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Abstract

Concerns have been raised about the adverse impact of Asian dust storms (ADS) on human health; however, few studies
have examined the effect of these events on children’s health. Using databases from the Taiwan National Health Insurance
and Taiwan Environmental Protection Agency, this study investigates the documented daily visits of children to respiratory
clinics during and after ADS that occurred from 1997 to 2007 among 12 districts across Taipei City by applying a Bayesian
structural additive regressive model controlled for spatial and temporal patterns. This study finds that the significantly
impact of elevated children’s respiratory clinic visits happened after ADS. Five of the seven lagged days had increasing
percentages of relative rate, which was consecutively elevated from a 2-day to a 5-day lag by 0.63%,2.19% for preschool
children (i.e., 0,6 years of age) and 0.72%,3.17% for school children (i.e., 7,14 years of age). The spatial pattern of clinic
visits indicated that geographical heterogeneity was possibly associated with the clinic’s location and accessibility.
Moreover, day-of-week effects were elevated on Monday, Friday, and Saturday. We concluded that ADS may significantly
increase the risks of respiratory diseases consecutively in the week after exposure, especially in school children.
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Introduction

Every winter and spring season, Asian dust storms (ADS) are

frequently a major health problem in many cities throughout the

world. Annual dust emissions total approximately 43 million tons,

with springtime dust emissions accounting for almost half of the

annual totals [1]. ADS usually originate in the deserts of Mongolia

and China, lift soil particles into the atmosphere, and carry them

east and southeast towards Korea, Japan, Taiwan, and even the

Philippines [2,3]. In addition to highly-elevated ambient partic-

ulate matter (PM) concentration, the PM composition during ADS

differs from that during non-ADS periods. Reports from central

Taiwan show that the concentration of the crustal elements and

sea salt species in PM2.5-10 (i.e., particulate matters with

granulometric diameter between 2.5 and 10 mm) during ADS

exceeds the mean concentration of these same entities during non-

ADS periods by at least 2 units of factors [4]. Moreover, during

ADS in China, higher PM concentrations were measured in

Korea and Japan, and the ADS particles were also observed to be

rich in some elements that include aluminum, iron, and calcium

[5–7].

Several environmental epidemiologic studies have demonstrated

evidence of an adverse relationship between airborne particles and

human health. Airborne particles uniquely impact the mortality

and hospitalization rates of several diseases, most notably

respiratory diseases. Most research has concluded that the effects

of PM, especially composed of fine particles, are more severe than

that of other air pollutants because they can be inhaled deeply into

the lungs [8]. A European study revealed that each 10 mg/m3

increase of PM10 (i.e., particulate matters with granulometric

diameter less than 10 mm) raises the relative rate of clinic visit by

1.20% for asthma and 1.00% for chronic obstructive pulmonary

disease [9]. In addition, the effect of fine particulate air pollution

on mortality may contribute to higher instances of stroke and

respiratory deaths [10]. Besides PM, the adverse health impact of

CO, O3, NO2 and SO2 has also been well-documented historically

[11–13].

The health impact of ADS has been discussed by comparing

mortality rates or emergency room admissions between ADS and

non-ADS events [14,15]. In addition, researchers have investigat-

ed health related lag effects associated with ADS, and they have

discovered deferred influence on hospital admissions [16–18].

Yang et al. [19] found a statistically significant association between

ADS events and primary intracerebral hemorrhagic stroke

admissions 3 days after the dust storms. ADS also increased the

risk of both asthma and cerebrovascular admissions from a 1-day

lag to a 3-day lag [20,21]. Among the research population,

children are particularly sensitive to airborne exposure [22].

However, few studies have focused on children’s health from the

perspective of ADS events [23,24]. Most of the previous studies
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regarding the health impact analysis of ADS utilize relatively few

health observations, and therefore, inferences from these studies

may be limited and conservative [25]. Chien et al. [24] showed the

elevated rate of children’s respiratory clinic usage during one week

following ADS; however, no temporal lag effect structure of health

impact was discussed.

Geographic heterogeneity has been a salient factor in ambient

pollutant distributions [26,27] as well as its associations with health

outcomes [12,28]. Nevertheless, few studies have assessed the

spatial variation of an ADS’s impact on human health. In order to

address this issue, this study applies a unidirectional approach [29]

under a spatiotemporal model framework to diagnose the space-

time disparity of children’s respiratory clinic visits. The influence

of ADS on children’s health was examined by considering

temporal lag effects starting from the end of each ADS event as

well as the spatial variation over study areas. This study specifically

investigates the daily clinic visits of children with respiratory

diseases in 12 districts in Taipei City from 1997 to 2007.

Materials and Methods

Children’s Clinic Data
Initiated in March 1995, Taiwan’s National Health Insurance

(NHI) program contacted more than 97% of hospitals and clinics

nationwide within its first year of inception, enrolling more than

96% of Taiwanese residents. The Taiwan National Health

Research Institute maintains the NHI program database, and

has established a standard procedure that assures the quality and

accuracy of claims data [30]. The NHI database includes

ambulatory care expenditures by visit as well as the registries of

contracted medical facilities nationwide. The procedure and

diagnostic codes are used to retrieve cause-specific data according

to diagnosis-related groups or International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)

classification codes by the Bureau of National Health Insurance.

Regarding personal privacy and confidentiality, all individually

identifiable health information has been encrypted prior to release,

e.g., personal identification or hospital identification numbers.

For this study, the following respiratory diseases were

highlighted: acute respiratory infections (ICD-9:460–466, allergic

rhinitis (ICD-9:477), other diseases of upper respiratory tract

(ICD-9:478), pneumonia and influenza (ICD-9:480–488), asthma

(ICD-9:493), bronchiectasis (ICD-9:494), and extrinsic allergic

alveolitis (ICD-9:495). This study obtained a population-based

database containing space-time data for clinic and hospital visits

(i.e., hospital location and appointment times) for all-cause

respiratory diseases of children under 14 years old in Taipei City

from 1997–2007, including both ambulatory and emergency visits.

We split these clinic visits data into preschool children (0,6 years

of age) and school children (7,14 years of age) in this analysis.

Dust Storm Data
ADS often occur in northern and northwestern China,

impacting Taiwan only under certain atmospheric circumstances.

Before 2000, the Department of Atmospheric Science at Chinese

Culture University (CCU) was tasked with the responsibility of

characterizing, defining, and monitoring ADS events in Taiwan.

They came up with the following criteria for identifying an ADS

event: 1) dust storm events with PM10 concentrations .100 mg/

m3 observed by any air quality monitoring stations located in

Wanli, Guanyin, Danshui, and Yilan, and 2) dust storm events

with visibility less than 1 km for 24 hours in any of three

neighboring First Global GARP Experiment-type ground stations

[31]. After 2000, the Taiwan Environmental Protection Agency

(TWEPA) became the official organization to define, monitor, and

predict ADS. They utilize three distinct steps in order to categorize

storm events in Taiwan as ADS and to predict their arrival time.

First, the Weather Integration and Nowcasting System is consulted

to confirm the occurrence of ADS in Mongolia and China.

Second, the Moderate Resolution Imaging Spectroradiometer

remote data and several models of ADS are used to track the

transport of ADS and to predict the probability of the arrival of

ADS in Taiwan. Third, if the data confirm that ADS may blow to

Taiwan, the TWEPA will issue an early warning with the

estimated arrival date [32]. This study highlights and analyzes

76 storm events that were thus categorized as ADS during the

period of 1997–2007 (see Table 1). These ADS events span a total

period of 172 dust storm days. Proportionally, these dust storm

days account for 4.28% of the entire study period that lasted for a

total time span of 4017 days. In addition to the ADS data, ambient

pollutants concentrations and temperature have been regularly

monitored at the TWEPA stations across Taiwan since 1994. The

temperature measurements used in this analysis are the daily

observations at the Jhongshan air quality monitoring station

located in the most populated area of Taipei City (see Figure 1).

Study Area
Taipei City, located in northern Taiwan, is the country’s capital

and largest metropolitan area with a population of more than six

million inhabitants. Topographically, it is the second largest basin

in Taiwan, bounded by the Yangming Mountains to the north, the

Linkou mesa to the west, and Snow Mountains to the southeast.

The basin region along the rivers is more populated than regions

near the mountains, creating serious air pollution problems due to

its heavy traffic. In the past decade, Taipei’s metropolitan rapid

transit system (MRT) has effectively reduced cross-district

traveling times within Taipei, and therefore, it has increased the

accessibility to major medical facilities. Figure 1 displays the

Taipei City map and essential urban information relevant to this

study, including geographic topography, districts, major medical

facilities, and the MRT. The clinic visit data are aggregated with

respect to the 12 districts across Taipei City.

Spatiotemporal Modeling
In this study, assuming Yst is the number of daily children’s

respiratory clinic visits at calendar time t[(1,2,:::,4017) in district

s[(1,2,:::,12), this outcome variable would follow a Poisson

distribution by YstDmstePOI(mst) with the expected value

E(Yst)~mst and variance V(Yst)~Qsmst, where Qs is an over-

dispersion parameter representing the variation of clinic visits

unable to be calculated by statistical models. A vector of dust storm

lag index (DSLI) contains eight dummy variables to represent 0-

lag to 7-lag days of ADS. Moreover, a vector of day-of-week

(DOW) dummy variables from Monday to Saturday is used to

control short-term temporal autoregressive correlations. The B-

spline with a second order random walk prior is used in a time

smoother f (Time) for calendar time to consider long-term

autoregressive correlations and in a temperature smoother f (TP)
to control nonlinear weather confounding effect. Therefore, a

model framework can be constructed by applying a Bayesian

structural additive regression (STAR) modeling approach:

log (Yst)~b0zb1|(DOW)zb2|(DSLI)

zf (TP)zf (Time)zfspat(s)zoffset
ð1Þ

where b0 is an intercept for interpreting the overall association for

all districts. The parameters b1 and b2 are a 166 vector with six
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coefficients of day-of-week variables and a 168 vector with eight

coefficients of DSLI variables. The offset is the logarithm of the

district-level population based on the 2000 Census.

In particular, a spatial function fspat(s) was appended to

consider potential spatial autocorrelations among the 12 districts.

It is actually a Markov random field [33] achieved by a conditional

autoregressive prior to following a normal distribution fspat(s)D
fspat(s’),s=se N(

P
s’[Vs

fspat(s’)=Ns,s
2
s=Ns), where Ns is the

number of adjacent districts s’ connected to district s, and s’ [Vs

represents that the district s’ belongs to the set of the neighboring

districts Vs of district s. Note that the geographic information

system in this study is boundary data, and that the definition of

two connected districts means that they share parts of boundaries.

In the spatial function, the unknown variance, s2
s , and smoothing

parameter are assumed to follow an inverse Gamma distribution

IG(0.001, 0.001). The spatial effect can be explained by the

relative rate (RR) in district s compared with the mean value for

the whole population controlling for spatial autocorrelations [34].

Maps of the spatial function at the district level were presented to

visualize the geographic distribution of RR. Spatial effects were

also classified into three groups according to their posterior

probabilities with respect to the number 1 in the following

manner: (i) 80% of the posterior distribution below 1 representing

a significantly lower RR than the mean level for the Taipei City

area; (ii) 80% of the posterior distribution above 1 representing a

significantly higher RR than the mean level for the Taipei City

Figure 1. Spatial distribution of the districts, the medical centers, the MRT lines, and the Jhongshan air quality monitoring station
in Taipei City.
doi:10.1371/journal.pone.0041317.g001
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area; (iii) the other districts representing a non-significant

difference of RR compared to the mean level for the Taipei City

area.

All unknown parameters in this STAR model were estimated by

an empirical Bayesian approach using a restricted maximum

likelihood (REML) estimation technique [35]. The REML method

is a substitution of the maximum likelihood method that avoids the

loss of degrees of freedom while estimating fixed effects, and

prevents estimators toward zero with biases. Demographic

analyses were generated using SAS v9.2 software [36], and the

model-based estimation procedure was accomplished in the

software package BayesX v2.01 [37]. A p-value ,0.05 was

considered statistically significant in estimated coefficients.

Results

Table 2 depicts the regional distribution of children’s average

daily respiratory clinic visits in Taipei City from 1997–2007.

During ADS events (lag 0), the daily visit average reached its

highest value with 1484.30 clinic visits (SD = 477.40) in the Shihlin

District, while the Datong District only had 399.67 (SD = 161.72)

clinic visits per day. The daily average of clinic visits increased

during the 1-day lag at the end of ADS events, with the largest

increment occurring in the Daan District (153.62 daily clinic

visits). The Jhongjheng District only featured a 27.58 increase.

After a 1-day lag, clinic visits decreased in most areas, however this

falling trend was inconsistent. Some areas had a higher average

during the 5-day lag or 7-day lag. Moreover, according to the daily

records at the Jhongshan air quality monitoring station, the

average concentration of PM10 was 90.64 mg/m3 during dust

storm days, which was significantly higher than the average

concentration during non-dust storm days (p-value ,0.0001), as

shown in Table 3. The average concentration of O3 during dust

storm days was 5.61 ppb higher than that during non-dust storm

days significantly (p-value ,0.0001). This finding confirms that

during ADS events as verified by the CCU and TWEPA, higher

concentrations of two important air pollutants (i.e., PM10 and O3)

were measured.

Table 4 shows the increased percentage of RR of children’s

respiratory clinic visits in certain DOW variables. Monday had the

significantly highest increased percentage 37.55% (p-value

,0.0001; 95% CI = 37.44, 37.65) compared to Sunday in

preschool children and 37.88% (p-value ,0.0001; 95%

CI = 37.73, 38.08) in school children. Saturday was the second

leading DOW variable, and the percentage increase of RR in

school children (10.76%, 95% CI = 10.63, 10.88) was almost twice

the percentage in preschool children (5.66%, 95% CI = 5.56,

5.75). Wednesday had the lowest percentage increase of RR of

only 0.56% (p-value ,0.0001; 95% CI = 0.47, 0.65) in preschool

children, while the percentage largely inflated to 7.64% (p-value

,0.0001; 95% CI = 7.51, 7.77) in school children. For all children,

the greatest percentage increase of RR was 37.64%, occurred on

Monday (p-value ,0.0001; 95% CI = 37.55, 37.72).

The association between ADS and children’s respiratory clinic

visits was not positive until the second day after ADS, suggesting

the percentage increase of RR for preschool children was 22.53%

(p-value ,0.0001; 95% CI = 22.69, 22.36), while it was much

lower in school children by 26.28% (p-value ,0.0001; 95%

CI = 26.50, 26.06). The negative association lasted through the

1-day lag, and became positive from the 2-day lag to the 7-day lag,

except for the 6-day lag. Among lag days with positive

associations, preschool children had the highest 2.19% (p-value

,0.0001; 95% CI = 1.95, 2.43) at the 3-day lag; meanwhile for

school children, RR at the 7-day lag reached its highest percentage

increase by 3.20% (p-value ,0.0001, 95% CI = 2.81, 3.60).

Regardless of age stratification, the strongest association happened

at the 3-day lag with a 2.40% (p-value ,0.0001; 95% CI = 2.20,

2.59) increase in RR for all children.

Figure 1 depicts the distribution of spatial effects attributed to

children’s respiratory clinic visits in Taipei City. In most districts

with preschool children or school children, positive risk of

increased clinic visits was prevalent. The range of spatial effect

in preschool children was (20.37, 0.27), and it was wider than that

for school children (20.22, 0.13). Out of all the 12 districts studied,

the Jhongshan District displayed the strongest spatial effect

contributed to respiratory clinic visits for both preschool and

school children. The positive spatial effect in preschool children’s

clinic visits was uniformly distributed in the following districts: the

Beitu, Shihlin, Neihu, Nangang, and Wanshan District; however,

no specific pattern described the spatial heterogeneity in school

children’s clinic visits. The maps of 80% posterior probability

show that 6 of 12 districts demonstrated a significantly positive

spatial effect in both preschool children and school children.

Combing two groups, 7 of 12 districts had a significantly positive

Table 1. Dust storm days in Taipei City, 1997–2007.

Year Date # of days

1997 1/1, 3/7–3/8, 3/30, 4/8, 4/21, 4/27–4/28, 8

1998 1/4, 2/13, 2/18–2/19, 3/7, 3/19, 3/30, 4/4, 4/15, 4/17–4/19, 4/24–4/26, 5/1, 11/5, 12/15 18

1999 1/27, 2/19, 3/8–3/9, 3/26, 4/7, 4/13, 11/25 8

2000 3/6–3/7, 3/24–3/25, 3/28–3/29, 4/6, 4/8, 4/10–4/11, 4/15–4/16, 4/22, 4/27–4/28, 5/1, 5/3–5/4, 5/13–5/18, 12/24 25

2001 1/13–1/15, 2/1, 2/16–2/17, 2/21–2/25, 3/1–3/7, 4/12–4/14, 5/1–5/2 23

2002 2/11–2/12, 3/6–3/9, 3/23–3/24, 3/31–4/1, 4/8–4/15, 4/17–4/19 21

2003 2/18–2/19, 2/23–2/25, 3/6–3/9, 3/25–3/30, 4/25–4/28 19

2004 1/1–1/4, 1/13–1/14, 1/21–1/22, 1/24–1/25, 2/6–2/12, 2/14–2/16, 2/26–2/27, 3/3–3/7, 4/2–4/4 30

2005 3/18–3/19, 11/29–11/30, 12/21–12/22 6

2006 3/19–3/20, 3/29–3/30, 4/20–4/21 6

2007 1/28–1/29, 4/2–4/3, 4/17–4/18, 12/30–12/31 8

Data source: These ADS dates were defined by two databases in the CCU (1997–1999) and TWEPA (2000–2007). The criteria of the determination for ADS dates can refer
to the Dust Storm Data subsection.
doi:10.1371/journal.pone.0041317.t001

Dust Storm Degrades Children’s Respiratory Health

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e41317



spatial effect, which locations are identical to the finding in

preschool children.

Discussion

Due to high PM concentrations and unusual PM compositions

during ADS, ADS and their occurrences have been considered to

pose a high risk to human health. Recent studies have

demonstrated potential health risks associated with ADS in terms

of higher mortality rates and hospital admissions [21,38]. Some

studies have evaluated the biological plausibility of the ADS to

induce adverse health effects. These studies have shown that the

particles in ADS can exert toxicological effects on the respiratory

system, such as causing pulmonary inflammation and inducing

cytotoxicity in rat alveolar cells [39–44]. However, other

epidemiological studies have noted that the relationship between

ADS and adverse health effects, particularly respiratory diseases, is

at best uncertain or statistically insignificant [3,21,45–48]. One

plausible explanation of these inconsistencies may be that the

health assessment measures used to evaluate the health impact of

the ADS did not adequately capture the health effects. For

instance, some of the health measures utilized only accounted for

severe cases that required inpatient care, and consequentially,

negative environmental events such as ADS may not necessarily

induce such severe medical conditions. Furthermore, these

previous analyses were based upon observations from limited

hospitals [21,25,45,48], and reflected severe health conditions that

were exhibited by the most vulnerable individuals within a general

population. In contrast, this study provides complete ambulatory

and emergency service utilization information from the NHI, and

hopefully, better captures the potential health impact of ADS

events on the general population.

In recent decades, the importance of spatiotemporal analysis has

been emphasized in environmental epidemiological research,

especially in quantifying uncertainties in space-time health and

exposure data as well as capturing the resulting impact on the

estimates of these associations [28,49,50]. Although temporal

health impacts caused by ADS have been extensively investigated,

Table 2. Daily average children’s respiratory clinic visits within 12 Taipei City districts, 1997–2007.

District Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7

Songshan 965.47 1021.01 1026.54 1032.12 1012.05 1003.30 1000.94 1022.76

(265.40){ (277.85) (268.96) (197.34) (258.99) (237.52) (264.23) (254.23)

Daan 1390.45 1544.07 1568.15 1544.26 1533.63 1539.41 1501.92 1482.48

(500.60) (566.66) (556.80) (469.63) (576.84) (511.05) (526.60) (524.48)

Datong 399.67 432.73 459.15 444.85 444.31 443.38 434.77 449.74

(161.72) (160.29) (177.51) (143.87) (179.67) (155.48) (170.44) (167.57)

Jhongshan 1283.78 1378.96 1424.59 1390.27 1380.77 1382.75 1350.28 1323.98

(465.89) (528.91) (506.87) (443.06) (503.57) (483.00) (494.20) (458.95)

Neihu 1278.21 1400.53 1428.16 1403.61 1397.21 1400.11 1373.70 1386.88

(411.69) (463.82) (464.99) (359.31) (448.30) (438.58) (428.06) (443.15)

Nangang 553.05 584.36 596.82 583.45 570.15 584.66 583.83 570.26

(176.20) (204.50) (194.47) (167.83) (183.78) (174.25) (184.00) (181.75)

Shihlin 1484.30 1604.77 1627.00 1589.94 1578.60 1583.27 1560.02 1550.04

(477.40) (548.67) (520.92) (434.24) (522.40) (485.19) (499.14) (499.69)

Beitou 1246.64 1355.39 1360.04 1357.71 1329.35 1327.86 1321.17 1280.04

(427.35) (457.99) (446.99) (374.80) (451.62) (405.07) (435.30) (411.12)

Sinyi 976.27 1064.72 1095.60 1067.12 1071.74 1059.79 1052.68 1060.38

(302.20) (337.22) (332.92) (260.57) (329.34) (303.71) (295.59) (307.20)

Jhongjheng 924.74 952.32 985.72 982.88 940.55 953.96 945.58 892.30

(353.96) (372.18) (362.77) (320.12) (359.16) (346.83) (364.38) (337.27)

Wanhua 866.25 959.19 973.10 941.47 953.13 947.93 932.32 927.58

(296.49) (343.05) (325.99) (271.42) (329.86) (303.55) (321.07) (317.90)

Wunshan 1233.33 1323.68 1340.56 1313.18 1307.82 1312.39 1282.19 1302.18

(376.84) (427.47) (388.18) (309.02) (387.81) (373.03) (353.82) (390.76)

{Standard deviation.
doi:10.1371/journal.pone.0041317.t002

Table 3. Mean levels of air pollutants on dust storm days and
non-dust storm days in Taipei City, 1997–2007.

Air pollutant

Dust storm
days
(n = 172)

Non-dust storm
days
(n = 3845) P-value{

CO (ppm) 0.9960.43 0.9960.38 0.88

NOx (ppb) 51.32623.16 51.59620.58 0.88

O3 (ppb) 24.1767.67 18.5668.19 ,0.0001

PM10 (mg/m3) 90.64642.18 52.74623.53 ,0.0001

SO2 (ppb) 4.4662.67 4.2862.32 0.39

{T-test.
doi:10.1371/journal.pone.0041317.t003
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previous studies have seldom considered the spatial heterogeneity

of such health data in which the geographic disparity may be

derived from geographical variations of medical resources and

exposure levels.

In response, this study implemented the STAR modeling

approach for the spatiotemporal analysis of children’s clinic visits

related to ADS. The model identifies temporal patterns of a time

process by accounting for linear and nonlinear explanatory

variables similar to many time series models, such as the

generalized additive model [51]. Moreover, the STAR model

reveals the spatial heterogeneity independent of temporal varia-

tions by using Markov random fields. In addition, the Bayesian

framework of the STAR model allows feasibility to account for the

parameter’s uncertainty. This novel approach provides a more

comprehensive perspective on the impact of ADS on children’s

clinic visits for respiratory illnesses.

Previous studies have demonstrated different results in the

temporal lag effects of adverse human health related ADS. For

instance, hospital admissions were prominent 2 days after ADS in

one asthma study [45]. Also, in another study, a positive influence

was noted between ADS and ischemic stroke hospital admissions

on the third day following a dust storm event [19]. At the 1-day

lag, the relative risk of the association between ADS and

cardiovascular disease hospital admissions is also increased [14].

However, these associations were statistically insignificant. In

contrast, hospital admissions records in Taipei City noted a

significant increase in ischaemic heart disease admissions at the 2-

day lag and asthma admissions at the 3-day lag [21]. Meanwhile,

total respiratory diseases at the 3-day lag and upper respiratory

tract infection in males at the 4-day lag were significant in Minqin

City, China [48]. As noted, these findings were mostly based upon

the analysis of more severe health measures. This study conducted

a population-based study and found that children’s respiratory

health can be affected by ADS. This impact significantly occurred

during most days within a week after a dust storm event. The

elevated rates for children’s respiratory clinic visits after a dust

storm began at the 2-day lag and attained its highest impact at the

3-day lag for preschool children and the 7-day lag for school

children.

Several of the following considerations may provide plausible

explanations for such an increased rate of children’s respiratory

clinic visits: First, the impact of the ADS may not necessarily incite

immediate respiratory illness or illness severe enough to necessitate

the patient to seek medical services. A latency period may exist

between the adverse environmental influence and the onset of

respiratory symptoms requiring the need for medical services.

Second, the adverse weather conditions that exist during ADS,

such as strong winds and low visibility [52], often prevent citizens

from going out. Third, the increasing popularity of ADS

forecasting by the media and governmental agency may increase

the population awareness of ADS and their potential health effects.

Fourth, since over-the-counter pharmaceuticals are easily acces-

sible and inexpensive in Taiwan, many Taiwanese residents may

prefer initiating treatment of their symptoms and their children’s

symptoms with these products before seeking medical treatment at

a clinic, especially if they perceive that their condition is not

serious. However, if unsuccessful, treatment with these over-the-

counter medications could also account for the lag time noticed in

the children’s respiratory clinic visits following ADS. Table 4 notes

that the consecutive elevated risks may only apply to the children

because of their vulnerability to ambient pollutants. Further

studies should assess the ADS health impact on other age groups.

Table 4 also shows that school children were affected by ADS

much easier than preschool children. This may be explained by

the fact that Taiwanese schools were not suspended during ADS,

and school children may have experienced higher exposures and

elevated concentrations of heavy metals and ambient PM

compositions than their preschool counterparts who more likely

stayed at home [4,53,54]. This type of exposure has been closely

associated with the reduction of pulmonary functions in children

[23]. Further studies should investigate the temporal fluctuation of

daily relative risks that may result from the cross-infection of

respiratory diseases among children or the influence payment

policy of the Taiwanese NHI system.

Table 4. Percentage change in rates of daily children’s respiratory clinic visits in Taipei City, 1997–2007 [% (95% CI)].

Variable Preschool children School children All children

DOW Monday 37.55 (37.44, 37.65) 37.88 (37.73, 38.08) 37.64 (37.55, 37.72)

Tuesday 0.81 (0.72, 0.90) 21.11 (21.23, 20.99) 0.11 (0.04, 0.18)

Wednesday 0.56 (0.47, 0.65) 7.64 (7.51, 7.77) 2.90 (2.83, 2.98)

Thursday 1.35 (1.26, 1.44) 22.09 (22.21, 21.97) 0.18 (0.10, 0.25)

Friday 3.35 (3.26, 3.44) 2.33 (2.20, 2.45) 2.98 (2.91, 3.05)

Saturday 5.65 (5.56, 5.75) 10.76 (10.63, 10.89) 7.39 (7.32, 7.47)

Sunday Reference level Reference level Reference level

DSLI Lag 0 22.53 (22.69, 22.36) 26.28 (26.50, 26.06) 23.66 (23.79, 23.53)

Lag 1 22.12 (22.34, 21.89) 21.66 (21.97, 21.34) 22.05 (22.23, 21.87)

Lag 2 2.12 (1.88, 2.35) 0.73 (0.39, 1.06) 1.78 (1.59, 1.98)

Lag 3 2.19 (1.95, 2.43) 3.17 (2.83, 3.52) 2.40 (2.20, 2.59)

Lag 4 0.63 (0.39, 0.88) 0.72 (0.37, 1.07) 0.66 (0.45, 0.86)

Lag 5 1.01 (0.75, 1.26) 2.44 (2.07, 2.81) 1.74 (1.53, 1.96)

Lag 6 21.07 (21.33, 20.81) 20.84 (21.21, 20.47) 21.01 (21.23, 20.80)

Lag 7 2.18 (1.90, 2.46) 3.20 (2.81, 3.60) 2.26 (2.03, 2.49)

The other days Reference level Reference level Reference level

Abbreviation: DOW = day-of-week; DSLI = dust storm lag index.
doi:10.1371/journal.pone.0041317.t004
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Interestingly, the day-of-week has been considered as a

meaningful confounding factor for clinic visits in Taiwan. It is

important to know that local ambulatory service is commonly

rendered on a ‘‘first-come, first-serve’’ basis, and that physician

appointments are not necessary for the regular weekday schedule.

Access to any level of healthcare facility or provider is therefore

unconstrained during the week. However, weekend medical

services must be justified by severe symptoms and result in higher

co-payment requirements (out-of-pocket amount) from the NHI.

Thus, the service schedule and payment system are important

factors affecting the timing of medical-care-seeking behavior.

Thus, the temporal pattern of clinic visits is closely associated with

this weekend effect.

In Taiwan, the majority of the medical services in hospitals and

clinics are closed from Saturday afternoon until Monday morning.

Therefore, there is a strong incentive to visit clinics on Fridays and

Saturday (before weekend effect), and on Monday (after weekend

effect). The day-of-week clinic visit pattern observed in this study is

quite consistent with medical care-seeking pattern that has resulted

under the current national health care delivery system. Moreover,

the highly elevated RR on Monday essentially comprised those

patients seeking medical treatment from Saturday to Monday,

especially in the case of children who are incapable of accessing

clinic care independently and are dependent on a parent’s working

schedule which allows for only nighttime availability [55].

The spatial heterogeneity of clinical visits also reflects children’s

respiratory clinic visits (see Figure 2). Compared to Figure 1, the

districts with elevated rates were closely linked to the areas with

multiple urban medical centers, especially those along the MRT

lines, implying that a high usage of ambulatory and emergency

services for children’s health might logically occur in these districts.

Because the NHI program is characterized by its low co-payments

and open access to providers without choice restrictions, it

encourages those insured under the current Taiwan NHI system

to seek care in these medical centers with minimal personal

financial impact. Consequently, each person in Taiwan averages

14.2 clinic visits per year. In addition, some people may seek

treatment of common diseases in hospitals or even tertiary medical

centers, rather than clinics [24]. Further study is required to

investigate the relationship between the identified spatial hetero-

geneity and the locations of medical centers in the study area.

Conclusion
In summary, the spatiotemporal analysis presented in this study

identifies the temporal pattern of the health risks during and after

ADS and analyzes them day-by-day by considering the spatial

Figure 2. Spatial effects with 80% posterior probability for (a) preschool children, (b) school children, and (c) all children. Districts
shaded by white color showed significantly positive spatial effect, whereas districts shaded by black color depicted significantly negative spatial
effect. Grey color represented non-significant spatial effect in the district.
doi:10.1371/journal.pone.0041317.g002
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confounding factor. The study results clearly show significant and

increased rates for respiratory clinic visits in the studied population

of children over time in 5 of 7 days after ADS. The findings of this

population-based study can provide governmental agencies with

an important reference source in order to plan and implement

policies that can help to both protect children from the possible

adverse health effects of ADS and to provide care related to such

health effects.
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