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A B S T R A C T   

Purpose: To explore the predictive efficacy of tumor mutation burden (TMB) as a potential biomarker for cancer 
patients treated with Immune checkpoint inhibitors (ICIs). 
Methods: We systematically searched PubMed, Cochrane Library, Embase and Web of Science for clinical studies 
(published between Jan 1, 2014 and Aug 30, 2021) comparing immunotherapy patients with high TMB to pa-
tients with low TMB. Our main endpoints were objective response rate (ORR), durable clinical benefit (DCB), 
overall survival (OS) and progress-free Survival (PFS). Moreover, we downloaded simple nucleotide variation 
(SNV) data of 33 major cancer types from the TCGA database as non-ICIs group, and compared the high TMB 
patients’ OS between the non-ICIs group and meta-analysis results. 
Results: Of 10,450 identified studies, 41 were eligible and were included in our analysis (7713 participants). 
Compared with low TMB patients receiving ICIs, high TMB yielded a better ORR (RR = 2.73; 95% CI: 2.31–3.22; 
P = 0.043) and DCB (RR = 1.93; 95% CI: 1.64–2.28; P = 0.356), and a significantly increased OS (HR =0.24; 
95% CI: 0.21–0.28; P < 0.001) and PFS (HR = 0.38; 95% CI: 0.34–0.42; P < 0.001). Furthermore, compared with 
non-ICIs group from the TCGA database, immunotherapy can improve OS in some cancer types with high TMB 
and better prognosis, including colorectal cancer, gastric cancer, lung cancer, melanoma and pan-cancer. 
Conclusion: TMB is a promising therapeutic and prognostic biomarker for immunotherapy, which indicates a 
better ORR, DCB, OS and PFS. If there is a standard for TMB assessment and cut-off, it could improve the 
management of different cancers.   

Introduction 

Cancer ranks as a leading cause of death and an important barrier to 
increasing life expectancy [1], and new cases continued to rise in almost 
all countries of the world [2]. It has long been known that surgery, 
radiotherapy, chemotherapy and targeted therapy are the main treat-
ment methods for cancer. The emergence of immunotherapy has revo-
lutionized cancer treatment. Many unprecedented advances have been 
made in cancer treatment with the use of immune checkpoint inhibitors 
(ICIs). Drugs targeting the PD-1/L1 or CTLA-4 axis have become 
emerging therapies for a variety of cancers, including non-small cell 
lung cancer (NSCLC) [3], melanoma, head and neck squamous cell 
carcinoma, cervical cancer and gastric cancer, etc. [4]. 

ICIs have been widely used in cancer clinical treatment and gener-
ated durable responses, especially in those with advanced stages [3]. 
Although the safety of ICIs is acceptable, the incidence of 
immune-related Adverse Events (irAEs) is as high as 28.6− 47.4% [5], 
and the death rate caused by immune-related factors was also 0.6% [6]. 
The high cost of immunotherapy also limits the clinical application of 
immunotherapy. Therefore, it is urgent to identify appropriate bio-
markers to select cancer patients for ICIs treatment. The earliest 
biomarker used to predict the clinical effect of ICIs therapy is PD-L1 
expression level detected via immunohistochemical (IHC) [7,8]. 
Notably, PD-L1 is mainly used to predict PD-(L)1 inhibitors, and is not 
suitable for all ICIs, and its predictive efficacy changes when ICIs are 
used in combination with chemotherapy [9]. PD-L1 has also been 
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proved to be unrelated to OS in bladder cancer receiving ICIs [7]. 
Several attempts have been made to identify other predictive bio-
markers. One of the most intriguing and divisive is TMB. The higher 
TMB means the number of new antigens that can be recognized as 
non-self by T cells increases correspondingly and triggers anti-tumor 
immune response [9,10]. Many studies have revealed that high TMB is 
associated with a better prognosis in cancer patients receiving ICIs [11]. 
Recently, the FDA has approved pembrolizumab in all cancers with TMB 
> 10Mut/Mb based on the findings from the phase 2 KEYNOTE-158 
study [11,12]. Moreover, previous studies revealed that patients with 
high TMB or PD-L1 positivity were found to be nearly two separate 
populations, even TMB was better than PD-L1 expression as a biomarker 
for predicting ICIs efficacy [3,13]. 

However, practical clinical application of TMB is greeted with many 
skepticisms [11]. The dominant reason may be the existence of the 
enormous intertumoral molecular heterogeneity, and it seems impos-
sible to seek a uniform standard. Beside, there was a significant positive 
correlation between TMB and the incidence of irAEs [14]. Currently, 
TMB is generally considered to be an effective biomarker for immuno-
therapy, but different cancers have different therapy outcomes and 
prognoses at different TMB levels. Through reviewing the literature, we 
noticed an interesting problem that in patients treated without ICIs, 
pancreatic [15], breast [16] and colon [17] had a better OS in the low 
TMB group, while endometrial [18] and head and neck squamous cell 
carcinoma [19] run counter to the aforementioned. However, many 
clinical studies about immunotherapy only made a comparison among 
different TMB levels for prognostic indicators, such as OS and PFS, to 
determine the prediction effectiveness of TMB. The prognostic differ-
ence of high TMB cancer patients treated with immunotherapy or not is 
still unclear, and which is a clinical problem to be solved urgently. 

We therefore did a meta-analysis of clinical studies to explore the 
clinical response and prognostic outcome of high/low TMB group of ICIs 
treated cancer patients. Considering that some cancers with high TMB 

may have better OS themselves rather than a result of immunotherapy, 
and for the first time, we downloaded the mutation data of 33 major 
cancer types from the TCGA database as the non-ICIs group, and 
compared the high TMB patients’ OS differences between the non-ICIs 
group and meta-analysis, to clarify the predictive value of TMB as a 
biomarker for immunotherapy. 

Material and methods 

Search strategy 

This meta-analysis is reported in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
Statement [20]. The protocol was registered on the International Pro-
spective Register of Systematic Reviews (registration number: 
CRD42021289605). 

We selected relevant studies published between Jan 1, 2014 and 
August 30, 2021 by searching PubMed, Cochrane Library, Embase and 
Web of Science. First, the following keywords were retrieved: "mutation 
burden" OR "mutational burden" OR "mutation load" OR "mutational 
load" OR "TMB" OR "TML", and then combined with “immunotherap*” 
OR “immune checkpoint inhibit*” OR “ICI” OR "ICIs" OR “immune 
checkpoint block*” OR "ICB" OR "ICBs" OR “pembrolizumab” OR “ave-
lumab” OR “nivolumab” OR “durvalumab” OR “tremelimumab” OR 
“atezolizumab” OR “Ipilimumab” OR “Cemiplimab” OR “tiragolumab” 
OR “Dostarlimab*” OR “Camrelizumab” OR “PD-1′′ OR “programmed 
death 1′′ OR “PD-L1” OR “programmed death-ligand 1′′ OR “PD-1/PD- 
L1” OR “anti–PD-1/anti–PD-L1” OR “CTLA-4′′ OR “Cytotoxic T- 
Lymphocyte Antigen 4′′. Search strategies and results for each database 
were shown in Table S1. The primary endpoint events of this study were 
OS, PFS, ORR and DCB. 

Fig. 1. Study selection process.  
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Table 1 
The baseline characteristics of included studies.  

study Years Country Trail Name Study 
type 

Stage Cancer type Medicines Target point TMB methods TMB 
cut-off 

High Low 

Alborelli [23] 2019 Switzerland NR RCS Stage I- IV NSCLC Nivolumab / 
pembrolizumab / 
atezolizumab 

PD-(L)1 NGS 9 25 51 

Yang [24] 2020 USA NR Clinical 
trial 

recurrent /refractory pan-cancer anti–PD-(L)1/CTLA-4 CTLA-4, PD-(L) 
1 

NGS 6.88 9 94 

Shim [25] 2020 Korea NR PCS advanced NSCLC anti-PD-(L)1 PD-(L)1 WES* 272 47 151 
Li [26] 2020 China NR RCS stage III melanoma pembrolizumab PD-(L)1 NR 2 10 11 
Kim [27] 2020 Korea NR RCS advanced Gastric cancer Nivolumab / 

pembrolizumab 
PD-(L)1 NGS 14.31 8 55 

Huang [28] 2020 China NR RCS advanced NSCLC anti-PD-(L)1 PD-(L)1 NGS 10 14 20 
Fang A [29] 2019 China NR Clinical 

trial 
Advanced /recurrent NSCLC Anti–PD-(L)1 PD-(L)1 WES* 157 25 48 

Fang B [29]         NGS* 10 26 49 
Ricciuti [30] 2019 USA NR RCS Limited SCLC anti–PD-1 / CTLA-4 PD-1/CTLA-4 NGS 9.68 26 26 
Chae [31] 2019 USA NR RCS 75.6% metastasis NSCLC anti-PD-(L)1 PD-(L)1 FoundationOne 15 11 23 
Heeke A [32] 2019 France NR RCS NR NSCLC anti-PD-(L)1 PD-(L)1 FoundationOne 15 15 21 
Heeke B [32]      melanoma anti-PD-(L)1 PD-(L)1 FoundationOne 18 15 17 
Ready [33] 2019 USA CheckMate-568 Clinical 

trial 
IV/recurrent IIIB NSCLC anti-PD-(L)1 / CTLA-4 PD-(L)1, CTLA- 

4 
FoundationOne 10 48 50 

Singnal [34] 2019  NR RCS NR NSCLC Anti-PD-(L)1 PD-(L)1 FoundationOne 20 161 1116 
Samsteina  

[35] 
2019 USA NR Clinical 

trial 
advanced pan-cancer ICIs ICP MSK-IMPACT 52.2 合计1662 

Cristescu A  
[36] 

2018 USA KEYNOTE-028/ 
KEYNOTE-012 

Clinical 
trial 

NR pan-cancer pembrolizumab PD-(L)1 WES* 102.5 37 82 

Cristescu B  
[36] 

2018 USA KEYNOTE-012 B1/B2 Clinical 
trial 

NR HNSCC pembrolizumab PD-(L)1 WES* 86 54 53 

Cristescu C  
[36] 

2018 USA KEYNOTE-001/ 
KEYNOTE-006 

Clinical 
trial 

NR melanoma pembrolizumab PD-(L)1 WES* 191.5 59 30 

Rizvia [37] 2018 USA NR RCS advanced NSCLC anti–PD-(L)1 / CTLA-4 PD-(L)1, CTLA- 
4 

MSK-IMPACT 7.4 380 379 

Hellmann 1  
[38] 

2018 Europe and 
America 

CheckMate-012 
(NCT01454102) 

Clinical 
trial 

Stage IIIB/IV NSCLC Nivolumab / ipilimumab PD-1, CTLA-4 WES* 158 47 48 

Hellmann 2A  
[39] 

2018 Europe and 
America 

CheckMate-032 
(NCT01928394) 

Clinical 
trial 

NR SCLC Nivolumab PD-1 FoundationOne* tertile 42 47 

Hellmann 2B  
[39]       

Nivolumab + Ipilimumab PD-1, CTLA-4 FoundationOne* tertile 26 27 

Janjigiana  
[40] 

2018  NR PCS advanced esophagogastric 
cancer 

ICIs ICP MSK-IMPACT 9.7 10 30 

Goodman  
[41] 

2017 USA NR RCS locally/advanced/ 
metastatic 

pan-cancer immunotherapy PD-(L)1, 
CTLA4, IL2, 
Other 

FoundationOne 20 38 113 

Johnson [42] 2016 USA NR RCS Stage IV melanoma Nivolumab / 
pembrolizumab / 
atezolizumab 

PD-(L)1 NGS 23.1 27 14 

Synder A  
[43] 

2014 USA Not reported Clinical 
trial 

metastatic melanoma Ipilimumab / 
tremelimumab 

CTLA4 WES* 100 17 8 

Synder B [43]           30 9 
Daniel [44] 2021 Canada NR RCS metastatic solid tumor investigational 

immunotherapy 
NR NGS 12 7 15 

Chen [45] 2021 China NR PCS IIIB-IV NSCLC anti-PD-1 / PD-L1 therapy PD-(L)1 OncoScreen 7 14 18 
Hana [46] 2021 Korea NR PCS advanced pan-cancer ICIs ICP NGS 10 58 443 
Gogas [47] 2020 Europe and 

America 
NCT03273153 Clinical 

trial 
advanced or 
metastatic 

melanoma pembrolizumab PD-(L)1 FoundationOne 10 Total 224 

Hyojin [48] 2021 Korea NR RCS surgically resected NSCLC ICIs ICP NGS 5.29 15 15 
Wang [49] 2021 china NCT02915432 Toripalimab PD-(L)1 WES 2.9 17 157 

(continued on next page) 
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Table 1 (continued ) 

study Years Country Trail Name Study 
type 

Stage Cancer type Medicines Target point TMB methods TMB 
cut-off 

High Low 

Clinical 
trial 

recurrent or 
Metastatic 

nasopharyngeal 
cancer 

Alexandra  
[50] 

2021 Canada NCT02155621 Clinical 
trial 

advanced or 
metastatic 

pan-cancer ICIs ICP NGS 10 19 63 

Michele [51] 2021 UK NCT02563002 Clinical 
trial 

surgical resected colorectal cancer Nivolumab / 
pembrolizumab / 
ipilimumab 

PD-(L)1, CTLA4 WES 12 26 6 

Keigo [52] 2021 Japan NR PCS Advanced/metastatic gastrointestinal 
cancer 

Pembrolizumab / 
Nivolumab 

PD-(L)1 WES/NGS 10 41 4 

Goodman  
[53] 

2020 USA NR RCS NR pan-cancer anti-PD-1/L1 PD-(L)1 NGS 10 39 38 

Goodman  
[54] 

2019 USA NCT02478931 RCS NR pan-cancer ICIs ICP FoundationOne 20 15 45 

Yelena [55] 2021 USA NCT01693562 Clinical 
trial 

Advanced 
/metastatic 

pan-cancer Durvalumab PD-(L)1 NGS tertile 13 24 

Schrock [56] 2019 USA NR RCS Stage II- IV colorectal cancer anti-PD-(L)1 PD-(L)1 NGS 37.4 13 9 
Carl [57] 2018 USA NR Clinical 

trial 
metastatic melanoma Nivolumab / 

pembrolizumab / 
ipilimumab 

PD-(L)1, CTLA4 WES 7.1 39 119 

Chester [58] 2021 USA NR RCS advanced NSCLC Nivolumab / 
pembrolizumab / 
atezolizumab 

PD-(L)1, CTLA4 FoundationOne 10 35 53 

Tang [59] 2019 China NCT02836795 Clinical 
trial 

metastatic melanoma or urologic 
cancers 

Toripalimab PD-(L)1 NGS 6 11 12 

Wang [13] 2019 China NCT02915432 Clinical 
trial 

chemorefractory gastric cancer Toripalimab PD-(L)1 WES 12 
(20%) 

12 42 

Hodi A [60] 2021 Europe and 
America 

checkmate067 Clinical 
trial 

advanced melanoma Nivolumab PD-(L)1 WES* 203.5 87 89 

Hodi B [60]       Nivolumab + ipilimumab PD-(L)1, CTLA- 
4  

203.5 88 96 

Hodi C [60]       Nivolumab PD-(L)1  203.5 94 84 
Hugo [61] 2016 USA NR RCS metastatic melanoma Pembrolizumab / 

Nivolumab 
PD-(L)1 WES* top 

third 
12 27 

Rizvia [62] 2015 USA NR RCS NR NSCLC pembrolizumab PD-(L)1 WES* 200 17 17 

A, B and C represent different datasets from the same study; 1 and 2 represent different studies from the same first author; * represents that non-synonymous mutations were used to replace TMB in the study. RCS 
retrospective cohort study; PCS prospective cohort study, NR not report, ICIs immune checkpoint inhibitors, ICP Immune checkpoint, NES next generation sequencing, WES whole exome sequencing. 
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Fig. 2. The forest plot of ORR in patients with high TMB compared to those with low TMB.  

Fig. 3. The forest plot of DCB in patients with high TMB compared to those with low TMB.  
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Selection criteria 

We conducted the study using the following inclusion criteria: (1) All 
the patients were diagnosed as cancer, and tumor tissue-based TMB was 
detected; (2) At least one of ORR, DCB, OS and PFS data could be 
available; (3) The sample size was greater than 20; (4) Studies on non- 
synonymous mutations were also included due to the consistency of 
the measurement principle; (5) patients treated with ICIs monotherapy. 
On the other hand, studies that met any of the following criteria were 
excluded: (1) TMB detected from circulating tumor DNA or blood; (2) 
The definition of high TMB and low TMB was not clear or TMB obtained 
by machine learning model; (3) The sample size was less than 20 or the 

main observed events cannot be obtained; (4) patients who had not been 
treated with ICIs or had received treatment other than ICIs at the same 
time; (5) Non-human studies, conference abstracts, reviews, meta- 
analyses, comments or letters. 

Data extraction and quality assessment 

Two independent investigators (CJL, YX) reviewed study titles and 
abstracts, and studies that satisfied the selection criteria were retrieved 
for full-text assessment. During data extraction, literature quality 
assessment was also completed. Some contradictions were resolved by a 
third investigator (CSY). The following information was extracted in an 

Fig. 4. The forest plot of OS in patients with high TMB compared to those with low TMB.  
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Excel spreadsheet: the first author, publication year, country of study, 
study type, cancer type, cancer stage, immunotherapy drug, target point 
of the medicine, TMB detection method, TMB cut-off value, number of 
patients with high/low TMB and corresponding data of DCB, ORR, OS 
and PFS. 

Among all the included studies, the quality assessment of cohort 
studies used Newcastle-Ottawa Quality Assessment Scale (NOS), with 
6–9 being high quality and 0–5 being low quality [21]. The single-arm 
clinical trials used the Methodological Index for Non-randomized 
Studies (MINORS) [22] scale to evaluate the selection of exposure, 
comparability of study groups, and outcomes. We chose the first seven of 
the 12 items, with each item scoring 0–2 for a total of 14 points. Studies 
with ≥8, and<8 were considered to have high and low risk of bias, 
respectively. 

TCGA data download and bioinformatics analysis 

We downloaded simple nucleotide variation (SNV) data of 33 major 
cancer types from the TCGA database (https://portal.gdc.cancer.gov/). 
Workflow type selected MuTect2 Variant Aggregation and masking and 
data format choose maf format. Then, the maftools R package was used 
to calculate the TMB of each sample. Next, the Kaplan-Meier analysis for 
overall survival was proceeded based on the TMB of 33 tumors whose 
cut-off level was set at the 70% value with the aid of R software and the 
Log-Rank was utilized to test. The K-M analysis results are presented in 
the form of a forest plot. 

Fig. 5. The forest plot of PFS in patients with high TMB compared to those with low TMB.  
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Statistical analysis 

All meta-analyses were performed by Stata 16.0 software (Stata 
Corporation, College Station, Texas, USA) and ORR, DCB, OS and PFS 
were compared between high TMB and low TMB group via meta- 
analysis. For DCB and ORR, RR > 1 showed that the high TMB group 
had better therapeutic effects than the low TMB group. For combined HR 
and 95% CI results of OS/PFS, HR > 1 indicates that the survival rate of 

the high TMB group is lower than the low TMB group. The random-effect 
model was used when I2 value was greater than 50%, and the fixed-effect 
model was used when I2 value was less than 50%. In addition, we per-
formed a subgroup analysis of OS and PFS for different tumor types, 
regions, and TMB detection methods. 

All bioinformatics analysis, including the raw SNV data pre- 
processing and survival analysis, is performed using R v4.1.1 software 
(R Foundation for Statistical Computing, Vienna, Austria), and maftools, 

Fig. 6. Subgroup analysis in OS of patients with high/low TMB based on different cancer types.  
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Fig. 7. Subgroup analysis in OS of patients with high/low TMB based on different cancer types.  
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Fig. 8. TMB distribution and its relationship with prognosis in 33 major cancer types from TCGA. (A) The TMB distribution of 33 tumors from TCGA database was 
presented in the form of boxplot; (B) The results of K-M survival analysis for 33 cancer types were presented in the form of forest map. 
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survival and survminer R packages were used in our study. 

Results 

Study characteristics and data quality 

We identified 10,450 studies, of which 41 (with data for 7713 cancer 
participants) were included in our analysis [13,23–62]. A flow diagram 
of the study selection process is presented in Fig. 1. Characteristics of all 
studies are presented in Table 1. The studies are mainly from the US, 
Europe and East Asia, and were published between 2014 and 2021. Most 
included studies chiefly concern advanced or distant metastases of 
NSCLC, SCLC and Melanoma. The immunotherapies used in these 
studies were diverse ICIs, including anti–PD-1, anti–PDL1, and 
anti-CTLA4 etc. The detection methods of TMB are mainly WES and 
NGS, and MSK-IMPAC and FoundationOne also belong to NGS. Of the 41 
included studies, 32 studies used TMB and 9 used the number of 
non-synonymous mutations. In the literature quality evaluation, the 
NOS scale was used in 22 cohort studies, and the MINOS scale was used 
in 21 clinical single-arm studies. The results of the quality assessment 
are presented in Tables S2, S3. 

Relationship between TMB and main endpoints 

TMB and ORR. The association of high TMB with ORR was investi-
gated in 19 studies including 20 cohorts. Patients in the high TMB group 
had a higher ORR in all included studies. Meta-analysis indicated that 
high TMB was associated with a better ORR (RR = 2.73, 95% CI: 
2.31–3.22, P= 0.043, Fig. 2). 

TMB and DCB. The association of high TMB with DCB was 

investigated in 11 studies including 12 cohorts. Patients in the high TMB 
group had a higher DCB in all included studies. The RR of DCB for the 
high TMB group versus low TMB group was 1.93 (RR = 1.93, 95% CI: 
1.64–2.28, P= 0.356, Fig. 3). 

TMB and OS. The association of high TMB with OS was investigated 
in 27 studies including 31 cohorts. Two studies of all those had better OS 
in the low TMB group. The results of the meta-analysis showed signifi-
cantly greater benefits for the high TMB group receiving ICIs as 
compared to the low TMB group (HR =0.24, 95% CI = 0.21–0.28, P<
0.001, Fig. 4). 

TMB and PFS. The association of high TMB with OS was investigated 
in 28 studies including 35 cohorts. 33 cohorts of all those had better OS 
in the high TMB group. Meta-analysis showed significantly greater 
benefits for the high TMB group receiving ICIs as compared to the low 
TMB group (HR =0.38, 95% CI = 0.34–0.42, P< 0.001, Fig. 5). 

Subgroup analyses for OS/PFS 

To explore the influence of different tumor types, regions and TMB 
detection methods on the relationship between TMB and prognosis, and 
to test whether the heterogeneity was caused by these factors, we con-
ducted a subgroup analysis. We found that different tumor types 
appeared to have a different OS (Fig. 6) and PFS (Fig. 7). Colorectal 
cancer with high TMB appeared to have better OS than other cancer 
patients, while HNSCC and nasopharyngeal cancer have better PFS than 
others. However, there is no significant difference between TMB 
detection methods in different regions (Figs. S1 and S2) and different 
TMB detection methods (Figs. S3 and S4). 

Fig. 9. Meta-analysis results compared with non-ICIs group from the TCGA database. Among them, names begin with TCGA were no-ICIs group, and the others were 
ICIs-treated results obtained by meta-analysis. 
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Translational Oncology 20 (2022) 101375

12

Prognosis comparison of high TMB ICIs versus no-ICIs 

We analyzed the TMB of 33 tumors downloaded from TCGA, and 
found TMB varies greatly among patients with different tumors 
(Fig. 8A), among which SKCM, LUSC, LUAD and BLCA have a high level 
of TMB, while the TMB of UVM, LAML, THCA and PCPG are relatively 
low and have poor immunogenicity. The k-M analysis for OS was con-
ducted and the results were presented in the form of a forest plot 
(Fig. 8B). According to the results, KICH, PCPG, DLBC, ACC and LGG had 
a better prognosis in the low TMB group, while UCEC, CESC and BLCA 
patients showed better prognosis in the high TMB group. It suggests that 
we should consider the OS changes of the high TMB group before and 
after immunotherapy when exploring the immunotherapy efficacy in 
patients with a better prognosis of the high TMB group. 

We compared the OS subgroups analysis results for different tumor 
types in meta-analysis with the K-M analysis results for TCGA-derived 
cancers, and the results were shown in Fig. 9. We found that after 
immunotherapy for colorectal cancer, gastric cancer, lung cancer, mel-
anoma and pan-cancer, the OS improvement in the high TMB group was 
significantly better than non-ICIs. Moreover, the overall results of pan- 
cancer data showed that high TMB patients had a high response rate 
to immunotherapy and a better prognosis. TMB is an effective 
biomarker, but further studies are needed in specific cancers. 

Discussion 

Our results show that, compared with the low TMB group, high TMB 
cancer patients with immunotherapy have a higher ORR, DCB and better 
OS, PFS, which was in agreement with previous studies [63,64]. In 
addition, TCGA-derived data were used as the no-ICIs group for com-
parison, and it was found that the HR of high TMB patients who received 
ICIs was significantly reduced, indicating that high TMB patients with 
immunotherapy had better OS than without it. These results indicate 
that TMB is a promising biomarker for response to immunotherapy, with 
higher TMB score predicting better clinical response and longer overall 
survival. These results thus lend support to high TMB as a therapeutic 
biomarker that can improve the management of cancer immunotherapy. 

TMB is one of the important predictive biomarkers for the compan-
ion diagnosis of immunotherapy. Many studies have shown that TMB 
can predict the clinical response of cancer patients to ICIs [65]. The 
results of our study showed that compared with low TMB, almost all 
tumors with high TMB had better ORR(RR=2.73) and DCB(RR=1.93). 
In terms of prognosis, high TMB had better OS (HR=0.24) and PFS 
(HR=0.38). Although TMB is associated with improved survival in pa-
tients receiving ICIs across many cancer types, there may not be one 
universal definition of high TMB, which is closely related to tumor 
heterogeneity [40]. The TMB cut-off values of included study are also 
diverse, with some being 10 mutations/mb and some by a specific per-
centage. In lung cancer, it was found no significant difference in the ORR 
when TMB cut-off level was set at the 50% value, and ORR increased 
with higher TMB, plateauing at 10 or more mutations/mb [38,39]. In 
several included studies involving melanoma, the TMB thresholds are 
highly variable between 2 and 23.1. Also, TMB was not sufficient to 
predict OS in patients receiving anti-CTLA-4 therapy [25] and benefit 
from dual checkpoint blockade [28]. Almost all studies try to find a more 
applicable TMB threshold, so as to make the research results more 
meaningful, which is also a factor that cannot be corrected in this study. 
Moreover, because TMB and non-synonym mutations are both used to 
detect mutations in tumor tissues, they were both included in this study. 

To explore the influence of different tumor types, regions and TMB 
detection methods on the relationship between TMB and prognosis, we 
made a subgroup analysis. Among different cancer types, we found that 
patients with high TMB had a better prognosis than low. Compared with 
other tumors, patients with colorectal cancer have a better prognosis 
after immunotherapy [41], which indicates that colorectal cancer pa-
tients can benefit greatly from immunotherapy. In earlier studies, WES 

was the main detection method of TMB. WES is also considered to be the 
gold standard method for assessing tissue TMB [53]. With the devel-
opment of medicine and technology, NGS sequencing has been gradually 
applied in TMB detection due to its more timely and economic advan-
tages. Our study showed that there was no significant difference be-
tween the two TMB values measured using WES and NGS in predicting 
the OS and PFS of patients receiving ICI. In addition, all included studies 
are mainly from European, American and East Asian countries. No sig-
nificant differences were found among the different regions. 

Considering that some tumors with high TMB may have a better 
prognosis, it is not reasonable just to compare the OS/PFS between high 
TMB and low TMB to make a conclusion. We adopted data from the 
TCGA database as no-ICIs for comparison (a small part also underwent 
immunotherapy, which can be ignored). Through the analysis of 33 
TCGA tumors, it was found that SKCM, LUSC, LUAD and BLCA have 
higher TMB and immunogenicity, which may be more suitable for 
immunotherapy [66]. The TMB of UVM, LAML, THCA and PCPG are 
relatively low and have poor immunogenicity. Improving the immuno-
genicity of these low TMB cancers can improve the response rate to 
clinical immunotherapy [67]. In terms of OS, there are significant dif-
ferences between tumors. Among them, UCEC, CESC, BLCA and other 
tumor patients showed better prognosis in the high TMB group, while 
KICH, PCPG, DLBC, ACC, LGG and other tumor patients showed better 
prognosis in the low TMB group. However, when compared with the 
results of meta-analysis, we found that compared with no-ICIs, high TMB 
tumor patients had a higher OS improvement after immunotherapy. 

Our study is the first time to explore the effect of immunotherapy or 
not on the prognosis of high TMB patients, and to fill in the potential 
defect that may exist in comparison of high TMB and low TMB. In 
addition, our research method combines meta-analysis and bioinfor-
matics. This study also has some limitations. First, there are not enough 
studies on the relationship between cancer ICIs therapy and TMB, so it is 
not possible to obtain completely credible meta-analysis results for all 
cancer types. Second, TMB cut-off values vary from study to study, 
which may result in imprecise deviation. Third, every single outcome 
was not reported in every study, reducing the credibility of the analysis 
results. More in-depth, on the premise of more relevant studies, 
comprehensive analysis of a larger sample can be carried out to obtain 
an accurate conclusion on the relationship between ICIs and TMB in all 
tumors. To increase the utility of TMB, it is urgent to coordinate the 
consistency of TMB assessment and threshold value in the future. 

Conclusion 

Although further studies are needed to establish the optimal 
approach to the application of TMB in practice, these results support that 
TMB is a promising predictive biomarker, which can predict clinical 
response and prognostic outcome of immunotherapy. Our findings thus 
lend support to high TMB as a therapeutic biomarker that can improve 
the management of cancer immunotherapy. 
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