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Abstract

Chiang Mai is one of the most known cities of Northern Thailand, representative for various

cities in the East and South-East Asian region exhibiting seasonal smog crises. While a few

studies have attempted to address smog crises effects on human health in that geographic

region, research in this regard is still in its infancy. We exploited a unique situation based on

two factors: large pollutant concentration variations due to the Chiang Mai smog crises and

a relatively large sample of out-patient visits. About 216,000 out-patient visits in the area of

Chiang Mai during the period of 2011 to 2014 for upper (J30-J39) and lower (J44) respiratory

tract diseases were evaluated with respect to associations with particulate matter (PM10),

ozone (O3), and nitrogen dioxide (NO2) concentrations using single-pollutant and multiple-

pollutants Poisson regression models. All three pollutants were found to be associated with

visits due to upper respiratory tract diseases (with relative risks RR = 1.023 at cumulative

lag 05, 95% CI: 1.021–1.025, per 10 μg/m3 PM10 increase, RR = 1.123 at lag 05, 95% CI:

1.118–1.129, per 10 ppb O3 increase, and RR = 1.110 at lag 05, 95% CI: 1.102–1.119, per

10 ppb NO2 increase). Likewise, all three pollutants were found to be associated with visits

due to lower respiratory tract diseases (with RR = 1.016 at lag 06, 95% CI: 1.015–1.017, per

10 μg/m3 PM10 increase, RR = 1.073 at lag 06, 95% CI: 1.070–1.076, per 10 ppb O3

increase, and RR = 1.046 at lag 06, 95% CI: 1.040–1.051, per 10 ppb NO2 increase). Multi-

pollutants modeling analysis identified O3 as a relatively independent risk factor and PM10-

NO2 pollutants models as promising two-pollutants models. Overall, these results demon-

strate the adverse effects of all three air pollutants on respiratory morbidity and call for air

pollution reduction and control.
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Introduction

Air pollution is a major threat to human health, in general, and to the human respiratory sys-

tem, in particular. Various studies have examined the association between air pollution levels

and mortality and morbidity [1–6]. Of particular interest has been the relationship between

respiratory diseases and particulate matter concentrations. Particulate matter concentration

in the air have been associated with respiratory tract diseases in several studies of the East and

South-East Asian region reporting from China, South Korea, and Taiwan [7–9]. These associa-

tions have been found for PM10 [8] as well as for PM2.5 [7, 9]. They have been found in studies

based on short observation periods of just on year [7, 9] or longer periods that cover more

than 10 years [8]. They have been found for upper and lower respiratory tract diseases [7–9].

In summary, the association between particulate matter levels and respiratory diseases is a

robust phenomenon.

Several cities in the East and South-East Asian region are known to suffer from severe,

seasonal violations of air quality standards such as Seoul in Korea [10], Beijing, Shanghai,

Guangzhou, Wuhan, Xi’an in China [11–14], Tiachung in Taiwan [15], Johor Bahru and Pasir

Gudang in Malaysia [16, 17]. Chiang Mai, one of the largest cities in the northern part of Thai-

land is one of those cities. Since 2007, Chiang Mai suffers from an annual smog crisis around

the month of March [18–22]. In the past, in March, PM2.5 particulate matter concentrations

have reached daily peak values that were 5 times higher than the 25 μg/m3 value recommended

by the WHO [19] and PM10 daily concentration values have climbed up to values 4 times

higher than the WHO recommended daily PM10 value of 50 μg/m3 [21]. Recently, in March

2019, the US AQI determined for Chiang Mai climbed up to a record level of 300 such that

Chiang Mai became the world’s leading city on the top 10 list of cities with the worst air pollu-

tion [23].

The smog crisis in Chiang Mai has fueled interest in systematic research targeting the air

pollution in Chiang Mai and consequences for human health [24]. While this kind of research

is important in its own merit, Chiang Mai should also been seen as a testbed for studying

implications of severe, seasonal air pollution episodes on the human health as observed in

various cities in the East and South-East Asian region (see above). Regardless of the motiva-

tion, research evaluating the Chiang Mai smog crisis is still in its infancy and has produced

conflicting results.

The city district of Chiang Mai and the surrounding districts have been the focus of various

studies [19, 20, 25, 26]. While all studies reported adverse effects of air pollution on human

health, they also reported conflicting results. Specifically, adverse effects of PM10 have been

reported for pulmonary morbidity by Ruchiraset and Tantrakarnapa [20] and Pothirat et al.

[26]. However, they were not found in the study by Wiwatanadate [25] on upper respiratory

tract diseases. Moreover, conflicting results as far as the role of NO2 is concerned were

reported. Ruchiraset and Tantrakarnapa [20] examined pneumonia hospitalizations in the

city district of Chiang Mai that had been reported during a 12 years period from 2003 to 2014.

They showed that not only PM10 but also NO2 were positively associated with pneumonia

cases. Wiwatanadate [25] studied a sample of about 3000 participants, who were living in a

suburban district of Chiang Mai, for a 4 months period. Again, it was found that various symp-

toms of upper respiratory tract diseases were positively associated with NO2 concentrations. In

the study by Pothirat et al. [26] hospitalization visits due to acute exacerbation of chronic

obstructive pulmonary disease (AECOPD) of the J44.1 category were analyzed in a rural dis-

trict to the north of Chiang Mai during 2016 and 2017. In contrast to the studies by Ruchiraset

and Tantrakarnapa [20] and Wiwatanadate [25] no association between AECOPD visits and

NO2 concentrations was found. Pongpiachan and Paowa [19] conducted an analysis on a
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relative long period from 2007 to 2013. Patient hospitalizations in the city district of Chiang

Mai were investigated with respect to possible associations with NOx. In contrast to all three

aforementioned studies, they found that increases in NOx concentration decreased (rather

than increased) morbidity.

Finally, the studies by Ruchiraset and Tantrakarnapa [20] and Pothirat et al. [26] did not

support the adverse effects of O3 on the respiratory system that have been documented in vari-

ous other studies around the world (see, e.g., [1, 4, 27, 28]). Even more strikingly, the studies

by Wiwatanadate [25] and Pongpiachan and Paowa [19] reported that O3 levels decrease respi-

ratory tract disease morbidity which is counter-intuitive as it was to some extent acknowledge

by Wiwatanadate [25]. In summary, although there is an increasing interest in studying the

high-risk situation in Chiang Mai, the role that the air pollutants PM10, NO2, and O3 play in

this situation is still unclear.

Thus, the goal of the present study is to focus on the Chiang Mai smog problem and esti-

mate the dependency of the morbidity to diseases of the upper and lower respiratory tracts on

PM10, NO2, and O3 air pollutants with the help of Poisson regression models, on the one hand,

and a relatively large data set of daily data observed over several years, on the other hand. To

this end, diseases of two subcategories of respiratory tract diseases were considered for which

patient data was made available by the Ministry of Public Health of Thailand. In order to work

with a relatively large data set, patient data from the whole region around Chiang Mai that

included the Chiang Mai city district was evaluated. A specific objective of our study was to

determine the time pattern of associated risks.

Material and methods

Hospital out-patient data

We used out-patient visits from Chiang Mai as indicator of morbidity in Chiang Mai. More

precisely, daily visits of walk-in patients (i.e., patients who came from outside and were

released on the same day) to public hospitals of the Chiang Mai province were considered.

Those hospitals were under the management of the Ministry of Public Health (MOPH) of

Thailand. Data were obtained from the Strategy and Planning Division [29] of the Office of

the Permanent Secretary of the MOPH. The received data file was anonymized. The data cov-

ered a three years period in 2011–2014 starting with October 2011. This period was selected

because it falls in the period after the beginning of the smog crisis in 2007 (see Introduction)

and it comes with data that had been collected under a new health system in October 2011 that

was able to account for a larger portion of actual out-patient visits as compared to the pre-2011

data collection system. Out-patients visits were classified by the MOPH according to the

International Classification of Diseases, 10th Revision (ICD-10; World Health Organization,

Geneva). Visits related to two subcategories of respiratory disease of the upper and lower respi-

ratory tract were evaluated: the category J30-J39 for other diseases of the upper respiratory

tract and the category J44 for other chronic obstructive pulmonary diseases.

Environmental data

Daily measurement data of air pollution and weather variables were used as environmental

data. Pollutant concentrations were used from the years 2011–2014 as collected by the Pollu-

tion Control Department of the Ministry of Natural Resources and Environment of Thailand

[30]. In this study we focused on the pollutants PM10 (as measured in μg/m3), O3 (as measured

in ppb), and NO2 (as measured again in ppb). Air pollution data from two detectors located

in the Chiang Mai city district was used. On the scale of the entire Chiang Mai province, the

detectors were located relatively close to each other. Therefore, the data from the two detectors
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was averaged. The approximate location of the two detectors (i.e., the location of the Chiang

Mai city district). The Chiang Mai city district is a densely populated metropolitan area. Daily

meteorological data such as temperature (in Celsius), pressure (in hPa), and humidity (as rela-

tive humidity in %) for the same period were retrieved from the Thai Meteorological Depart-

ment of the Ministry of Digital Economy and Society of Thailand [31]. The data collection site

was at the Chiang Mai city district again. The TMD took for temperature, pressure and relative

humidity eight measurements (in 3 hours intervals) each day and determined out of those val-

ues daily maximum scores that were used in our study.

Modeling approach

A Poisson regression model [32, 33] was used to determine associations between daily counts

of out-patient visits in the J30-J39 and J44 categories and the three aforementioned air pollut-

ants PM10, NO2, and O3. SO2 concentrations as used in other studies (e.g., Deng et al. [34])

have not been used because explorative analysis showed that they have been relatively low (see

S1 Table 1 in S1 File). In line with previous studies from the South-Asian region [27, 28, 35,

36] and from Chiang Mai in particular [19, 20, 26, 37, 38] meteorological variables such as

temperature and relative humidity were added to the model to control for possible confound-

ing effects. Pressure was also included (as in Pothirat et al. [26]) because explorative correlation

analysis showed a strong correlation between pressure and out-patient visits. Explorative anal-

ysis revealed also that visits were considerably lower on Saturdays and Sundays as compared

to weekdays. Note that in general Thai people tend to visit public hospitals less frequently on

weekends because public hospitals run only an emergency schedule on weekends [39]. More-

over, visits counts were considerably lower in the month of July (which was considered to be

the central month of the Thai rainy season) as compared to the remaining months of the year.

Therefore, the day of the week (weekend day versus workday) and the month of the year

(month of July versus remaining months) were taken into account as confounding variables

(for a similar approach see e.g. [8]). In order to determine the time pattern of associated risks,

delayed exposure effects were taken into account by considering lagged variables [40]. More

precisely, single pollutant regression models used lagged pollutant variables (lag 0 to lag 6) and

cumulatively lagged pollutant variables (lag 01 to lag 06). In summary, the regression models

were defined by

log E Ytð Þ½ � ¼ b1 Zt� s þ b2 DOW þ b3 MOY þ
X3

m¼1
gm Cm þ a ð1Þ

In Eq (1) Yt was the number of visits of the category J30-39 or J44 on day t. Zt-s with coeffi-

cient β1 was the pollutant concentration under consideration on day t-s, where s denoted the

lag with s = 0,. . .,6. DOW and MOY denoted day-of-the week (weekend day versus workday)

and month-of-the-year (month of July versus remaining months) variables, respectively, as

defined above, with coefficients β2 and β3. Cm denoted meteorological variables given by rela-

tive humidity (C1), temperature (C2), and pressure (C3) with coefficients γ1, γ2, and γ3. α was

the intercept. The cumulatively lagged pollutant models were defined by Eq (1) with Zt-s
replaced by Z(cum,t,s). The latter was defined by Z(cum,t,s) = (Zt+ Zt-1 + . . . + Zt-s)/(s +1)

again with s = 0,. . .,6. With the help of β1, relative risks (RRs) and the corresponding 95% con-

fidence intervals were calculated for a change in morbidity for 10 μg/m3 increases in PM10 and

10 ppb increases in NO2 and O3, respectively. Since it has been suggested that health condi-

tions of individuals are frequently the effect of a set of interacting pollutants [14] or the effect

of a set of pollutants coming from a particular source [41], by analogy to Eq (1), multi-pollut-

ant models were constructed involving two of the three pollutants or all three pollutants con-

sidered in our study.
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Results

Data description

In the observation period a total of 67530 visits of the J30-J39 category (with M = 62 visits per

day, SD = 53) and a total of 148494 visits of the J44 category (with M = 136 visits per day,

SD = 93) were recorded. During that period PM10 scores were at M = 74.6 μg/m3 (SD = 55.2),

O3 scores were at M = 24.8 ppb (SD = 14.0), and NO2 scores were at M = 49.9 ppb (SD = 24.7),

see Table 1. A graph of the PM10 concentrations over time can be found in S1 Fig 1 in S1 File.

A more detailed statistical characterization of the air pollutants can be found in S1 Table 1 in

S1 File. The figure illustrates that PM10 concentrations showed seasonal high values during the

months February, March and April. During the three seasons covered in the current study, the

peak values (observed in March) were about 300, 300, and 400 μg/m3, respectively, and clearly

violated air pollution standards. The mean temperature during the observation period was

33.0 ˚C (SD = 2.9), relative humidity assumed a mean level of 88.0% (SD = 6.8), and pressure

was at a mean level of 1012 hPa (SD = 4), see Table 1.

Pearson’s correlation coefficients were computed to identify linear relationship between all

variables used in our study, see Table 2. All three pollutants were positively correlated with

Table 1. Statistics for health and environmental variables as observed in the Chiang Mai province, Thailand, dur-

ing October 2011 to September 2014.

Variable Total or Mean ± SD

Patients
Out-patients visits (total) 216024

J30-J39 related visits (total) 67530

J30-J39 related visits (daily) 62 ± 53

J44 related visits (total) 148494

J44 related visits (daily) 136 ± 93

Age median (range) 60 (0–113)

Male/female visits 51% / 49%

Air pollutants
PM10 (daily scores in μg/m3) 74.6 ± 55.2

O3 (daily scores in ppb) 24.8 ± 14.0

NO2 (daily scores in ppb) 49.9 ± 24.7

Weather conditions
Temperature (daily in ˚C) 33.0 ± 2.9

Relative humidity (daily in %) 88.0 ± 6.8

Pressure (daily in hPa) 1012.0 ± 4.0

https://doi.org/10.1371/journal.pone.0272995.t001

Table 2. Pearson’s correlation coefficients between air pollutants, weather variables, and out-patient visits due to upper respiratory tract (J30-J39) and pulmonary

(J44) diseases. (�p< .05, ��p< .01).

PM10 O3 NO2 Temperature Pressure Humidity J30-J39 J44

PM10 1 0.75�� 0.76�� 0.33�� 0.26�� -0.59�� 0.26�� 0.24��

O3 1 0.71�� 0.36�� 0.34�� -0.52�� 0.29�� 0.25��

NO2 1 0.06� 0.45�� -0.31�� 0.29�� 0.22��

Temperature 1 -0.40�� -0.63�� -0.06� -0.03

Pressure 1 0.11�� 0.28�� 0.24��

Humidity 1 -0.07� -0.07�

J30-J39 1 0.80��

J44 1

https://doi.org/10.1371/journal.pone.0272995.t002
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each other. Temperature and pressure were positively correlated with all three pollutants. In

contrast, relative humidity showed a negative correlation with all three pollutants. Importantly,

the morbidity counts in both categories were positively correlated with each of the three pollut-

ants PM10, NO2, and O3. As far as the confounding meteorological factors were concerned,

temperature showed negative correlations with out-patient visits of both categories. However,

only the effect on J30-J39 was statistically significant. For pressure and relative humidity posi-

tive and negative statistically significant correlations, respectively, with both disease categories

were found.

Regression models

Fig 1 presents the estimated RRs (and 95% CIs) for respiratory (category J30-J39) and pulmo-

nary (category J44) diseases due to 10 μg/m3 and 10 ppb increases in PM10, O3, and NO2,

respectively, for lags 0 to 6 and cumulative lags 01 to 06. Overall, the RRs described for all

three pollutants positive associations with pollutants and out-patient visits of both categories.

Moreover, the associations were statistically significant at all lags. For the single day (single

lag) models the maximum effect of PM10 was observed at lag 0 both for respiratory and pulmo-

nary diseases. O3 showed a maximum effect at lag 2 and 3 for respiratory and pulmonary dis-

eases, respectively. The increases in respiratory disease-related visits (J30-J39) due to NO2 air

pollution showed a plateau for lag 0 to lag 3. For any of those lags the effect was approximately

equally strong. In contrast, the effect of NO2 on the increase of pulmonary morbidity (J44) was

strongest for lag 1. For the respiratory disease category J30-J39 a clear pattern was found for all

three pollutants, namely, that RRs decayed monotonically in magnitude at higher lags 4, 5, and

6. The cumulative lag models in general showed stronger effects than the single day (single lag)

models. For respiratory J30-J39 disease-related visits plateaus of relatively large RRs were

found for all three pollutants at lags 03 to 06. In contrast, for pulmonary J44 disease-related vis-

its RR scores increased more or less monotonically from lags 01 to 06. This was again observed

for all three pollutants PM10, O3, and NO2.

Since the cumulative lag 05 was found to be in the aforementioned plateau region from lags

03 to 06 of maximal pollutant effects on visits of the respiratory disease category J30-J39, this

Fig 1. Relative risk estimates obtained from single pollutant models with different lag days. Panels A, B, and C:

Effects of PM10, O3, and NO2 on visits due to upper respiratory tract diseases of the J30-J39 category. Panels D, E, and

F: Effects of PM10, O3, and NO2 on visits due to pulmonary diseases (i.e., lower respiratory tract diseases) of the J44

category.

https://doi.org/10.1371/journal.pone.0272995.g001
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lag was used to construct multiple-pollutants models to explain variations in J30-J39 respira-

tory diseases. Multi-pollutant models for J44 were constructed using the cumulative lagged

variables 06.

Fig 2 (panels A, B, and C) shows the changes among RRs estimates when comparing single

pollutant models with two-pollutants and three-pollutants models. Let us begin with PM10 as

risk factor for upper respiratory tract diseases (panel A). Due to the influence of O3, the posi-

tive association between PM10 and out-patient visits related to respiratory diseases turned into

a negative association. This was observed for the two-pollutants and three-pollutants models

involving O3 for J30-J39. In contrast, NO2 did not affect qualitatively the role of PM10 as risk

factor. As far as O3 was concerned, the role of O3 as risk factor with positive association to out-

patient visits was not affected by PM10 or NO2 (panel B). Finally, the impact of NO2 on respira-

tory diseases of the J30-J39 category, as assessed in our study, was affected by O3 but not by

PM10. When taking O3 into account, the positive association between NO2 and out-patient vis-

its turned into a negative one (panel C).

Panels D, E, and F of Fig 2 show for the (lower respiratory tract) pulmonary disease cate-

gory J44 similar patterns as observed in panels A, B, and C for the upper respiratory tract dis-

ease category J30-J39. The estimated RRs of PM10 were qualitatively affected by O3 in the two-

pollutants model involving PM10 and O3 such that the positive association was reversed into a

negative one. In contrast to the J30-J39 disease category, in the three-pollutants model PM10

remained positively associated with pulmonary disease of the J44 category despite the fact that

the three-pollutants model involved O3 as factor (panel D). O3 turned out to be a risk factor

for J44 diseases for both the single pollutant and for all constructed multi-pollutants models

(panel E). That is, O3 was not affected qualitatively by inclusion of the other pollutant factors

into the analysis. NO2 was only positively associated with J44 diseases for the single pollutant

model (panel F). Inclusion of the other pollutants (PM10 and O3) turned the positive associa-

tion to a negative one (panel F).

Note that as mentioned above the J30-J39 and J44 multi-pollutants models were con-

structed using the cumulative lags 05 and 06, respectively. In addition, multi-pollutants models

with cumulative lags 04 (for J30-J39) and 05 (for J44) were constructed. Analysis of those mod-

els showed qualitative similar results as shown in Fig 2 (see S1 Fig 2 in S1 File).

Fig 2. Associations between 10 unit increases in PM10, O3, NO2 concentrations and upper (panels A, B, C) and

lower (panels D, E, F) respiratory tract disease cases in the Chiang Mai area as determined by single- and multi-

pollutants models as captured in terms of estimated RR factors.

https://doi.org/10.1371/journal.pone.0272995.g002
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Discussion

The association between respiratory diseases and air pollutants was examined for the region of

Chiang Mai, which is an exemplary area of areas in the East and South-East Asian region in

which populations are exposed to seasonal episodes of unhealthy air conditions (as indicated

by air pollutant concentrations that are several times above those values recommended by the

WHO).

As shown in Fig 1, the estimated RRs related to PM10, O3, and NO2 concentrations were sta-

tistically significant greater than 1 for same day exposure (day 0) and all lagged (day 1 to day 6)

and cumulatively lagged (day 01 to 06) effects being considered. Accordingly, being exposed to

high air pollutant concentrations on a given day increased the risk of an individual to develop

respiratory health problems at the same day, at the next days, or even six days later. As shown

in panels A, B, C and D of Fig 1, in general, the risk estimates were smaller at higher lags. More

precisely, for upper tract respiratory diseases of the J30-J39 category, RRs related to PM10, O3,

and NO2 concentrations at lagged days 5 and 6 were lower as compared to RRs related to

same-day pollutant concentrations or PM10, O3, and NO2 concentrations at lagged days 1 to 4

(panels A, B, and C). This might be interpreted to say that the reaction of the respiratory sys-

tems as far as diseases of the J30-J39 category are concerned to higher air pollution levels was

fairly immediate (reaction at the same day or the following three days). Alternatively, the time

patterns presented in panels A, B, C for lag 0 to lag 6 of associated risk indicate that when time

elapsed the risk to develop a pollutant-associated disease became lower. The aforementioned

time pattern of risks was also observed for diseases of the J44 pulmonary category and PM10

(panel D). In contrast, no clear pattern was obtained in this regard for O3-associated and NO2-

associated pulmonary diseases of the J44 category (see panels E and F of Fig 1).

As mentioned in the Results section, RR scores obtained for cumulatively lagged pollutant

variables (01 to 06) were in general higher than scores for single day lagged (1 to 6) or same day

pollutant variables (compare right and left sides of panels A, B, C, D, E, and F of Fig 1). Accord-

ingly, when air pollutant levels increased by 10 units on average over an extended period (2

days up to 7 days) then health risks for the population of the Chiang Mai area were higher as

compared to the situation when air pollutant levels increased by 10 units only on a particular

day (lagged day 1 to 6 or same day). According to Fig 2, at least during the observation period

from 2011 to 2014, O3 acted as an independent risk factor for the population of the Chiang Mai

region and the two respiratory disease categories considered in our study in the sense that its

role to increase the number of out-patient visits did not change across the single and multiple-

pollutants models. Due to this independency, O3 may be considered as a particularly useful pre-

dictor variable for the occurrence of upper (i.e., category J30-J39) and lower (i.e., category J44)

respiratory tract diseases. Furthermore, PM10 and NO2 (although they were positively corre-

lated, see Table 2) formed a plausible two-pollutants model in which the two pollutants came

both with positive associations and predicted together the occurrence of upper respiratory tract

diseases of the J30-J39 category in the Chiang Mai population (see Fig 2 panels A and C).

The findings reported above may be used to discuss some conflicting previously reported

results from that region and the Chiang Mai area, in particular, as will be shown next.

As indicated in the introduction, in the context of the Chiang Mai smog crises it has previ-

ously been reported that high particulate matter concentrations increase the risk for lower

respiratory tract diseases such as pneumonia [20] and pulmonary diseases of the J44.1 category

[26]. However, while Wiwatanadate [25] examined several symptoms of upper and lower

respiratory tracts diseases with respect to possible associations with particulate matter concen-

trations, support for such associations could not be found. The present study shows clear evi-

dence for PM10-associated upper and lower tract respiratory diseases (at least with respect to
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the J30-J39 and J44 categories). Increased PM10 concentrations resulted in an increase of

occurrences of respiratory diseases in the Chiang Mai population under consideration. While

the aforementioned studies focused on local areas located in the north of Chiang Mai [20, 25]

and given by the city district [26], the present study focused on a large scale, namely, the whole

Chiang Mai province. Therefore, the results of the present study generalize the previously

found findings by Ruchiraset and Tantrakarnapa [20] and Pothirat et al. [26] in the sense that

the local phenomena reported by Ruchiraset and Tantrakarnapa [20] and Pothirat et al. [26]

are part of a large-scale phenomenon affecting the whole province of Chiang Mai. Moreover,

the absence of evidence for PM10-associated respiratory health problems in the area studied by

Wiwatanadate [25] might be considered as a distinctive characteristics of that area. Finally, as

far as adverse effects of PM10 concentrations in the air are concerned, in a study by Pothirat

et al. [22] mortality due to chronic obstructive pulmonary disease (category J44.9) was found

to be associated with PM10 concentrations in the Chiang Mai area.–consistent with the results

reported in the current study. However, while Pothirat et al. [22] tested single day lagged vari-

ables from lag 0 to 7, the association was only statistically significant for lag 6, which means the

association was only statistically significant for PM10 concentrations 6 days before patients

passed away. Although it is difficult to compare pollutant-induced mortality (as in Pothirat

et al. [22]) with pollutant-induced morbidity (as in our study), it is interesting to note that our

study suggests that there is a whole plateau of equally strong associations at lags 4, 5, and 6

between PM10 and visits related to the J44 category, see panel D of Fig 1.

Previous studies devoted to the Chiang Mai smog crisis either reported no association

between O3 levels and respiratory tract health problems [20, 26] or a negative association in

the sense that high O3 levels would be beneficial for the human health [19, 25]. The latter is

counter-intuitive and contradicts various studies from the East and South-East Asian region

[27, 28] and around the globe [1, 4] that suggest that high ozone levels have adverse health

effects. In particular, Wiwatanadate [25] acknowledged that such counter-intuitive negative

associations might be apparent associations due to the impact of hidden confounding vari-

ables. The present study sheds new light on the role of O3 levels in the Chiang Mai smog crises.

Accordingly, clear evidence has been presented that increased O3 levels were associated with

increased occurrences of upper and lower respiratory tract diseases in the Chiang Mai popula-

tion (see panels B and E of Fig 1). Our analysis showed that this effect of O3 remains robust

even when taking other pollutants such as PM10 and NO2 into account (see panels B and E of

Fig 2). Therefore, the present study not only provides evidence for O3-associated respiratory

tract diseases related to the Chiang Mai smog crisis but also points out that O3 is a useful inde-

pendent risk factor.

NO2 concentrations have been previously examined in the context of the Chiang Mai smog

crisis and associations between high NO2 levels and various upper respiratory tract health

issues [19, 25] and pneumonia (lower respiratory tract) cases [19]. In contrast, Pothirat et al.

[26] could not find support for an association between NO2 levels and lower respiratory tract

problems of the J44.1 pulmonary disease category. The different role of NO2 pollutants for

lower respiratory tract diseases in the studies by Pongpiachan and Paowa [19] and Pothirat

et al. [26] may be explained by acknowledging that the studies considered different disease

categories, on the one hand, and focused on different districts. While Pothirat et al. [26] con-

sidered a relatively rural district to the north of Chiang Mai, Pongpiachan and Paowa [19]

studies the densely populated city district of Chiang Mai. The present study clarifies the role of

NO2 pollutants for human health in the seasonally air pollution plagued Chiang Mai region.

Accordingly, when averaging over or disregarding the impacts of other air pollutants, high

NO2 concentrations increase the risk for both upper and lower respiratory diseases of the

J30-J39 and J44 categories (see panels C and F of Fig 1).
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In general, the RR scores for the cumulative lagged variables were higher as compared to

the RR scores of the single day variables. This observation may be explained following the

arguments by Ding et al. [42]. Accordingly, both biological and behavioral factors may lead to

delayed reactions. More precisely, on the one hand, respiratory health problems may need sev-

eral days to develop and, on the other hand, patients may be reluctant to visit a doctor right

away when experiencing symptoms. Rather, patients may delay their decision to seek for medi-

cal help. From a modeling perspective, the latter argument is consistent with the assumption

that respiratory diseases develop via multi-step processes that involve at least one intermediate

(e.g. pre-disease or pre-clinical) state [43]. That is, our data suggest that the two-states sche-

matic presented in the graphical abstract might be considered as a useful minimalistic model

but should be refined by more sophisticated models.

The question arises to what extent the results of the present study transfer to other regions

within Thailand or the wider East and South-East Asian region. For example, Ostro et al. [44]

studied the impact of particulate matter on mortality in Bangkok using data from 1992 to

1995. Mortality due to respiratory diseases was positively associated with PM10 concentrations.

This type of association was observed for same day PM10 concentrations, lagged concentration

variables, and cumulatively lagged variables. Likewise, Phosri et al. [45] examined the associa-

tion between PM10 and hospital visits in Bangkok during the 8 years period of 2006 to 2014.

Visits related to pneumonia (category J18-J19) and chronic obstructive pulmonary disease

(category J40-J47) were found to be associated with increased levels of PM10. These findings

are similar to those results reported in the present study in panels A and D of Fig 1 with respect

to morbidity to respiratory diseases. In this context the question arises whether Bangkok shares

with the Chiang Mai region (and other areas of the East and South-East Asian region) the dis-

tinctive feature of an annual smog crises. PM10 pollutant data observed during the period from

1996 to 2010 reported by Watcharavitoon et al. [46] do not reveal any pronounced annual

peaks comparable with the March peaks characteristic for the Chiang Mai smog crises. Having

said that the data reported by Watcharavitoon et al. [46] demonstrate the washout effect of the

rainy season on PM10 concentration as has been observed in the current study for the Chiang

Mai region (see Material and methods).

The present study exploits a unique situation that involves, on the one hand, air pollutants

that vary over relatively large range of concentrations on a year-to-year basis (related to an

annual smog crisis), and, on the other hand, a data set that corresponds to a relatively large

sample (about 200,000 patient visits). Such situations have been considered in the health sci-

ences as prime opportunities to estimate relative risks [5]. As mentioned in the introduction,

several cities and areas in the East and South-East Asian region suffer from a similar annual

smog crisis and, consequently, previous research on this field has evaluated situations involv-

ing large-scaled air pollutants variations. However, those studies not necessarily were based on

large data sets. For example, Mokoena et al. [14] studied respiratory mortality in the city of

Xi’an, China, that features an annual smog crisis [12, 14] similar to the Chiang Mai region. To

this end, about 8,000 death cases were considered. We are inclined to say that due to the rela-

tive large number of visits considered in our study, the relative variability among the scores

was relatively low such that RR estimates obtained in our study exhibited relatively small confi-

dence intervals (see Figs 1 and 2). More precisely, if a RR estimate differed from unity by an

amount X, then the confidence interval was typically less than 50% of X. In contrast, in the

study by Mokoena et al. [14] confidence intervals were typically multiples of X (up to 10 times

the value of X). Based on our results, we speculate that in other studies on regions involving

year-to-year air pollution peaks that were based on smaller samples, like the study by Mokoena

et al. [14], some RR estimates might have been determined to be not statistically significant

due to a lack of statistical power. This line of argumentation may be also supported by the
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study from Li T et al. [5] on PM2.5 associated mortality in Beijing, China. As mentioned in the

introduction, Beijing is–just a Chiang Mai—another city in the East and South-East Asian

region that suffers from annual episodes of highly polluted air [12]. Li T et al. [5] studied

among other things the association between PM2.5 and death due to respiratory diseases of the

category J00-J99. Specifically, they considered 14,274 death cases of the category J40-J47, 8,141

cases of J09-J18, 3,528 cases of J95-J99, 1,583 cases of J80-J84, and 1,012 cases of J60-J70. Only

for the largest sample with 14,274 cases for the J40-J47 category a statistically significant posi-

tive association between PM2.5 and death rate could be found. For all other (smaller) samples

of the remaining disease categories J09-J18, J95-J99, J80-J84, J60-J70 no statistically significant

associations could be found. It is striking that all the diseases categories that were tested on the

basis of relatively small samples (less than 10,000 cases) produced no statistically significant

results, whereas the disease category tested with a relatively large sample (more than 10,000

cases) produced a statistically significant association. Overall, we are inclined to say that these

results reported by Li T et al. [5] highlight the need to consider sufficiently large samples, as

used in the current study. Finally, as mentioned above, RR scores of cumulative pollutant

variables in our study were relatively high, which may indicate that respiratory diseases of

the classes considered in our study need some time to develop. Such amplified RR scores of

cumulative have also reported by Wang et al. [13] for the population of Shanghai, China.

While Wang et al. [13] studied the impact of PM2.5 and O3 on outpatient visits due to health

problems in the upper and lower respiratory tract, our study focused on the PM10 and O3.

Interestingly, Wang et al. [13] could find amplified RR scores for the cumulative PM2.5 pollut-

ant variables similar to those reported in our Fig 1 (panels A and D). However, in contrast to

our findings (see Fig 1 panels B and E), Wang et al. [13] could not find a significant increase of

outpatient visits due to increased O3 levels.

Metrological variables were taken into account as confounding variables. To this end, daily

extreme values were used. By definition, such daily extreme values are higher than the corre-

sponding daily mean values. Therefore, the question arises to what extend our analysis results

depend on the choice of the values for the meteorological values. To answer this question, we

conducted the same kind of analysis as reported in the Results section using daily mean meteo-

rological values. We found that the relative risk patterns thus obtained did not differ qualita-

tively from those reported in the Results section (compare Fig 1 with S1 Fig 3 in S1 File). The

only exception was the pattern for the effect of PM10 on J30-J39 diseases for single lag model.

However, overall, qualitatively, the analysis based on daily meteorological mean values reveals

statistically significant effects of all pollutants under consideration on both disease categories.

Quantitatively, the relative risk values were lower (compare again Fig 1 with S1 Fig 3 in S1

File). That is, the re-analysis revealed a systematic quantitative (but not qualitative) effect.

Let us briefly address a limitation of the current study. The current study used air pollution

data from two detectors located in close proximity to each other that effectively can be consid-

ered as a single monitoring site. That is, we did not attempt to capture spatial effects of air

pollution concentration. Future studies may try to associate hospitalizations recorded in indi-

vidual districts of the Chiang Mai province with air pollution data locally measured in those

districts. While such a spatial approach can yield insights that go beyond the results obtained

in the current study, a particular challenge in this context is to secure data that comes with the

appropriate spatial structure.

Conclusion

The study demonstrated that outpatient visits due to upper and lower respiratory tract diseases

of the categories J30-J39 and J44 during the period from 2011 to 2014 were associated with air
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pollutant levels of PM10, O3, and NO2 in the Chiang Mai area. Importantly, for all tested tim-

ing scenarios pollutant concentrations were statistically significant associated with outpatient

visits of both disease categories. Therefore, our study supported the conclusion that there was

no scenario under which increasing air pollution levels did not have adverse effects on human

health and helped to resolve some conflicting results reported earlier. The study pointed out

the need for monitoring, publicizing, and controlling air pollutant levels not only in the

Chiang Mai area but also in other areas of the East and South-East Asian region characterized

by annual smog crisis phenomena similar to the one of Chiang Mai.
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