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Abstract: Nowadays, the therapeutic efficiency of small interfering RNAs (siRNA) is still limited by
the efficiency of gene therapy vectors capable of carrying them inside the target cells. In this study,
siRNA nanocarriers based on low molecular weight chitosan grafted with increasing proportions (5 to
55%) of diisopropylethylamine (DIPEA) groups were developed, which allowed precise control of the
degree of ionization of the polycations at pH 7.4. This approach made obtaining siRNA nanocarriers
with small sizes (100–200 nm), positive surface charge and enhanced colloidal stability (up to 24 h)
at physiological conditions of pH (7.4) and ionic strength (150 mmol L−1) possible. Moreover, the
PEGylation improved the stability of the nanoparticles, which maintained their colloidal stability
and nanometric sizes even in an albumin-containing medium. The chitosan-derivatives displayed
non-cytotoxic effects in both fibroblasts (NIH/3T3) and macrophages (RAW 264.7) at high N/P ratios
and polymer concentrations (up to 0.5 g L−1). Confocal microscopy showed a successful uptake
of nanocarriers by RAW 264.7 macrophages and a promising ability to silence green fluorescent
protein (GFP) in HeLa cells. These results were confirmed by a high level of tumor necrosis factor-α
(TNFα) knockdown (higher than 60%) in LPS-stimulated macrophages treated with the siRNA-loaded
nanoparticles even in the FBS-containing medium, findings that reveal a good correlation between the
degree of ionization of the polycations and the physicochemical properties of nanocarriers. Overall,
this study provides an approach to enhance siRNA condensation by chitosan-based carriers and
highlights the potential of these nanocarriers for in vivo studies.

Keywords: gene therapy; siRNA; nanoparticles; DIPEA; physiological pH

1. Introduction

Over the last decade, advances in RNA engineering have enabled the obtaining of
small interfering RNAs (siRNA) with enhanced pharmacologic activities, which has driven
an increased interest in establishing therapeutic platforms for the treatment of several
diseases [1]. Despite improvements, the therapeutic efficiency of siRNA is still limited by
the use of efficient vectors capable of directing them to their site of action, inside the target
cells [2]. In this scenario, the use of non-viral vectors has gained prominence, especially
after the use of lipid nanoparticles in mRNA vaccines applied in the fight against the
Coronavirus Disease 2019 (COVID-19) pandemic [3] and for the transport of siRNA in the
first RNA interference (RNAi) drug approved by the US Food and Drug Administration
(FDA) in 2018 [2].
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In this context, chitosan has emerged as a non-toxic, highly biocompatible, biodegrad-
able, and low-cost polycation that is able to transport nucleic acids to target cells through the
formation of nanocarriers [4,5]. Recent studies showed that siRNA/chitosan nanoparticles
may be promising candidates for the treatment of several disorders, for example: HIV in-
fection [6], bladder cancer [7], Huntington’s disease [8], and tuberculosis [9]. However, due
to the low pKa (6.2–6.4) of its amine groups, the application of chitosan nanoparticles may
be limited in neutral/basic pH environments, such as in the blood (pH 7.4), eye mucous
(pH 7.8), and jejunum (pH 7–8) [4,10,11]. In order to overcome this limitation, some research
groups have been modifying chitosan with additional amino groups of higher pKa to in-
crease its applicability at neutral pH and the results have shown more compact, stable, and
efficient siRNA nanocarriers [12–15]. Particularly, the grafting of hydrophobic-ionizable
groups containing tertiary amines, such as diethylaminoethyl (DEAE) and diisopropylethy-
lamine (DIPEA) groups that improve the ability of chitosan as a gene therapy agent [15–17],
is highlighted.

Additionally, the efficiency of chitosan as a transfection agent is also highly dependent
on molecular weight (MW) and degree of deacetylation (DDA) [18]. It has been reported
that for the formation of stable siRNA/chitosan nanocarriers, polysaccharides 5–10 times
larger than siRNA are more appropriate, which correlates with an optimal MW in the range
of 65 to 170 kDa [5]. Additionally, Alameh and coworkers demonstrated that chitosans
having DDA higher than 92% are superior siRNA delivery systems compared to partially
acetylated ones, a result that can be attributed to the higher positive surface charge of
the nanoparticles based on highly deacetylated chitosans [18]. In addition to the charge
density, PEGylation may avoid destructive electrostatic interactions between these nanocar-
riers and the negatively charged proteins, favoring the preservation of their structural
integrity and increasing their circulation lifetime [10]. It has also been reported that deacety-
lated chitosan grafted with 2 kDa polyethylene glycol (PEG) led to non-cytotoxic siRNA
nanocarriers with enhanced stability and knockdown performance [19]. Moreover, the
same positive effect was observed when a low density of PEG chains (2 kDa) was grafted
onto polyethyleneimine (PEI) and applied to the siRNA delivery [20].

Recently, our research team has shown that the combination of chitosan with DIPEA
groups is a promising alternative for the development of siRNA nanocarriers. However,
the best transfection efficiencies were still centered at low pH values due to the higher
degrees of ionization of the derivatives [16]. Thus, this study proposed to better explore the
effect of the degree of ionization of the polycations on the physicochemical and biological
properties of the nanocarrier by studying a higher variation of DIPEA grafts (5–55%) on a
highly deacetylated chitosan, as shown in Figure 1. The derivatives were prepared using a
highly deacetylated and low molecular weight (100 kDa) chitosan sample and further grafted
with low densities of PEG (2 kDa) chains to improve the colloidal and biological performance
of nanovectors at physiological conditions, i.e., pH 7.4 and ionic strength of 150 mmol L−1.
The nanocarriers were prepared by the coacervation process and their physicochemical char-
acteristics were evaluated and discussed, focusing on the attributes favorable to transfection,
such as small size, positive surface charge, and high biological stability. Finally, the siRNA
nanocarriers were subjected to in vitro studies to evaluate their cytotoxicity, cell internalization,
and transfection efficiency by the knockdown of GFP and the tumor necrosis factor alpha
(TNFα) in HeLa cells and RAW 264.7 macrophages, respectively.
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Figure 1. Schematic representation of the synthetic route adopted to obtain chitosan diisopro-
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lies on the sensitivity of DIPEA units to pH [21]. Moreover, the grafting onto the primary 
amino groups of chitosan gives origin to secondary amino groups and this may allow 
control of the physicochemical properties of the nanoparticles at neutral pH (Figure 1). 
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deacetylation, the DDA increased from 76% (Chc) to 96% (Chd), which confirms the suc-
cess of the deacetylation reaction (Table 1). Additionally, the 13C NMR spectrum of Chc 
has a very low-intensity peak for methyl carbon (C7) of the acetyl group (δ 22 ppm), which 
indicates a high DDA [15,22]. 

Figure 1. Schematic representation of the synthetic route adopted to obtain chitosan diisopropy-
lethylamine/polyethylene glycol (DIPEA/PEG) derivatives and a symbolic representation of the
nanocarriers developed in the study through polymer/siRNA simple complexation.

2. Results and Discussion
2.1. Physicochemical Characterization of Polymers
2.1.1. Polymer Composition

The main objective of this study was to combine the diisopropylaminoethyl (DIPEA)
groups with chitosan to obtain derivatives with increasing degrees of ionization and stable
siRNA-nanoparticles at physiological conditions. The advantage of this approach relies on
the sensitivity of DIPEA units to pH [21]. Moreover, the grafting onto the primary amino
groups of chitosan gives origin to secondary amino groups and this may allow control of
the physicochemical properties of the nanoparticles at neutral pH (Figure 1). Representative
1H and 13C NMR spectra of derivatives are shown in Figure 2 and more detailed spectra
are presented in the Supplementary Information (Figures S1–S12).

The degree of deacetylation (DDA) was determined using the 1H NMR spectra and
the Equation (1),

DDA = (1−
IHAc

3IH1
)× 100 (1)

where IHAc is the area of the signal of the three methyl hydrogens (H7) of acetylglucosamine
units (δ 2.4 ppm) and IH1 is the area of the H1 hydrogen signals (δ 4.9–5.5 ppm). After
deacetylation, the DDA increased from 76% (Chc) to 96% (Chd), which confirms the success
of the deacetylation reaction (Table 1). Additionally, the 13C NMR spectrum of Chc has
a very low-intensity peak for methyl carbon (C7) of the acetyl group (δ 22 ppm), which
indicates a high DDA [15,22].
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Figure 2. (a) Representative 1H NMR and (b) 13C NMR spectra of chitosan and its DIPEA/PEG
derivatives associated with (c) the general chemical structure of polymers and (d) FTIR characteriza-
tion of chitosan and derivatives.

Table 1. Physicochemical properties of chitosan and its amined derivatives.

Polymer DIPEA-Cl/NH2
i PEG-SH/NH2

(×10−2) i DDA (%) ii DSDIPEA
(%) ii

DSPEG
(%) ii

—
Mw

(kDa) iii ÐM
iii

Chc 76 208.2 1.92
Chd

iv 96 141.1 3.02
DIPEA5Chd 0.14 4.7 113.6 3.26
DIPEA15Chd 0.44 15 98.3 2.74
DIPEA34Chd 0.76 34 83.0 2.45
DIPEA55Chd 0.97 55 90.6 2.71

PEG-DIPEA15Chd 2.0 15 v 1.7
PEG-DIPEA34Chd 2.0 34 v 1.3

i Molar ratios of DIPEA-Cl and PEG-SH relative to the amine groups (NH2) from Chd that were used in the deriva-
tives synthesis. DIPEA-Cl [2-Chloro-N,N-diisopropylethylamine hydrochloride], PEG-SH [O-(2-mercaptoethyl)-
O-methyl-polyethylene glycol]. ii Determined by 1H NMR. DDA [Degree of Deacetylation], DSDIPEA [Degree of
Substitution by DIPEA] DSPEG [Degree of Substitution by PEG]. iii Estimated by GPC. Mw [average molecular
weight] ÐM [polymer molar-mass dispersity]. iv Starting deacetylated chitosan for DIPEA-synthesis. v Determined
by non-PEGylated derivatives.

The spectra for derivatives are characterized by the appearance of a strong signal
centered at δ 1.7 ppm corresponding to methyl hydrogens of the DIPEA groups (Figure 2a).
The degrees of substitution by DIPEA (DSDIPEA) were determined using Equation (2):

DSDIPEA =
IHDIPEA

12IH1
× 100 (2)
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In this equation, IHDIPEA is the integral of the signal attributed to the 12 methyl
hydrogens of DIPEA (H12-H15) at δ 1.6–1.9 ppm. As seen in Table 1, by adjusting the
ratio DIPEA-Cl/Chd in the feed, DIPEA-chitosans with DSDIPEA in the range of 5 to 55%
(mol/mol) could be obtained, which allows a more in-depth study of the effect of DIPEA
content on the properties of chitosan as a siRNA nanocarrier. The grafting with DIPEA was
also confirmed by the low-field displacement of the H1 signal from δ 5.2 to 5.3 ppm and by
the emergence of new peaks at δ 3.5–4.5 ppm attributed to methine and methylene DIPEA
hydrogens (Figure 2a).

The derivatives were also characterized by 13C NMR and the appearance of new
signals on spectra of the derivatives are compared to the Chd spectrum in Figure 2b. The
new peaks appeared at δ 16–18 ppm, δ 42–44 ppm, and δ 55–57 ppm and are attributed to
the methylic (C12–C15), methylene (C8, C9), and methine (C10, C11) carbons from DIPEA,
respectively. Additionally, it is worth mentioning that no additional signal was observed
at δ 65 ppm [23], even for the more substituted derivative (DIPEA55Chd), confirming the
grafting at the amino groups and a good control of the polymer composition.

Selected DIPEA-derivatives were also grafted with PEG to provide stealth properties
to nanoparticles, aiming to avoid the biological interactions responsible for nanoparticles
disassembling outside cells. The degrees of substitution by PEG (DSPEG) were determined
using Equation (3), where the IHPEG refers to the area under the peak attributed to the
172 methylene protons of PEG repeating units (-OCH2CH2-), at δ 3.9–4.0 ppm [15]. The
PEG grafting was also confirmed by the appearance of a small peak at δ 3.65 ppm (Figures
S7 and S8) attributed to terminal methyl hydrogens (-OCH3) of the PEG chain [19]. As
shown in Table 1, DSPEG of both grafted derivatives was around 1.5% (mol/mol), and no
DIPEA release was observed, which confirms the success of the synthetic route adopted in
this study.

DSPEG =
IHPEG

172IH1
× 100 (3)

FTIR spectroscopy was also employed to characterize the derivatives and the spectra
for chitosans (Chd and Chc) and some selected derivatives are shown in Figure 2d. When
compared to commercial chitosan (Chc), the deacetylated sample (Chd) displays a weak
band assigned to the –C=O stretching (1650 cm−1) and the –CH symmetrical deformation
(1370 cm−1). The decreased intensities of both bands are expected, taking into account
the deacetylation reaction and this corroborates the NMR results. The substitution by
DIPEA was also confirmed by FTIR, i.e., when compared to chitosan (Chd), the FTIR
spectra of derivatives displayed a new band at 2970 cm−1 assigned to the –CH stretching
originating from the DIPEA group (Figure S17). Moreover, the DIPEA grafting led to the
decreased intensity for the –NH bending vibration band (1590 cm−1) due to the substitution
of primary amine groups [24,25].

The average molecular weights (Mw) from chitosan and its derivatives were estimated
by GPC (Figure S14) and the results are shown in Table 1. As previously reported [26],
the deacetylation reaction led to the depolymerization of chitosan chains due to reaction
conditions (high temperature and strong basic solution), which have reduced the Mw from
208 (Chc) to 141 kDa (Chd) and increased the molar-mass dispersity (ÐM). Similarly, the
molecular weights for derivatives tended to decrease upon DIPEA grafting (especially
for the more substituted ones), a sign that main chain degradation took place during the
chemical modification of Chd, as earlier reported for DEAE-chitosan [27]. Another relevant
effect of MW may be observed in the synthesis of derivatives when the data in Table 1 are
compared to previous results reported by our research group [16] for DIPEA-chitosans of
higher MW (200 kDa), i.e., under the same experimental conditions, chitosans of high MW
need to be fed with more DIPEA-Cl (about 20–30%) to originate DIPEA-chitosans with the
same DSDIPEA of derivatives listed in Table 1, which have about 100 kDa.



Mar. Drugs 2022, 20, 476 6 of 24

2.1.2. Compositional Effects on the Degree of Ionization (α) and Buffering Capacity (BC)

The degree of ionization (α) of polycations is closely related to the surface charge of
their nanoparticles, impacting directly their physicochemical and biological properties. For
instance, while a high positive charge density on polycations favors the complexation of
nucleic acid, it may increase the toxicity, while nanoparticles with low charge density may
have their cell uptake and colloidal stability reduced [28]. In this study, the α of derivatives
is highly dependent on DIPEA content, especially for higher pH values. The degrees of
ionization were determined based on the conductivity titrations of the derivatives. The
conductivity traces (Figure 3a–c) allow the detection of the starting and the ending points
for the deprotonation of the amino groups. The last break in the conductivity traces
corresponds to the complete deprotonation of the tertiary amino groups, which occurs
near a pH of 10 and this is consistent with a pKa of 8.5 reported for diisopropylamino
groups [29]. The degrees of ionization calculated using Equation (4) (Section 3.2.8) are
shown in Figure 3d and reveal that, at physiological pH (7.4), the low α of chitosan (6.1%)
increased to 13%, 29%, 41%, and 64% for DIPEA5Chd, DIPEA15Chd, DIPEA34Chd, and
DIPEA55Chd, respectively. In addition, it is worth mentioning that at pH 6.4 deacetylated
chitosan is about 50% ionized, in accordance with the reported pKa value for its primary
amine groups [5]. Due to the grafting by DIPEA groups, derivatives had a clear increase
in their solubility at neutral pH when compared to unsubstituted chitosan that formed
visible aggregates (Figure S16 Supplementary Information). It has been reported that the
interaction of nanoparticles with the endosomal membrane plays an important role in the
endosomal escape rate [30,31]. Thus, decreases in pH during the endocytosis [32] may
increase the surface charge of nanoparticles, favoring their interaction with the endosomal
membrane and the release process.
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Considering that chitosan nanoparticles are internalized mainly via acid endocytic path-
ways [19,33] and that polycations that having great buffering capacities (BC) may provide an
enhanced endosomal escape of the therapeutic genes by the proton sponge hypothesis [34],
the BC of DIPEA-chitosan derivatives was also qualitatively evaluated (Figure 3e). Except for
DIPEA55Chd, all derivatives displayed a BC higher or similar to unmodified chitosan in the
pH range from 7.4 to 6.8 (highlighted in Figure 3e), which corresponds to an initial pH decay
during the acidic endocytic pathway [35]. The improvement of BC in this pH range may be
promising in providing siRNA with an earlier endosomal escape.

2.2. Effect of the Degree of Ionization on the Physicochemical Properties of Nanoparticles
2.2.1. Electrophoresis

The polycation–siRNA interaction and the coacervation process to form nanoparticles
is mainly driven by electrostatic attraction between the negatively charged siRNA molecules
and the polycations [36]. The siRNA loading is very dependent of charge ratios (N/P ratio)
in the nanoparticle core, i.e., if there are not enough positively charged amines to neutralize
the phosphate groups of the nucleic acid, not all of the siRNA will be efficiently loaded
by the vector and the resulting complex will have a negative charge [5,37]. Hence, an
electrophoretic mobility study can be used to detect compositions (charge ratios) at which
the siRNA is not efficiently complexed, which would result in formulations with low
therapeutic potential [38].

At pH 7.4, the deacetylated chitosan (Chd) was not able to retain the siRNA in any of
the N/P ratios studied and siRNA was released from all wells (Figure 4a). However, for
nanoparticles formulated with DIPEA5Chd, DIPEA15Chd, DIPEA34Chd, and DIPEA55Chd,
siRNA was completely retained at decreasing N/P ratios (7.0; 5.0; 3.0, and 3.0, respec-
tively) which is consistent with the increasing degrees of ionization for these polycations
(Figure 4b). The similar siRNA release for nanoparticles formulated with DIPEA34Chd and
DIPEA55Chd, even having different ionization at pH 7.4, suggests that besides electrostatic
interaction, conformational changes on the polymer chain may affect the condensation
process and the strength of interaction.

The PEGylated derivatives (PEG-DIPEA15Chd and PEG-DIPEA34Chd) had the same
siRNA release behavior as non-PEGylated ones (Figure 4a), indicating that DIPEA sub-
stitution enabled chitosan to dampen the negative effect associated with PEGylation, i.e.,
in general there is a decrease in the strength of the interaction between polycations and
siRNA due to the steric hindrance exerted by the PEG chains [5,20].

Overall, these results make clear the positive effects of DIPEA grafting showing the
gradual strengthening of the siRNA/polycation interactions, which may be an advantage
compared to chitosan that, under physiological pH, interacts weakly with siRNA molecules
providing unstable particles at low N/P ratios.

2.2.2. Effect of the Degree of Ionization and PEGylation on Nanoparticle Properties: Size,
Morphology, Surface Charge, and Colloidal Stability of Nanocarriers

The control of the surface charge, size, and stability of nanocarriers is pivotal for
obtaining promising vectors for gene therapy. In general, siRNA nanocarriers with sizes
smaller than 500 nm, slightly positive zeta potentials, and the ability to avoid unwanted
interactions during the in vitro application are more prone to efficiently transport the
siRNA, to be internalized by cells and to provide high knockdown levels [39,40]. For
chitosan nanoparticles, these characteristics depend greatly on the N/P ratio, pH, and ionic
strength in which they are prepared [18,41].

To adjust the properties of the nanoparticles for in vivo applications, their formulations
were prepared and evaluated at pH 7.4 and ionic strength of 150 mmol L−1. For the siRNA
carriers based on DIPEA-chitosan, the N/P ratios needed to obtain vectors on a nanoscale
decreased with increasing DSDIPEA. Concurrently, the zeta potential (ζ) of nanocarriers
increases with the DIPEA content, in close agreement with the degree of ionization of the
polycations (Figure 5). Nanoparticles smaller than 250 nm were obtained only when the
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N/P ratio was positive, i.e., the condensation process is efficient only after negative charges
of siRNA molecules had been completely neutralized. Moreover, the PEG graft induced
changes to ζ and mainly to the hydrodynamic diameter (Dh) of nanoparticles and, also,
nanoparticles formulated with PEGylated derivatives were smaller than 200 nm, using 50%
less polymer than the non-PEGylated ones (Figure 5a vs. Figure 5b). These nanoparticles
had low polydispersities (Figure 5f), and values smaller than 0.2 were often obtained.
Overall, while nanoparticles formulated with PEGylated-only chitosan (PEG-Chd) formed
complexes composed of large aggregates with a negative charge surface (Figure S18),
the derivatives have formed nanoparticles with promising sizes (100–200 nm) and zeta
potentials (6–12 mV) to be applied as vectors for gene therapy. Notably, the importance
of the degree of ionization (α) of these derivatives for obtaining nanovectors of adequate
Dh and ζ was also observed in a previous study [16], in which it was shown that high
MW DIPEA-chitosans with low DSDIPEA (15%) are more prone to formulate efficient siRNA
nanocarriers (with small size, positive ζ, and improved stability) at pH 6.3 (α ≥ 80%) than at
pH 7.4 (α < 35%), due to an increasing degree of ionization with decreasing pH.
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Figure 5. (a,b) Hydrodynamic diameter, (c,d) Zeta potential, and (e,f) polydispersity of nanoparticles
assembled with DIPEA (left) and DIPEA/PEG (right) derivatives with siRNA at an increasing N/P
ratio in phosphate buffer (pH 7.4 and I = 150 mmol L−1). The red arrows (a,b) indicate some changes
in the size of PEG/DIPEA-nanoparticles compared to non-PEGylated vectors.

SEM-FEG microscopy images (Figure 6a,b) pointed to nanoparticles with spherical-
like morphologies and sizes in accordance with the light scattering analysis (100–200 nm),
results that are very close to those reported for siRNA nanoparticles formulated with DEAE-
chitosans at lower pH values [15,17]. Spherical nanoparticles may have favored cellular
uptake in comparison to cubical and rod-shaped nanoparticles [42]. Additionally, the cellular
uptake may be enhanced by using positively charged nanoparticles that interact with the
endosomal membrane during their internalization [43]. When the DIPEA34Chd nanoparticles
formulated at N/P ratio 10 were evaluated at pH 6.3 (early endosome pH), their zeta potential
(17.6 mV) was almost twice as high as that at pH 7.4 (9.6 mV), which suggests a favored
interaction with the internal endosomal membrane during the acid internalization pathway,
in agreement with the ionization results discussed above (Figure S19).
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To evaluate the stability of nanoparticles in solution, their hydrodynamic diameter
was monitored over time in the presence and absence of bovine serum albumin (BSA).
At N/P ratio 10, nanoparticles displayed slightly positive zeta potentials (Figure 5c,d),
Dh smaller than 250 nm (Figure 5a,b) and a complete siRNA entrapment (Figure 4a).
So, this N/P ratio was chosen for the stability studies carried out under physiological
conditions (pH 7.4 and ionic strength of 150 mmol L−1), as shown in Figure 6. Contrary to
deacetylated chitosan, which forms large aggregates at pH 7.4 [15], the DIPEA-derivatives
formed siRNA nanocarriers with good colloidal stability proportional to the DSDIPEA and
further improved by the PEGylation. In the absence of BSA, DIPEA15Chd nanoparticles
displayed poor stability characterized by the occurrence of large aggregates (greater than
1000 nm) in the first 30 min after their preparation. Although the PEGylation version
(PEG-DIPEA15Chd) had prolonged the stability of nanoparticle sizes for up to 2 h of
analysis, after 24 h, the sizes increased to micrometers (Figure 6c). On the other hand,
the most substituted chitosans (PEG-DIPEA34Chd and DIPEA55Chd) were able to keep
their small sizes (100–200 nm) even after 24 h of analysis, with polydispersities lower than
0.4, suggesting that degrees of ionization higher than 40% are more appropriate to confer
stability at neutral pH at physiological ionic strength (Figure S20).

The adsorption of proteins is one of the major obstacles faced by nanoparticles during
their biodistribution, since it may alter their physicochemical properties and favor their
destruction via an opsonization process that lowers the vector transfection efficacy [44].
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Hence, the interaction between nanoparticles and albumin (40 g L−1) was probed by moni-
toring the size distribution of nanoparticles/BSA solution over time under physiological
conditions [45]. The experiment was performed using the most substituted DIPEA-chitosan
derivatives and their PEGylated versions. The nanoparticle size traces show a BSA peak
centered at 8 nm and the non-PEGylated version of DIPEA34Chd nanoparticles showed
a peak centered at 600 nm corresponding to BSA/nanocarrier aggregates (Figure 6d–f),
while, for the PEG-DIPEA34Chd, no aggregates were observed and the sizes remained
between 100 and 200 nm, even after four hours of study, indicating an inhibition of the
BSA/nanoparticle interactions (Figure 6e). The BSA adsorption is expected considering that
the number of negatively charged groups on the BSA molecule increases with pH, therefore
interaction with positive surfaces cannot be neglected, since the BSA charge at pH 7.4 is
slightly negative [46]. Interestingly, the size distribution of nanoparticles formulated by the
most substituted derivative (DIPEA55Chd) was minimally affected by BSA presence, i.e., the
peak attributed to nanoparticles was kept centered at 100–200 nm and no larger structures
were observed, even after four hours of incubation (Figure 6f). These results indicate that
DIPEA helps to maintain the structure of the nanoparticles and the vectors with the highest
DIPEA content are the most promising to remain stable in biological systems.

2.3. In Vitro Studies of Polymers and Nanoparticles
Cytotoxicity, Cellular Uptake and Gene Knockdown

The cytotoxicity is one of the essential biological properties that limits the application of
polycations as nucleic acid carriers. While non-viral vectors based on synthetic polycations
such as PEI, poly(amidoamine) and poly(B-amino ester) may exhibit a more prominent
cytotoxicity [47–49], chitosan is known for its good cytocompatibility [5]. The cytotoxicity
of chitosan derivatives and their nanoparticles were evaluated in RAW 264.7 and NIH/3T3
cell lines using the MTS assay (Figure 7). Both cell lines displayed viabilities close to 100%
even after their treatment with polycation concentrations up to 0.5 g L−1. For nanoparticles,
the viabilities remained above 80% after their incubation with nanoparticles formulated at
an N/P ratio of 10. Moreover, compared to previous studies, while 0.3 g L−1 of chitosan
substituted by 57% of DEAE led to cell viabilities at about 60%, in the presence of a
DIPEA55Chd (0.5 g L−1) derivative, they remained near to 90%, which suggests that DIPEA
derivatives are less cytotoxic and their vectors more suitable for gene therapy [50].

Aiming at evaluating the internalization of the nanocarriers by RAW 264.7 macrophages,
the vectors were loaded with siRNAs labeled with fluorophores groups (FAM or Cy5) and
the cells were evaluated by confocal microscopy (Figure 8). Due to its size and negatively
charged backbone, the free siRNA was not able to enter the cells (Figure 8a upper panel).
However, when carried by lipofectamine and by chitosan derivatives, red dots (siRNA-Cy5)
could be clearly observed around the nuclei of cells. Additionally, unlike lipofectamine,
the siRNA carried by DIPEA-chitosans tended to be distributed more throughout the
cytoplasm of the cell. The same behavior was observed for siRNA-FAM transported by
PEG-DIPEA15Chd labeled with RITC (Figure 8b), i.e., the siRNA (green dots) extended
throughout the whole cytoplasm area, as well as the polycation labeled with rhodamine (red
dots). Moreover, the merged image revealed some yellow dots in the cytoplasm, provided
by the green (siRNA) and red (polymer) dots overlap, which indicates the presence of intact
nanoparticles in addition to the presence of free siRNA and polymer. This result suggests
that the nanoparticles can be disassembled at different times inside the cell, so the siRNA is
being continuously released by the nanoplatforms developed in this study.

The potential of DIPEA-chitosan derivatives as siRNA nanocarriers was evaluated by
the GFP and TNFα knockdown in HeLa and RAW 264.7 cells, respectively (Figures 9 and 10).
After the treatment of HeLa-GFP with PEG-DIPEA15Chd nanoparticles loaded with siRNA
anti-GFP, GFP was not visible in several cells, as indicated by the red arrows in the confocal
microscopy images (Figure 9). Moreover, when the GFP area in the images were measured
and normalized by the DAPI area, a reduction of about 30% in GFP expression was seen for
HeLa treated with PEG-DIPEA15Chd nanoparticles in comparison with non-treated cells, a
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value very close to the lipofectamine result (Figure S23). This result strongly suggests the
efficient internalization of carriers displayed in Figure 8b, and reinforces the potential of
PEG-DIPEA15Chd as a siRNA nanocarrier.
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The nanoparticles formulated with the most substituted derivatives (DIPEA34Chd
and DIPEA55Chd) and that have exhibited the most promising physicochemical properties,
i.e., improved siRNA condensation, small sizes, positive surface, and enhanced colloidal
stability, were tested for their ability to knockdown the TNFα cytokine (Figure 10a). The
expression of TNFα cytokine by RAW 264.7 cells was evaluated using the ELISA assay
and compared with cells treated with LPS only (100% of TNFα expression). In general,
the results showed that gene knockdown is dependent on the N/P ratio, DSDIPEA, and
the PEG grafting. The transfection efficiency mediated by non-PEGylated derivatives
(DIPEA34Chd and DIPEA55Chd) was greatly dependent on the N/P ratio and a significant
knockdown of TNFα was observed only for N/P ≥ 5.0. These results correlate well with
the physicochemical properties observed for nanoparticles, which exhibited positive zeta
potentials of about +10 mV and Dh values in the range of 100–250 nm only for N/P ratios
higher than 5 (Figure 5). In addition, it is noteworthy that, although the physicochemical
properties of the nanoparticles were mainly influenced by the degree of ionization of
the polycations (as shown in the sections above), all DIPEA-chitosans showed buffering
capacity at endosomal pH range (Figure 3), thus the increase of polymer concentration
to formulate the nanocarriers at high N/P ratios may favor the endosomal escape of the
nanovectors by the proton sponge hypothesis, since the buffering capacity is proportional
to the non- protonated amino groups at neutral pH. At N/P ratio 10, the increase in DSDIPEA
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content, from 34 to 55%, promoted a decrease of about 30% in TNFα expression. Besides,
PEGylation provided a significant improvement in transfection efficiency of DIPEA34Chd
and the knockdown was increased from 25% to 65% (N/P ratio 10), suggesting that both
the decrease in size and the increase in colloidal stability were responsible for the higher
efficiency of the PEG-DIPEA34Chd nanoparticles. Moreover, in the presence of the FBS
proteins, PEG-DIPEA34Chd and DIPEA55Chd derivatives built siRNA nanoparticles that
were able to reduce TNFα expression by 50–65% when compared to LPS-treated cells
only, which is consistent with their resistance to protein adsorption displayed in Figure 6,
and with their significant cell uptake observed by confocal microscopy (Figure 8). On
balance, these results have confirmed that chitosan can be associated with DIPEA and PEG
groups for formulating promising siRNA nanocarriers at physiological conditions (pH 7.4,
I = 150 mmol L−1) that are worthy of evaluation in in vivo studies.
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Figure 8. Confocal microscopy images of RAW 264.7 macrophages after their treatment (a) with
siRNA-Cy5 only or carried by the lipofectamine or by the DIPEA-derivatives, (b) and with nanocar-
riers formulated by siRNA-FAM and RITC/PEG-DIPEA15Chd derivative. All nanocarriers were
formulated at N/P ratio 10 under physiological conditions (pH 7.4 and I = 150 mmol L−1).
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anti-GFP at N/P ratio 10 (pH 7.4 and I = 150 mmol L−1). The red arrows indicate cells at which there
was no GFP observed. Scale bar: 20 µm.
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Figure 10. (a) Transfection study based on the expression of TNFα protein (measured via ELISA assay)
by RAW 264.7 cells after their treatment with nanoparticles loaded with siRNA anti-TNFα (n = 3).
The percentage of TNFα protein production was expressed by comparison with the cells only treated
with LPS (100% TNFα protein production). (b) Schematic representation of nanoparticle-mediated
TNFα knockdown. Note that all nanocarriers were formulated under physiological conditions of pH
(7.4) and ionic strength (150 mmol L−1). Statistical analysis (a) was performed using the unpaired
Student test (at a significance level of 0.05) and comparisons between the only LPS-treated cells and
the cells treated by siRNA/nanoparticles (black symbols) are shown and, also, between the same
samples in the presence and absence of FBS (red symbols). ** p < 0.01, *** p < 0.001, and NS = no
significant differences between the means.

3. Materials and Methods
3.1. Materials

The commercial chitosan (Chc) was obtained from Polymar (Fortaleza, Brazil). O-(2-
mercaptoethyl)-O-methyl-polyethylene glycol (PEG-SH) 2 kDa, 2-Chloro-N,N-diisopropyleth
ylamine hydrochloride (DIPEA-Cl), bovine serum albumin (BSA), cellulose membrane
dialysis of MWCO 14 kDa, deuterium chloride (DCl), deuterium oxide (D2O), high glucose
DMEM medium, fetal bovine serum (FBS), MISSION® siRNA labeled with cyanine (Cy5) or
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5′-carboxyfluorescein (FAM), N-Succinimidyl 3-(2-pyridyldithio) propionate (SPDP), rho-
damine B isothiocyanate (RITC), and sodium dodecyl sulfate (SDS) were purchased from
Sigma-Aldrich (St Louis, MO, USA). EDTA sodium salt, monobasic and dibasic phosphate
salts, potassium chloride, sodium chloride, sodium hydroxide, and tris(hydroxymethyl)
aminomethane were purchased from Dinâmica (São Paulo, Brazil). Dimethylsulfoxide
(DMSO), glacial acetic acid, hydrochloric acid, and methanol were purchased from Synth
(Diadema, Brazil). Antibiotic-antimycotic solution (10,000 units mL−1 of penicillin, 10 g L−1

of streptomycin, and 25 µg/mL of amphotericin B), dialysis membrane of MWCO 3.5 kDa,
Lipofectamine™ 2000, siRNA anti-GFP, and siRNA anti-TNFα sequence (5′-3′) sense
CGUCGUAGCAAACCACCAAtt, and antisense UUGGUGGUUUGCUACGACGtg were
purchased from Thermo Fisher (Madison, WI, USA). RAW 264.7 [15,51] and HeLa-GFP [52]
cell lines were obtained from BCRJ (Banco de Células do Rio de Janeiro, Brazil). NIH/3T3
fibroblasts [16,53] were obtained from ATCC® (Virginia, USA). A CellTiter96® Aqueous
One Solution kit composed of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium (MTS) and a phenazine ethosulfate (PES) was purchased
from Promega Corporation (Fitchburg, MA, USA). A Murine TNFα standard TMB ELISA
development kit was obtained from Peprotech® (Cranbury, NJ, USA).

3.2. Polymers: Synthesis and Characterization
3.2.1. Deacetylated Chitosan

The commercial chitosan (Chc) was deacetylated as previously described [54] to obtain the
starting chitosan (Chd), which was then used for the synthesis of derivatives. Briefly, 5.0 g of
Chc was solubilized in 250 mL of acetic acid (2%, v/v) under magnetic stirring overnight. Next,
300 mL of NaOH (50%, w/v) was added to the solution to obtain a finely divided aqueous
suspension of chitosan which was heated (100 ◦C) and kept in an N2 atmosphere. After
90 min under intense magnetic stirring in a reflux system, the reaction mixture was poured
into 4 L of preheated water (50 ◦C) and allowed to cool at room temperature. The resulting
deacetylated sample was washed several times with deionized water by the decantation
process until neutral pH. After that, the precipitated chitosan was recovered by filtration,
solubilized in acetic acid (250 mL; 2%, v/v), and the deacetylation process was repeated once
more aiming to obtain a high DDA for the starting chitosan. After sedimentation and filtration,
the deacetylated chitosan (Chd) was dried by lyophilization.

3.2.2. DIPEA-Chitosan Derivatives

The different DIPEA derivatives were obtained by adjusting the ratios of 2-Chloro-
N,N-diisopropylethylamine hydrochloride (DIPEA-Cl) to glucosamine of deacetylated
chitosan (Chd) according to Table 1. The procedure adopted for DIPEA34Chd synthesis is
described below. First, 584 mg of Chd was solubilized under magnetic stirring in 36 mL
of 0.1 mol L−1 HCl overnight. Then, the solution was heated to 70 ◦C and the pH was
adjusted to pH 12 with 5 mol L−1 NaOH. Next, 526 mg of DIPEA-Cl was added into the
reaction mixture and kept under intense magnetic stirring for 90 min (at 70 ◦C). During the
reaction time, the pH was monitored and 5 mol L−1 NaOH was added whenever necessary
to maintain the pH at 12. The polymer was purified by dialysis (MWCO 3.5 kDa) on the
first day against NaOH (0.05 mol L−1) and on the following days against deionized water,
with a daily change of solvent until neutral pH. Finally, the polycation was recovered by
lyophilization. All other DIPEA-chitosan derivatives were obtained by the same procedure.

3.2.3. PEGylated Chitosan Derivatives by Disulfide Bonds

The chitosan derivatives were grafted with 2 kDa O-(2-mercaptoethyl)-O-methyl-
polyethylene glycol (PEG-SH) by activation with N-succinimidyl 3-(2-pyridyldithio) pro-
pionate (SPDP) [15]. The procedure for PEG-DIPEA34Chd synthesis is described below.
Initially, 200 mg of DIPEA34Chd were solubilized with 10 mL of acetic acid (0.03 mol L−1)
and diluted with PBS buffer (pH 7.4) to obtain a polymer concentration of 10 g L−1. Next,
the pH of the mixture was adjusted to 7.4 with NaOH (5 mol L−1) and 3.8 mg of SPDP
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(solubilized in 1 mL of DMSO) was added dropwise into the polymeric solution and kept
under magnetic stirring at room temperature. After 3 h, 24.5 mg of PEG-SH (solubilized in
1 mL of PBS) was added to the reaction mixture and stirred for another 16 h at 40 ◦C. The
derivative was purified by dialysis (MWCO 14 kDa) against PBS and an NaOH solution
(pH 8–9) for three days with a daily change of solvent. Finally, the PEG-DIPEA34Chd
was recovered by lyophilization. Other PEG-grafted derivatives were obtained by the
same procedure. In this reaction, the molar ratio between the PEG-SH and the polymer
primary amine groups (NH2) was fixed at 0.02 and the PEG-SH/SPDP ratio was fixed at
1.0 (Table 1).

3.2.4. Rhodamine-Labeled Chitosan Derivative

Aiming to evaluate the internalization of the nanoparticles by the cells, a chitosan
derivative was labeled with rhodamine B isothiocyanate (RITC) following a previously
reported method [55,56]. Then, 120 mg of PEG-DIPEA15Chd was solubilized in 15 mL
of acetic acid (0.1%, v/v) and the pH of the solution was set at 6.2 by the addition of
0.1 mol L−1 NaOH. Next, 3.5 mL of a methanolic RITC solution (0.2%, m/v) was added
dropwise to the mixture and kept under magnetic stirring in an N2 atmosphere for 18 h.
After that, the polymer was purified by dialysis (MWCO 3.5 kDa) against NaOH solution
(0.05 mol L−1) for one day and against deionized water for 10 days, with a daily change of
solvent. Finally, the RITC/PEG-DIPEA15Chd was recovered by lyophilization, washed with
acetone by a Soxhlet system, and dried at room temperature. The degree of substitution
by RITC (DSRITC) on the derivative was determined by UV-visible spectroscopy using the
RITC as the standard to build the analytical curve (Figure S13, Supplementary Information),
as previously described [56].

3.2.5. Hydrogen (1H) and Carbon (13C) Nuclear Magnetic Resonance (NMR) Spectroscopy

The polymer compositions were determined by 1H NMR spectroscopy using a 400 MHz
400/54 Premium Shielded NMR spectrometer (Agilent Technologies, Santa Clara, CA,
USA) at 70 ◦C, with a 4.0 s acquisition time and relaxation delay of 1.0 s. For each spectrum,
about 64 or 128 scans were accumulated. The 13C NMR analysis of selected polymers was
performed at 20 ◦C on a 400 MHz Avance II NMR spectrometer (Bruker, Billerica, MA,
USA) at a 13C-frequency of 150.9 MHz with a 12◦ pulse width. The acquisition time was
0.4 s with a relaxation delay of 2.0 s. For each 13C NMR spectrum, about 20,000 scans were
accumulated. In both analyses, the samples were solubilized in DCl/D2O (1:20) to obtain a
polymer concentration of 10 g L−1 (1H NMR) or 70 g L−1 (13C NMR). Before dissolution,
the polymers were dried at 60 ◦C under reduced pressure.

3.2.6. Fourier Transform Infrared (FTIR)

The starting chitosan and selected DIPEA derivatives were analyzed with a Vertex 70
Attenuated total reflectance—Fourier transform spectrometer, (Bruker, Ettlingen, Germany).
The polymeric samples were dried at 60 ◦C under reduced pressure and kept inside a
desiccator for four hours before analysis. For each sample, 32 scans were collected at
4 cm−1 resolution from 4000 to 400 cm−1 and the spectra were analyzed with the OriginPro
8.5 software.

3.2.7. Gel Permeation Chromatography (GPC)

The GPC was used to estimate the molecular weights and molar-mass dispersity
(ÐM) of the polymers, using monodisperse pullulan samples with molecular weights
ranging from 6.2 to 805.0 kDa as standard to build the analytical curve (Figure S14,
Supplementary Information). The measurements were carried out on an LC-20A chro-
matograph with RID-10A refractive index detection (Shimadzu, Kyoto, Japan). Two linked
columns (SB-803 HQ and SB-805-HQ, Shodex, New York, NY, USA), with dimensions of
0.8 cm × 30 cm, were applied for the separation of the polymeric chains. The polymers
were dissolved in acetic buffer (0.3 mol L−1 acetic acid/0.2 mol L −1 sodium acetate) pH 4.5
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at a final concentration equal to 5 g L−1. The analysis was performed using the same acetic
buffer as eluent with a flow rate of 0.8 mL min−1 and at a temperature of 40 ◦C.

3.2.8. Ionization Degree and Buffering Capacity

The degree of ionization (α) and the buffering capacity (BC) were evaluated by conducto-
metric and potentiometric titrations. First, the proper amount of polymer (previously dried
under reduced pressure at 60 ◦C) needed for the 2.4 × 10−4 mol of amine groups were solubi-
lized in 40 mL of HCl (0.1 mol L−1) with the ionic strength adjusted to 150 mmol L−1 with
NaCl. Next, the polymeric solutions were titrated with a standardized NaOH (0.1 mol L−1)
solution and the pH and conductivity were monitored. The BC was estimated by the NaOH
consumed in a specific pH range, based on the acid-base titration curve. The α as a function of
pH was estimated using Equation (4), where VX is the volume of NaOH added to achieve
a specific pH value and V1 and V2 are the volumes at the beginning (α = 100%) and the end
(α = 0) of the deprotonation process, respectively. Both titrations were performed at the same
time to obtain V1 and V2 (conductometric) and pH (potentiometric).

α = [1− (VX −V1)

(V2 −V1)
]× 100 (4)

3.3. Nanoparticles: Formulation and Characterization
3.3.1. siRNA Nanoparticle Formulation

Nanoparticles were self-assembled following the complexation method [19,57]. First, a
stock solution (approx. 1.0 g L−1) was prepared by the solubilization of the polymer sample
in 0.1 mol L−1 HCl followed by its dilution in a 50 mmol L−1 phosphate buffer pH 7.4,
whose ionic strength (I) was set to 150 mmol L−1 with NaCl. Next, the appropriate volume
of this polymeric stock solution was vortexed with siRNA in phosphate buffer to build the
nanocarriers, which were kept at room temperature for 30 min before measurement. The
final concentration of siRNA in the nanocarrier solution varied from 0.37 to 3.70 µmol L−1,
depending on the analysis. The volume of the polymeric stock solution was adjusted to
build nanoparticles at varied N/P ratios (N = amino groups of polymer, P = phosphate
groups of siRNA), calculated using Equation (5). Where nsiRNA is the number of siRNA
moles in the solution and the term 42 refers to the number of phosphate groups per siRNA
molecule. The terms mpol and mmpol refer respectively to the polymer mass (grams) in
the solution and the average molecular mass (g mol−1) of repeating units present in the
polymer chain. β is the mean number of amino groups present in the polymer (for example,
each 100 units of DIPEA34Chd have 130 amines, then its β is 1.30). The mmpol and the β are
found based on polymer composition, which is determined by 1H NMR spectroscopy. The
nsiRNA was calculated based on siRNA concentration and its molecular mass.

N
P

=

( mpol
mmpol

× β
)

(nsiRNA × 42)
(5)

3.3.2. Electrophoresis Assay: Evaluation of siRNA-Polycation Interaction

The free siRNA and the nanocarriers formulated at an increasing N/P ratio (1 to 10)
were applied to 0.8% (m/v) agarose gel containing ethidium bromide (0.4 µg mL−1) for
siRNA staining. The volume of nanocarrier solution was fixed at 10 µL and its siRNA con-
centration was 3.70 µmol L−1. Before their application in the agarose gel, the nanocarriers
were mixed with 1.6 µL of a loading dye solution (0.25% bromophenol blue and 25% Ficoll®

400, m/v). The electrophoresis was performed at 80 V for 75 min using TAE as running
buffer. Finally, the resulting gel was documented by a UV transilluminator system.

3.3.3. Zeta Potential (ζ) and Hydrodynamic Diameter (Dh) of Nanoparticles

The zeta potential and the hydrodynamic diameter of nanoparticles were measured
using a Zetasizer Nano ZS with a red laser (λ = 633 nm) and detection optics at 173◦
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(Malvern Panalytical; Malvern, UK) at 25 ◦C. The nanocarriers were formulated with
varied N/P ratios and the siRNA concentration was fixed at 0.37 µmol L−1. The sample
volume was set at 1 mL and the results were expressed as the mean ± SD based on three
independent replicates. The Dh measurements were based on Z-average size. Aiming to
evaluate the colloidal stability of the nanocarriers, they were formulated as described above
and their Dh was measured over time at room temperature. Additionally, to evaluate the
nanoparticle behavior in the presence of proteins, their size distribution was monitored
over time after the addition of bovine serum albumin (BSA) at a final concentration equal
to 40 g L−1. Between measurements, the samples were kept at 37 ◦C.

3.3.4. Morphology

The nanoparticles were formulated as described above for the ζ and Dh measurements
at an N/P ratio of 10. Next, 1 µL of nanocarrier solution was dripped over a silicon plate
that was kept inside a desiccator for solvent evaporation. Then, the nanoparticles were
coated with a carbon layer and evaluated by an FSM-6701F Field Emission Gun—Scanning
Electron (FEG-SEM) microscope (JEOL, Akishima, Japan). The samples were examined
under an accelerating voltage of 2.0 kV.

3.4. Biological Assays
3.4.1. Cell Culture

The RAW 264.7 murine macrophages and NIH/3T3 fibroblasts were grown in high
glucose DMEM medium supplemented with 10% (v/v) of fetal bovine serum (FBS) and 1%
(v/v) of the antibiotic-antimycotic solution (RAW 264.7 cells) or penicillin-streptomycin
(NIH/3T3 cells). HeLa-GFP cells were grown in high glucose DMEM enriched by FBS
(10%), non-essential amino acids (0.1 mmol L−1), blasticidin (20 µg mL−1), and antibiotic-
antimycotic solution (1%). All cell lines were incubated at 37 ◦C in a humidified chamber
containing a 5% CO2 atmosphere. The studies were performed with cells at subcultivation
ratios from 1:2 to 1:6.

3.4.2. Cytotoxicity of Polymers and Nanoparticles

RAW 264.7 or 3T3/NIH cells were seeded in a 96-well plate at a density of 20,000 cells
per well one day before their treatment with the nanoparticles or polymer solutions. Then,
for evaluation of polymer cytotoxicity, the culture medium was replaced by 200 µL of
polymeric solution diluted in complete medium at increasing concentrations (0.02, 0.1,
and 0.5 g L−1). For evaluation of nanocarrier cytotoxicity, the cells received 50 µL of
nanoparticle solution (formulated in phosphate buffer at varied N/P ratios) plus 150 µL of
complete medium. The final concentration of siRNA applied to cells was 200 nmol L−1.
After 24 h of incubation, the cell viability was evaluated using a CellTiter96® Aqueous
One Solution kit (Promega Corporation, Fitchburg, MA, USA) following the manufacturer
instructions. For this purpose, the medium was replaced by 100 µL of incomplete medium
plus 20 µL of MTS, the cells were incubated for 3 h and then the absorbances were measured
at 490 nm on an Elx 808 microplate reader (Agilent Technologies, Winooski, VT, USA).
The following controls were used: cells treated with 3% (m/v) sodium dodecyl sulfate
(SDS), DMEM/HCl solution, the phosphate buffer used for nanoparticle formulation, and
the non-treated cells. The cell viability was determined by comparison with non-treated
cells (100% of cell viability), and the results were expressed as the mean ± SD for three
independents assays. Statistical analysis was performed using the unpaired Student t-test
following the Holm–Sidak method at a significance level of 0.05.

3.4.3. Confocal Microscopy: Cellular Uptake and GFP Knockdown

In the cellular uptake study, RAW 264.7 macrophages were seeded at a density of
6.0 × 104 cells per well in a 24-well plate containing a square glass coverslip at the bottom
and kept overnight in incubation. The next day, the cells were washed with PBS buffer prior
to the addition of 400 µL of siRNA-nanocarrier solution plus 600 µL of incomplete medium.
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The nanocarriers were formulated at N/P ratio 10 and the final concentration of siRNA was
50 nmol L−1. Here, siRNAs labeled with cyanine 5 (siRNA-Cy5) or 5′-carboxyfluorescein
(siRNA-FAM) were used. After 4 h of incubation, the cells were fixed by 1 mL 4% (m/v)
paraformaldehyde for 15 min and nuclei stained by 1 mL of 4′,6-diamidine-2′-phenylindole
(DAPI, 1 mg L−1) for 10 min. After washing the cells with PBS, the coverslips were mounted
on glass slides containing glycerol and the images were captured by an LSM 710 microscope
(Zeiss, Oberkochen, Germany) using ZEN 2010 software.

In the GFP knockdown study, HeLa-GFP cells (6.0 × 104 cells/well) were grown in
a square glass coverslip as described above for RAW 264.7 macrophages. After washing
with PBS buffer, 400 µL of nanoparticles (N/P ratio 10, pH 7.4, and I = 150 mmol L−1) plus
600 µL of DMEM were added. In this experiment, the nanoparticles were formulated with
siRNA anti-GFP, whose final concentration was 200 nmol L−1. After 4 h of incubation, the
medium was replaced by complete medium and the HeLa-GFP cells were incubated for
another 44 h. Next, the cells were fixed, nuclei stained and analyzed as described for the
cellular uptake study of RAW 264.7 macrophages.

3.4.4. Transfection Efficiency Study

The transfection efficiency was evaluated by the knockdown of TNFα protein on
RAW 264.7 macrophages treated with nanocarriers loaded with siRNA anti-TNFα, as
previously reported [16]. Briefly, RAW 264.7 cells were seeded in a 24-well plate at a density
of 1.8 × 105 cells per well and incubated overnight. Then, the cells were washed with
PBS buffer and received 450 µL of nanoparticles/siRNA solution plus 1.35 mL of medium
(with or without 10% FBS). The nanocarriers were formulated at various N/P ratios (1 to
10) and the final concentration of siRNA was 200 nmol L−1. After 5 h of incubation, the
medium was replaced by 1 mL of complete medium and the cells were incubated for a
further 19 h. After that, the medium was removed and the macrophages received 300 µL of
complete medium with lipopolysaccharide (LPS; 100 ng mL−1) from Escherichia coli. The
plate was incubated for 4 h, then the supernatant was collected, centrifuged (12,000 RCF),
and stored (−20 ◦C) for TNFα quantification using a Murine TNFα Standard TMB ELISA
Development kit (Peprotech, Rocky Hill, CT, USA), following the manufacturer instructions.
The relative TNFα expression was determined by comparison with cells treated with LPS
only (100% of TNFα expression). As controls, cells non-stimulated by LPS and cells treated
with siRNA only were used. Experiments were performed in triplicate and expressed as the
mean ± SD. Statistical analysis was performed using the unpaired Student t-test following
the Holm–Sidak method at a significance level of 0.05.

4. Conclusions

Diisopropylethylamine-chitosan derivatives with varied compositions were synthe-
sized to develop a potential carrier for siRNA delivery. To overcome the low affinity of
chitosan with siRNA at neutral pH, the degree of ionization of the polycations was tuned
by the content of diisopropylethylamine groups. Vectors with degrees of ionization varying
from 30 to 65% were shown to form positively charged siRNA nanoparticles with good
colloidal stability at pH 7.4. The insertion of DIPEA increased the siRNA-polycation inter-
actions and allowed positively charged nanoparticles with small sizes at N/P ratios 5 and
10 to be obtained. Derivatives were also grafted with PEG and stability studies showed that
nanoparticles having spherical-like shapes retained their sizes in the range of 100–200 nm
with low polydispersities 24 h after their formulation and revealed good stability even
in a protein medium. Chitosan-derivatives and their siRNA nanocarriers showed low
cytotoxicity (cell viability above 85%) in different cell lines. Confocal microscopy showed
a successful uptake of nanocarriers by RAW 264.7 macrophages and a promising ability
to silence GFP in HeLa cells. Additionally, the siRNA nanocarriers were able to promote
TNFα knockdown in LPS-stimulated macrophages, even in FBS medium, and the results
showed close agreement with nanocarrier physicochemical properties. Overall, this study
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provides new systems based on chitosan with an enhanced siRNA condensation process
and highlights the potential of these derivatives for in vivo studies.
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tive. Figure S5. 1H NMR spectrum of DIPEA34Chd derivative. Figure S6. 1H NMR spectrum of
DIPEA55Chd derivative. Figure S7. 1H NMR spectrum of PEG-DIPEA15Chd derivative. Figure
S8. 1H NMR spectrum of PEG-DIPEA34Chd derivative. Figure S9. 13C NMR spectrum of Chd
(deacetylated chitosan). Figure S10. 13C NMR spectrum of DIPEA15Chd derivative. Figure S11. 13C
NMR spectrum of DIPEA34Chd derivative. Figure S12. 13C NMR spectrum of DIPEA55Chd deriva-
tive. Figure S13. (a) Analytical curve of Rhodamine B isothiocyanate (RITC) in acetic acid -sodium
acetate buffer pH 4.5/methanol (50:50 v/v) and (b) UV-visible absorbance spectrum of RITC/PEG-
DIPEA15Chd used to determinate the DSRITC. Figure S14. GPC chromatograms of chitosan and its
derivatives. The analytical curve was performed using pullulan standards with molecular weight in
the range of 6.2 to 805 kDa. Figure S15. Conductometric and potentiometric titrations of polymeric
solutions with NaOH 0.077 mol L−1. V1 and V2 refer to the volume of NaOH (mL) to consume
the excess of HCl and to deprotonate the amine groups from polymer, respectively. Figure S16.
Solubility of Chitosan and its DIPEA derivatives at pH 7.4 and ionic strength of 150 mmol L−1.
Figure S17. Magnification of selected bands from FTIR spectra of (a) commercial and deacetylated
chitosan, and (b,c) DIPEA-derivatives. Figure S18. (a) hydrodynamic diameter, Zeta potential and (b)
polydispersity of polyplexes formed with siRNA anti-TNFα PEG-Chd (pH 7.4, I = 150 mmol L−1).
Figure S19. (a) hydrodynamic diameter (b) Zeta potential, and (c) size polydispersity of polyplexes
formed by DIPEA34Chd (and siRNA anti-TNFα) at different N/P ratios at pH 6.3 (I = 50 mmol L−1;
Phosphate = 25 mmol L−1) and 7.4 (I = 150 mmol L−1, Phosphate = 50 mmol L−1). Figure S20. Poly-
dispersity of nanoparticles as time function. The nanoparticles were formulated at 10 N/P ratio in
a solution with pH 7.4 and I = 150 mmol L−1. Figure S21. Size distribution of free albumin (BSA)
in phosphate buffer, pH 7.4, and I = 150 mmol L−1 (n = 2). Figure S22. Size distribution curves
of nanoparticles formulated at N/P ratio 10, pH 7.4, and I = 150 mmol L−1 (n = 3). Figure S23.
(colorful) Confocal microscopy images of non-treated and treated HeLa-GFP cells with siRNA anti-
GFP-nanoparticles of PEG-DIPEA15Chd and Lipofectamine. (black-and-white) Images analyzed by
ImageJ software for the white area measurement.
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