetic through
pre-processing domain transfer [75]. The results are robust, however, the real-to-synthetic
domain transfer loses textual cues and details. A similar concept was a adopted with a
more readily available target image domain-cadaver images [76]. Labeling was expedited
for the cadaver endoscopic imaging by using robot kinematic information [6,58,77,78].
Although both image domains contain some realistic visual details and texture, cadaver
data acquisition is expensive.

1.2.2. Rendering via Adversarial Learning

Generative adversarial networks (GANs) [79] have gained traction in the medical
imaging field for data generation without explicit need for probability density functions or
labeled samples [80]. Compared with traditional training image augmentation methods like
scaling, rotation, flipping, and elastic deformation [81], GAN-driven approaches afford the
capability to enforce domain specific conditions on the generated images to abide by the sur-
gical workflow, appearance of a particular pathology, or various imaging protocols [82,83].
Conditional GAN-based medical image synthesis research has been explored in numerous
medical imaging domains such as CT [84], MRI [85–87], Ultrasound [88,89], X-rays [90,91],
and retinal fundus imaging [92]. This is useful to synthesize images in uncommon condi-
tions, such as lung nodules along the lung border [93]. However, little work has been done
in the endoscopic imaging modality, and even less for surgical tool segmentation. In [63],
an image-to-image (I2I) model and robot simulator transferred the realistic style of ex vivo
and in vivo RMIS images onto simulated tool images. However, since surgical tool pixels
were processed independently of the background, visual effects from reflection, motion blur
and tool-tissue interactions were not well modeled. The absence of realistic visual artifacts
in the generated images can be addressed by collecting a large number of cadaver images
in a similar mock sinus endoscopic surgery setup and conducting cadaver-to-real cross
domain image synthesis. This ensures that similar visual effects exist in both the source
(cadaver) and target (real) domain [76]. Although realistic images are generated, a generic
solution for synthetic endoscopic image generation with pure real dataset remains an open
challenge. In another approach, the image synthesis step was bypassed and surgical tool
segmentation was implemented directly using GAN-based domain adaptation [94]. The
surgical image was the real image domain and the segmented mask was the target domain.

1.3. Contributions

This work investigated three novel GAN-driven surgical image augmentation ap-
proaches. The best method utilizes the proposed loss function that incorporates both
local neural style transfer [95] and a modified CycleGAN [96]-like structure with custom
component-level losses. The method was evaluated on a classic tool segmentation model,
UNet, with varying levels of synthetic training data composition. To the best of the authors’
knowledge, this work is the first to provide simultaneously:

1. A GAN-driven synthetic surgical endoscopic image generation framework without
requiring cross-domain sample images;

2. The development of a custom multi-level loss function that:

- On the component level, adopts realistic tool textural style, minimizes back-
ground content changes and preserves synthetic tool shape;

- On the image level, incorporates visual artifacts to mimic realistic tool-tissue
interaction regions;
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3. A systematic guide to evaluate generated synthetic images and identify the ideal
composition of real and synthetic training images;

4. Open access of all source code [97,98].

2. Methods

Three modified CycleGAN approaches for generating synthetic tool images for en-
doscopic image segmentation were investigated. All three strategies are improvements
upon the baseline tool augmentation method described in Section 2.1. The set of base-
line synthetic images S is generated by overlaying real endoscopic surgical backgrounds,
the collection of which is denotedRB , with a randomly placed artificial surgical tool. The
task then is to enhance the baseline artificial tool pixels with realistic appearance. The first
strategy performs transfer from the domain of baseline synthetic images S to the domain of
real surgical images R through CycleGAN (note: R does not refer to the set of real numbers
in this context). The second strategy executes partial GAN application on only the baseline
surgical tool pixels. Finally, the third approach utilizes a modified CycleGAN loss design
that balances (a) partial style preservation of the background and (b) realistic generation of
the tool (visual artifacts and texture) and (c) tool tissue border smoothness of the generated
synthetic image.

2.1. Baseline Synthetic Image Generation, S

A baseline synthetic image si ∈ S ⊂ S is constructed using two main steps on a
preselected real endoscopic background image inRB . These steps are

1. Surgical tool augmentation;
2. Circle border pre-processing.

2.1.1. Surgical Tool Augmentation

As depicted in Figure 1a, the synthetic tool shape is defined by 5 key geometric points,
which are mostly connected by straight lines. Exceptions exist between key points 2, 3
and 4, which are connected via a 2nd order polynomial. The tools are randomly scaled,
shifted and rotated before being placed on each background image. The tool colors IT
were rendered from the fusion of a metallic texture image IM and a normalized reflection
background image INR.

IT = IM ∗ INR (1)

INR = α
IR

255
+ (1− α)

where ∗ indicates elemental-wise multiplication, α is an empirically chosen reflection
coefficient, and IR represents the reflection background image. A larger α can result in a
stronger reflection effect. Once the color is rendered, the tool is overlaid onto the surgical
backgrounds inRB with added modifications such as glare and shading to enhance realism
as shown in Figure 1b.

2.1.2. Circular Border Pre-Processing

The endoscopic background images in RB used to generate S images are selected
from the University of Washington Sinus dataset [49]. Since endoscopes exhibit a circular
field of view, each original rectangular background image contains endoscopic information
with a circular border contained within the entire image. Between varying endoscopes,
the circular borders are inconsistent in size and sometimes off-center. Without first isolating
only relevant image sections, unwanted overfit of the tool location based on circle location
may occur. To that end, proceeding the surgical tool augmentation step, only the largest
square within the circular image is stored as a synthetic baseline image in S .
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(a)

(b)
Figure 1. The baseline tool image generation procedure (a) tool color (IM ∗ INR) and tool geometry
fused to create colored tool patch. (b) Post-processing steps by overlaying tool patch on background,
shading, and glare modifications.

2.2. GAN-Driven Augmentations

The baseline synthetic tool images as depicted in Figure 1 lack sufficient realism.
The automated glare and shade additions are incapable of deceiving the human eye.
The information used from the surgical background is applied in an inflexible and non-
adaptive manner. To improve synthetic tool realism, three modified implementations of
the CycleGAN network were developed, which execute transfer between the domain of
real surgical images R and the domain of synthetic baseline tool images S.

2.2.1. Naive Global GAN Application (Strategy I)

The CycleGAN network consists of four networks: two generators and two discrimi-
nators. Given synthetic images {s ∈ S ⊂ S} and real surgical scenes {r ∈ R ⊂ R} with
training domains S and R, the generators G : R → S and F : S → R seek a bijective
mapping. Furthermore, they ideally are inverses. The discriminators DS and DR serve the
role of two inspectors, where DS and DR evaluate the likelihood that an image belongs to
S and R, respectively.

The four networks are trained sequentially with pairs of images (si, ri), where si ∈ S
and ri ∈ R. During training, four loss functions are used for optimization, one for each
network. First define the following expressions

fcyc(Ix, Iy) =
∑ |pxi − pyi|

Nx
(2)

fgen(x) = (x− 1)2 (3)

fdis(x, y) = (x− 1)2 +
y2

2
(4)
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where Ix, Iy are images, Nx is the number of pixels in Ix, pxi and pyi are the ith pixels in Ix, Iy,
respectively, and x, y are real numbers. For each training image pair (si, ri), loss functions
for each network are computed. First define

Lcyc = λ1 fcyc
(
ri, (F ◦ G)(ri)

)
+ λ2 fcyc

(
si, (G ◦ F )(si)

)
(5)

where ◦ is the composition operator, λ1, λ2 are heuristically tuned weights. Then the four
loss functions for each network are computed as

LG = Lcyc + fgen
(
(Ds ◦ G)(ri)

)
(6)

LF = Lcyc + fgen
(
(Dr ◦ F )(si)

)
(7)

LDs = fdis

(
Ds(si), (Ds ◦ G)(ri)

)
(8)

LDr = fdis

(
Dr(ri), (Dr ◦ F )(si)

)
(9)

where LG , LF are cycle consistency losses associated with G,F , respectively, and LDs , LDr

are adversarial losses for Ds, Dr, respectively. Adversarial losses characterize the deviation
between the distribution of the generated data and that of the original data. On the other
hand, the cycle consistency loss ensures that the network has the flexibility to map a set of
data to all possible permutations in the target domain [96].

When training the CycleGAN network, images from each domain were taken in pairs.
Figure 2 depicts two example input image pairs (si ∈ S ⊂ S, ri ∈ R ⊂ R), and the resultant
synthetic image generated by F (si) after the model is fully trained. Because the approach
lacks semantic knowledge of the image, tool pixels and background pixel attributes were
often interchanged. In Figure 2a, the final synthetic tool image tool pixels in F (si) inherit
tissue color tones, and in Figure 2b the final synthetic tool image background pixels adopt
tool color tones. This strategy’s drawbacks made it unacceptable.

(a) (b)
Figure 2. CycleGAN generated synthetic images from Strategy I: (a) The generated tool image
adopts texture from the background; (b) the background adopts texture from the tool.
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2.2.2. Tool Localized GAN (Strategy II)

To address the mismatching of color compositions for different semantic elements
within the images, the CycleGAN approach was modified to first execute only on isolated
synthetic and real tool pixels. For each si ∈ S , there is an associated binary tool mask smi.
The isolated tool image from si ∈ S , call it sti , is then calculated as

sti = si ∗ smi (10)

where ∗ denotes pixel-wise multiplication. Isolated tool image for ri ∈ R are similarly
defined as

rti = ri ∗ rmi (11)

Let St = {sti |si ∈ S} andRt = {rti |ri ∈ R}. The CycleGAN algorithm as described in
the previous subsection was then implemented again on the entire images with separately
enhanced tool pixels overlaid on background images fromRB .

As depicted in Figure 3, the separately enhanced tool pixels are non-ideal. In Figure 3a,
lack of context from the background during isolated tool image training result in tool pixels
that do not reflect the surgical scene colors. Furthermore, since morphology of synthetic
and real tools vary, when isolated with a black background tool borders are not well
incorporated. This is observed in Figure 3b. Because of these faults, this strategy was also
deemed unacceptable.

(a) (b)
Figure 3. CycleGAN generated synthetic images from Strategy II: (a) The tool image was generated
ignorant of the background; (b) the tool image borders are not preserved.

2.2.3. GAN with Partial Style Preservation (Strategy III)

The results of the previous two methods demonstrated an instability in the texture,
color or shape of the artificial surgical tool. To address these issues, methods for partial
style preservation of tool pixels and content preservation of tissue pixels were incorpo-
rated while continuing to train the entire image through CycleGAN. This approach aims
to minimize textural disparity between generated and real tool pixels while preserving
background surgical scene content, processing each of the two semantic portions separately.
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Style differences between the generated and real tool pixels are minimized within each
activation layer.

For content preservation, first define

fcon(Ix, Iy, Iz) =
∑(1− pzi) ∗ |pxi − pyi|

Nx
(12)

where Ix, Iy are images and Iz is a binary labeled mask for Ix, pxi, pyi, pzi are the ith pixels
in Ix, Iy, Iz, and ∗ denotes element-wise multiplication.

Then for each of the two generators a content loss is assigned as

LGcon = fcon
(
ri,G(ri), rmi

)
(13)

LFcon = fcon
(
si,F (si), smi

)
(14)

To formulate style preservation, let

fvgg(Ix, Iy) = G
(
V(Ix) ∗V(Iy)

)
(15)

fsty(xG, yG) = ∑
l<=L

ωl(xGl − yGl) ∗ (xGl − yGl)

4N2
xGl

(16)

where ∗ again indicates element-wise multiplication, xG, yG denote the Gramian of images
Ix, Iy, respectively, l iterates through layers, NxGl is the number of elements in xGl, L is the
number of style layers, the weighting factor for each layer ωl =

1
|L| in this work, and V

returns pretrained VGG19 neural network per-layer output.
Recall that CycleGAN is trained sequentially through pairs of images, (si, ri). Each

pair is associated with a pair of binary tool masks (smi, rmi). Then, for each of the two
generators, a style loss is assigned as

LGsty = fsty

(
fvgg

(
G(ri), rmi

)
, fvgg

(
si, smi

))
(17)

LFsty = fsty

(
fvgg

(
F (si), smi

)
, fvgg

(
ri, rmi

))
(18)

With these parameters defined, the cycle consistency loss functions for training gener-
ators G : R→ S and F : S→ R are modified by augmenting the original expressions in (6)
and (7) to style preserving cycle consistency loss functions

LG3 = LG + LGsty + LGcon (19)

LF3 = LF + LFsty + LFcon (20)

The style representation of an image is described as the correlation between various
filter responses as determined by the image Gramian.

Strategy III is depicted in Figure 4, the structure of which is illustrated in Figure 5.
The modified CycleGAN model contains four loss functions: the image level (1) cycle-
consistency loss Lcyc and (2) adversarial loss LDs , LDr preserve the semantic meaning of
the whole image; the component-level (3) style loss of tool LGsty , LFsty and (4) content loss
of tissue LGcon , LFcon trace back in the hidden layer activations to perform deep restricted
style transfer locally in the surgical tool region of the images while ensuring minimal
modifications to the background. The separation of foreground and background were
provided in the data set as prior knowledge.
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(a) (b)
Figure 4. CycleGAN generated synthetic images from Strategy III: (a) Tool image style is adopted
from the real image, background content is preserved resulting in realistic synthetic image; (b) tool
border is retained even if sj and rj tool shapes vary.

2.3. Synthetic Image Verification: Tool Segmentation

Only images generated using Strategy III were evaluated quantitatively—the two
other GAN-driven strategies were investigated but eliminated as viable methods via
preliminary tests. To evaluate the utility of the synthetically generated endoscopic images
as augmented training data, various combinations of real and synthetic images were used
to train a U-Net, a classic surgical tool segmentation network [67]. The network was then
tested on real images. These training and testing procedures were designed to answer the
following two questions:

(i) Does incorporating synthetic images with real training images improve segmenta-
tion performance?

(ii) Can a large synthetic training set alone be used to train a successful segmentation
network to segment test images fromR?

Table 1 shows the training set composition for the nine UNet experiments conducted.
In each experiment, the UNet was trained on a different proportion of real images fromR
and GAN-generated synthetic surgical images. The resultant networks were comparatively
evaluated on a fixed separate set of real surgical images.
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Table 1. Experimental training set compositions.

Exp Real Images Synthetic Images Total Training Set
1 300 0 300
2 300 100 400
3 300 200 500
4 300 300 600
5 300 400 700
6 300 500 800
7 300 600 900
8 300 5665 5965
9 0 5965 5965

Note: The fixed number of real training images in Exp. 1–8 (blue) were designed to aid in addressing re-
search question (i), whereas Exp. 8–9 utilize training sets heavily composed of synthetic data (gold) to aid in
addressing (ii).

3. Experiments
3.1. Raw and Baseline Data

The image data used for this study were drawn from the publicly available, de-
identified University of Washington Sinus Cadaver/Live Dataset [49,99]. This data set
contains a total of 4345 cadaver and 4658 live sinus endoscopic images, denotedR. Each
endoscopic image inR is accompanied by a manually labeled annotation, i.e., a pixel-wise
labeled mask of the surgical tool.

Section 2.1 describes the baseline synthetic image generation process combining
synthetic tool and background images. For this process, a total of 354 images containing
only surgical environment pixels and no surgical tools pixels were selected as background
baselines. Within this baseline set of images, six categories were defined based on color
composition. In total, 30,000 baseline synthetic images (i.e., synthetic tool combined with
background image) were generated with uniform color theme distribution, and are denoted
as S .

3.2. System Workflow

The baseline synthetic images in S , as described in Section 2.1, exhibit realistic surgical
tool pixel placement in the spatial and morphological sense. Tool pixel colorization for
baseline images in S is uninformed of the background. To better mimic realistic endoscopic
data, tool pixels must be modified to reflect the surgical environment as depicted by the
surrounding background. This research presents a reliable method for enhancing synthetic
baseline images in S into realistic ones with life-like tool pixel colorization.

In general, the approach is GAN-driven with domain transfer between R and S ,
and several modifications of the CycleGAN code base [96] are experimentally evaluated.
Empirically, Strategy III described in Section 2.2 was found to return the best synthetic
image enhancement results. Thus, the following experiments were conducted to quantify
the utility of GAN-generated synthetic images using Strategy III. Note that since the
CycleGAN approach is bidirectional, a byproduct set of images denoted GS are generated
as well, as depicted in Figure 5.
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Image Level Loss Functions

Component Level Loss Functions
Generators

Discriminators

Binary Mask Cycle Loss

Content Loss Style Loss

Figure 5. Flowchart diagram depicting Strategy III loss structure. LDr , LDs , LF3 , and LG3 represent
the loss functions used for Dr, Ds,F , and G, respectively.

The GAN-driven synthetic image generation procedure ideally extends the scope of
otherwise limited endoscopic surgical image data sets with additional training data. If the
data are realistic enough, training using the synthetically generated images should result
in improved segmentation of real test images. The goal of the experimental tasks was
to analytically verify that incorporating the synthetic images into training does indeed
increase segmentation performance during testing. This experimental system workflow of
this study can be found in Figure 6.

3.3. Implementation Details
3.3.1. CycleGAN Image Generation

To train the GAN-driven synthetic image generation model using strategies described
in Section 2.2, a total of 5965 training images from each of the two domains, real imagesR
and baseline synthetic S , were randomly selected. Note that training images from domain
R were chosen from a random mix of cadaver and live endoscopic images. Meanwhile,
the hyperparameters including adaptive base learning rate of 0.0002, max step of 200, pool
size of 200, and λ of 10 were heuristically tuned for best performance. The GAN models
were then tested on 88 images per domain.
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Figure 6. The GAN-driven synthetic image generation framework for endoscopic surgical
tool segmentation.

3.3.2. UNet Image Evaluation

The nine experiments as described in Table 1 were evaluated on the same UNet
structure. Specifically, the hyperparameters were set to 50 epochs, 100 steps per epoch,
2 batches, Adam’s optimizer learning rate of 0.0001 for optimal results and the binary
crossentropy loss was set as the cost function.

The 300 real training images selected fromR were consistent across Exp. 1 through
8. Two test sets were set aside to evaluate the UNet performances using the designated
training set mixtures. In particular:

• Test Set A contains 100 random mix of cadaver and live endoscopic images inR;
• Test Set B contains 100 selected real image frames fromR that neighbor the 300 real

training images in the University of Washington Sinus Dataset video sequence.

4. Results

Two widely accepted and commonly used image segmentation metrics were employed
to evaluate performance of the UNet tool segmentation and thus usability of the proposed
GAN-driven synthetic image generation framework in surgical tool segmentation tasks:

1. Dice coefficient [100];
2. Intersection over Union (IoU) score [101].

The average Dice and IoU scores segmenting the test set with varying training set
synthetic composition is shown in Figure 7.
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Figure 7. Average Dice and IoU scores for tests on Test Set A as a greater percentage of the training
set is composed of synthetically generated endoscopic images using the presented method. Traces
are logistic regression fits to the data.

Figures 8 and 9 depict the evaluation histograms for Dice Coefficient and for IoU,
while Figure 10 shows sample predictions across Exp. 1–9. The mean and median scores
are summarized in Table 2.

Table 2. Experimental segmentation performance results.

Metric Training Loss Dice Coeff.

Exp Mean Mean Median Mean Median

1 0.130 0.487 0.454 0.447 0.416
0.824 0.920 0.776 0.856

2 0.202 0.505 0.457 0.452 0.416
0.821 0.913 0.772 0.844

3 0.283 0.511 0.475 0.453 0.434
0.825 0.904 0.771 0.830

4 0.336 0.575 0.485 0.505 0.459
0.701 0.719 0.637 0.596

5 0.289 0.614 0.498 0.543 0.471
0.746 0.791 0.681 0.676

6 0.332 0.495 0.463 0.444 0.421
0.576 0.486 0.525 0.452

7 0.325 0.655 0.645 0.575 0.525
0.584 0.499 0.524 0.473

8 0.308 0.661 0.654 0.584 0.527
0.566 0.483 0.513 0.449

9 0.321 0.650 0.633 0.575 0.514
0.524 0.455 0.487 0.418

The scores displayed with white background denote results from Test Set A, and those with gray tinted back-
ground indicate results from Test Set B. The best performances within each test set and metric are specified with
blue text.
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Figure 8. Histograms and distribution curves of the Dice coefficients of Exp. 1–8 and Exp. 8,9
evaluated on Test Set A and Test Set B.

These results indicate that the composition in Exp. 1 resulted in the least training loss
and the best performance on Test Set B, while Exp. 8 achieved the best scores on Test Set A.

5. Discussion

The experimental results summarized in Table 2, Figures 8 and 10 lead to several
observations about the training image compositions and segmentation performances on
the two test sets. These are described below.

5.1. Dilution of Real Training Images

Test Set A is an unbiased analysis of the UNet model segmentation performance with
random endoscopic data samples, while Test Set B provides an indication of model perfor-
mances for segmenting images similar to the real training images. From Exp. 1 through
Exp. 9, the training set was augmented with increasing proportion of randomly selected
synthetic images. As such, greater variance is introduced into the training set, and hence
the trained model is more generalizable. The segmentation performance enhances with
increased synthetic data augmentation using Test Set A. On the other hand, the 300 real
training image samples are increasingly diluted within the training set with increasing Exp.
number. Thus, the trained models perform progressively worse on test images similar to
the original real training images, i.e., Test Set B.
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Figure 9. Histograms and distribution curves of the IoU scores of Exp. 1–8 and Exp. 8,9 evaluated on
Test Set A and Test Set B.

5.2. Overfitting with Small Training Set

In Table 2, overfitting is observed in the first few experiments, as indicated by lower
training loss, and good segmentation performance on Test Set B but poor segmentation
with Test Set A. The overfitting is also observed in the blue histograms in Figure 8, as darker
histograms perform better with Test Set A but worse with Test Set B. This overfitting issue
unfortunately is a common problem in data-driven semantic medical image segmentation
tasks when the training size is too small.

  Image           Label             Exp 1           Exp 2           Exp 3          Exp 4           Exp 5           Exp 6           Exp 7           Exp 8           Exp 9  
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Figure 10. Sample predictions from Test Set A and Test Set B in Exp. 1–9. The prediction confidence
is greater in later experiments. Images A1 and A2 show poor results in early experiments. Image B2
demonstrates a phantom 2nd tool falsely detected from Exp. 7 onward.
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Exp. 1–8 also indicate several performance trends with increased synthetic composi-
tion of training data:

• From Exp. 5 onward, a consistent negative correlation between training loss and Test
Set A scores is observed;

• From Exp. 6 onward, training loss is monotonically decreasing, Test Set A metrics
monotonically increasing;

• From Exp. 7 onward, Test Set A performance surpassed that of Test Set B.

These observations indicate that, in this experiment using 300 real training images,
the addition of 400 (Exp. 5) or more synthetic images to the training set effectively neutral-
izes detrimental variance introduced by the GAN-driven synthetic images. Furthermore,
the addition of 500 (Exp. 6) or more synthetic images steadily enhances general endoscopic
tool segmentation performance. Meanwhile, interpreting Test Set B scores as an indicator
of the training performance, Exp. 7 marks the point when the validation surpasses training
performance, and therefore when overfitting is resolved.

5.3. Training with Synthetic Images

In Exp. 1–8, the training set contained a fixed number of real images from R, with
increasing addition of synthetic images. The results show with increased proportion of
synthetic training data, an overall enhancement of segmentation performance is observed
when testing with arbitrarily selected real images, i.e., Test Set A. Furthermore, with a
purely synthetic training set, results are promising in Exp. 9 with performance of up to
0.650 Dice Coefficient, which is comparable to that of Exp. 8, the best performing training
composition for Test Set A.

5.4. Purely Synthetic Training

The results from this work indicate that GAN-driven synthetic images provided
enhanced surgical tool segmentation performance. However, the presence of real images
in Exp. 8 resulted in superior performance to models trained with purely synthetic data,
Exp. 9. This was true for both Test Set A and Test Set B measured performance, as observed
in the gold histograms in Figure 8. This suggests that a large quantity of purely synthetic
images generated per Strategy III does not completely replace the value of even a small
number of real training images.

5.5. Implications

To evaluate the practical feasibility of enhancing tool segmentation performance in
robot-assisted surgical procedures using partial-synthetic training sets, nine UNet models
were trained with different proportions of the synthetic and real images designed to address
two queries of interest as described in Section 2.3.

Based on the numerical results in Section 4 and the aforementioned analysis in
Section 5, insight is gained with regard to answering these two questions:

(i) The addition of the generated synthetic images to a small set of real images can indeed
enhance segmentation performance. To maximize this improvement, two conditions
should be followed:

(a) The test images share a broader variance than the set of available real training
images;

(b) The number of synthetic images is sufficiently large.

(ii) A large set of purely synthetic training images as generated in this work does not
eliminate the benefit of real surgical training images. With large purely synthetic
training set, performance is satisfactory.

6. Conclusions

In summary, this research showcased a promising GAN-driven approach for generat-
ing reliable synthetic training data for surgical tool segmentation. As depicted in Table 1,
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Exp. 1–8 were designed to train the UNet segmentation network with the same, high-cost
real endoscopic images and with varying number of low-cost synthetic endoscopic images
generated via the proposed method. Exp. 9 used a training set with purely synthetic images.
As shown in Table 2, the best mean Dice and IoU scores for random test images, i.e., Test
Set A, were achieved with a training set consisting of 95% synthetic images. Figure 7 shows
that addition of the generated synthetic data tends to increase performance. To summarize,
for Test Set A mean Dice and IoU scores of:

- 0.487 and 0.447 for 0% synthetic training set;
- 0.661 and 0.584 for 95% synthetic training set

were observed, respectively. This corresponds to a 35.7% and 30.6% increase. The results
are promising and suggest that the proposed method can enhance segmentation results
with limited availability of real training data. The availability of even a small amount of
real training data is still beneficial.

In this exploratory, baseline experiment, the addition of synthetic training images
generated by the novel framework were evaluated by incorporating increasing proportion
of synthetic data to the training set, which originated from a publicly available set of
endoscopic surgical images. A widely used and accepted network, the UNet, was used
identically across experimental conditions to execute the segmentation, and results suggest
that the generated synthetic data are indeed useful and benefit tool segmentation perfor-
mance. Comparable methods in the domain of endoscopic tool segmentation synthetic
image generation are not readily evaluated on the same baseline dataset. In other works,
methods may have been quantitatively evaluated only on a private dataset, or the source
code was not made available for public use to replicate and compare.

The designed experiments do provide a guideline for systematically quantifying the
usability and requirements of synthetic training data for other applications. Enhancing
surgical tool segmentation can enable broader research efforts in multicamera surgical
reconstruction [102,103] within the context of vision-based force estimation [104–106] and
other robot-assisted medical procedures.

Two possible directions to advance this study are of interest:

(a) Compare the proposed method with other synthetic endoscopic surgical image gener-
ation approaches and combinations thereof;

(b) Automate the GAN-driven synthetic image generation process to adaptively optimize
the number and distribution of training images based on training and validation sets.
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