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Abstract

This three-part review takes a detailed look at the complexities of cross-validation, fostered by the peer review of Saeb
et al.’s paper entitled “The need to approximate the use-case in clinical machine learning.” It contains perspectives by
reviewers and by the original authors that touch upon cross-validation: the suitability of different strategies and their
interpretation.
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This review is organized in three sections, each presenting a dif-
ferent view on the suitability of different cross-validation strate-
gies: one by M.A. Little, one by G. Varoquaux (who both also re-
viewed the original paper), and one by Saeb et al.

Perspective by M. A. Little: an important
problem that subject-wise cross-validation
does not fix

In their important article, Saeb et al. 2017 [1] propose, on the
basis of empirical evidence and a simulation study, that one
should use leave-subject-out (or “subject-wise”) cross-validation
(CV) rather than basic CV (what we are calling “record-wise CV”)
in clinical diagnostic application settings of machine learning
predictors, where there are multiple observations from each in-
dividual and small numbers of individuals. The reason is that
complex predictors can pick up a confounding relationship be-

tween identity and diagnostic status and so produce unreal-
istically high prediction accuracy, and this is not correctly re-
ported by record-wise CV, but it is for subject-wise CV. From Saeb
et al.’s article [1], I interpret the following claims: (i) subject-wise
CV mimics the “use-case”: in usage, predictions will always be
made on new subjects for which we have no observations, so
observations from individuals in the training set must not ap-
pear in the test set, (ii) subject-wise CV will correctly estimate
the out-of-sample prediction error under these circumstances,
and (iii) record-wise CV creates dependence between training
and test sets due to shared identities across train/test sets,
so it will produce biased estimates (e.g., prediction errors are
underestimated).

When I was asked to critically review this paper originally,
I could not really grasp the assumptions of their probabilis-
tic arguments, which were not made explicit. I guess if I were
quicker I would have gotten it immediately, but fortunately and
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Figure 1: Features from clinical data sets of the kind discussed by Saeb et al.

are often highly clustered, often not effectively sharing the same distribution
across individuals. Using subject-wise CV with this kind of data, the assump-
tion of subject-wise CV that the training and test sets come from the same
distribution is effectively violated. Here the leave-one-subject-out train/test

distribution mismatch is 100% for all subjects for this feature (two-sample
Kolmogorov-Smirnov test at 0.05 significance, Bonferroni corrected). Thismeans
that leave-one-subject-out CV cannot provide a consistent out-of-sample esti-
mator for this data. The mean absolute serial (Pearson) correlation within sub-

ject for each feature for all subjects is an unimportant 0.06, with no correlations
reaching significance (at the 0.05 level, Bonferroni corrected), barring only one
feature that is weakly correlated just above significance for only 10% of subjects.
This means that observations within subjects are effectively independent, but

such dependence is cited as themainmotivation for using subject-wise CV. Data
from [3]

later during the review process they relieved my stupidity and
made it clear that they intend a specific model for the data in
which dependency exists between each observation from each
subject, but where subjects – and the full dependency between
and distributional structure of observations – are drawn inde-
pendent and identically distributed ( i.i.d.) from the population
as a whole. But whether this model is applicable to any specific
data set is empirically testable and they do not propose a direct
test for this, so below I want to posit a different model where
Saeb et al.’s [1] claims (i-iii) above do not hold. This model is
grounded in my practical experience with this kind of data and
evidence from real data in this discipline (see Fig. 1). This model
allows me to test the scope of Saeb et al.’s [1] claims.

Subject-wise CV is not always a valid substitute for
record-wise CV in diagnostic applications

Take a collection of i.i.d. randomvariables and observations gen-
erated by them. Now split these variables up into two groups, ac-
cording to any uniformly random selection that is independent
of the data. The groups are now independent, and each observa-
tion is identically distributed to every other observation in each
group. This (i.i.d. situation) describes exactly what record-wise
CV assumes [2]. So any uniformly random way of splitting the
data into, i.e., test and training subsets, which are independent
of the data, must leave each observation in each group indepen-
dent of and identically distributed to any other observation in ei-
ther group. The consequence is that record-wise CV should not
depend upon how we split the data, provided that we split in a
way that is independent of the data. Any estimator of any quan-
tity computed on either group of this split must be independent
of the way in which this split is performed [1].

Let us now split the data in a way that is conditioned on one
of the variables in the data or some other variable upon which
the data depends. The split is no longer in general independent
of the data. A simple example is splitting on subject identity.
This modification of record-wise CV is indeed subject-wise CV,
and we ideally want it to inherit the i.i.d. assumption of record-

wise CV, for then we can simply borrow the applicable theory
wholesale. But we will find that for some kinds of data we can
create a split that violates the “identically distributed” assump-
tion of record-wise CV: indeed, this happens where the data is
clustered in value by identity, yet where the data is still i.i.d.
For this kind of data, observations belonging to one identity will
have different distributions than those in other identities: this is
a commonly encountered situation in the context of Saeb et al.’s
article [1]; indeed, this kind of clustering is sufficient to cause
complex predictor identity confounding (see Fig. 1 for a real ex-
ample). Such amodel is known as an i.i.d. ‘mixturemodel’ in the
statistics and machine learning literature [2].

But, does subject-wise CVwork for this data? No: we get gen-
erally different values of the estimator in the training set than
in the test set because they are based on data with different dis-
tributions. Yet, the original data is indeed still i.i.d. To get the
same estimator in both groups, we must have different samples
from the same distribution, rather than different samples from
different distributions, across the train/test split. This contra-
dicts claim (ii) above: in the identity-clustered data case (that can
cause identity-confounded predictions), subject-wise CV does
not produce a consistent estimate of the out-of-sample predic-
tion error. This distributional mismatch is clear in Fig. 1.

Clustering does not necessarily imply dependence

Staying for nowwith this simple i.i.d. mixturemodel, we can ask
about the independence of training and test sets, which bears
on claim (iii) above. Does the fact that the data is clustered im-
ply that observations are dependent? The answer is of course no
because it is an i.i.d. model. While observations within a cluster
might take on more similar values to observations in that clus-
ter than to others, each observation is still independent of every
other. What about within clusters? Still no, because it is an i.i.d.
model. Indeed, no dependence between observations is created
just by clustering alone. To be clear: in this model, observations
do depend upon their identity variable – that is whatwemean by
clustering on identity here – but they do not depend upon each
other [3].

This means that nomatter howwe uniformly, randomly, and
independently split the data generated by a simple i.i.d. mixture
model, the data in each group are still independent of each other,
and they are still independent across groups. But this is the
record-wise CV splitting method, and the “independent” part is
satisfied. Claim (iii) is contradicted: clustering in thismodel does
not by itself necessarily invalidate record-wise CV due to depen-
dence across a split between training and test sets. And this of
course entirely obviates the need for subject-wise CV, contra-
dicting claim (i). However, if we use subject-wise CV anyway, we
end up violating the “identically distributed” part by splitting on
the clustering variable, contradicting claim (ii).

For a simple model that exhibits the identity-
confounding effect, subject-wise doesn’t work

With just the simple i.i.d. mixture model, the data is clustered
and can exhibit identity confounding for complex predictors, but
the data is still i.i.d., so no dependence is created between train-
ing and testing subsets, which eliminates the theoretical justi-
fication for using subject-wise CV. However, to avoid the con-
founding discovered empirically, subject-wise CV is proposed,
which splits on the clustering variable. But this leads inevitably
to violating the identically distributed assumption, which is re-
quired for subject-wise CV to produce consistent estimates of
the out-of-sample prediction accuracy.
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Saeb et al. [1] of course may not agree with these model as-
sumptions, particularly the lack of within-subject dependence.
Itmay seem “intuitively obvious” that theremust be such depen-
dence. But this is an intuition that is testable, and in my experi-
ence, real data I have encountered in this context do not exhibit
any detectable signs of within-subject dependence between ob-
servations (see, for example, Fig. 1, where the serial correlation
within features is effectively non-existent) [4].

In my view, if one cannot actually detect any dependence in
practice, then Occam’s razor suggests that we go with the sim-
plermodel, which explains the data, i.e., the i.i.d.mixturemodel.
One could still insist that no, there must be some kind of depen-
dence only we haven’t looked hard enough for it. Then these
hidden dependencies cause effective clustering by value within
subject, and if this dependence is strong enough to cause clus-
tering, which in turn causes identity-confounding for complex
predictors, then it is likely to be strong enough for subject-wise
CV to empirically violate the identically distributed assumption
in any finite sample.

Subject-wise CV-as a proposed solution to identity confound-
ing for complex predictors, for some quite simple models that
fit the description given by Saeb et al. [1], fit the data, and
cause identity confounding-introduces a new problem that un-
dermines its consistency as an estimator of out-of-sample pre-
diction accuracy, either in theory or empirically, or both. Subject-
wise CV does not always work, and in some realistic cases it fails
where record-wise CV does not, even when the data are clus-
tered on identity. This sets a significant limitation on the appli-
cability of Saeb et al.’s [1] subject-wise CV proposal.

The real problem is confounded predictions, not CV

CV is such a seductively simple and universal technique that it is
easy to overstate what it can really tell us or do for us in practice.
As Saeb et al.’s [1] empirical evidence shows quite clearly, there
are practical situations in which there is an apparently system-
atic difference between prediction error estimates obtained by
record-wise CV and by subject-wise CV. But if we strip this down,
all that is actually shown is indirect evidence from prediction er-
rors. The synthetic simulationmodel arguments proposed in the
article are interesting, but this is just a toy model, carefully con-
structed to highlight the identity-confounding flaw with com-
plex predictors. The evidence is again all indirect through pre-
diction errors. So there is no direct evidence in the article that
the critical assumptions of various forms of CV are being vio-
lated in empirical studies found in the literature.

What is not in doubt, as Saeb et al. [1] show, is that special
properties of the data (here, clustering in feature space) interact
with specific properties of some prediction algorithms to cause
the predictor to settle on a confounded relationship between
the input features and the output variable. Because this prob-
lem does not lie with the CV method itself, we should find the
actual source of the confound and fix that first.

Adapting CV to attempt to fix a particular confound that it
cannot fix risks causing additional problems, in this particular
case, an inadvertent mismatch between train and test distribu-
tions for real data. Modern nonlinear predictors are particularly
sensitive to such “data drift,” a well-known problem [4]. Because
of this mismatch, subject-wise CV causes systematic underfit-
ting in practice in this situation: an alternative explanation for
Saeb et al.’s empirical findings that we cannot rule out. It is not
hard to see why this underfitting might occur: if a critical part of
the pattern that relates features to the output variable is miss-
ing in the training data because an entire set of observations

has been removed as they just happen to belong to a specific
individual, then no predictor can be expected to make accurate
predictions.

Leave-one-subject-out CV is not a panacea and suffers from
additional problems. It often results in estimators with large
variance because of the considerable heterogeneity between in-
dividuals in practice and the often small number of individuals
available to each study. It is dubious to interpret a prediction er-
ror estimate with large spread.

If one truly can identify CV as the problem, then it would be
important to choose another CV method, as Saeb et al. [1] sug-
gest. Theoretical CV research has moved on considerably since
record-wise CV was first described, and there are now adapted
CV techniques available for dealing with many different scenar-
ios where record-wise or subject-wise CV would not work. In-
deed, subject-wise has recently been theoretically investigated
for the case where jointly observations from each individual are
mutually dependent and individuals are i.i.d. examples of this
joint distribution [5]. (I would like to thank the authors for mak-
ing me aware of this one.) And there are adapted methods for
dealing with mismatched distributions [6] or serial dependen-
cies between observations where we want to make prognostic
predictions (e.g., the time series setting or longitudinal setting;
see [2]). I would also want to make readers aware of the related
ideas of domain adaptation [7], a very active topic addressing
the many issues that arise in deployment situations, where the
deployment data differ substantially in distribution and other
aspects from the train/test data.

Mandating subject-wise CV could make things worse

While I find the pleasing symmetry of a simple idea such as ‘the
CVmethodmust match/approximate the use-case’ very appeal-
ing, of which Saeb et al.’s subject-wise CV proposal is a special
case, I don’t believe it is for the best to follow this prescription
uncritically. In practice, we usually face multiple known and un-
known potential confounds.

Such perplexing confounds seem to have taxed the minds of
experts in the field for a long time. They have, in particular, been
the subject of substantial investigation in the data mining com-
munity, where they are known as “leakages,”(see [8] for many
concrete examples and examples where attempts to fix them
actually exacerbate the problem). For a hypothetical but entirely
plausible example, consider the case where all the healthy sub-
jects in the data set are younger than those with the condition
we want to diagnose. In this case, since many aspects of ag-
ing can be detected in features, we could have an obvious age-
related confound in the predictor, and again, subject-wise CV
will not fix this. Worse though, everyone could come to believe
the results are technically sound solely because it uses subject-
wise CV according to prescription.

It may be that a purely pragmatic solution, where appropri-
ate given the probabilistic dependency and distributional struc-
ture of the data, is to try out both record-wise and subject-wise
CV on a problem just to see what you find. If an unexpected
discrepancy is found, this may indicate that some kind of con-
found based on identity is occurring. Then one should fix the
confound.

In summary, this article contains some important obser-
vations and interesting empirical evidence, and we should be
grateful to Saeb et al. [1] for their work here, and it opens
up an important discussion. However, I do not agree with the
uncritical application of this simplified prescription because
whether subject-wise CV is applicable or not depends upon the
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dependency and distributional structure of the data, and this
may or may not coincide with the intended ‘use-case.’ Finally,
to avoid any doubt, I should clarify that I do not of course dis-
agree with Saeb et al. [1] on the need to identify such obvious
confounds with complex predictors, but I do not believe they
are necessarily caused by train/test set dependence and thereby
fixed just by using a different CV method.

MaxA. Little

Perspective by G. Varoquaux: cross-validation
is important and tricky

Saeb et al. [1] discuss an important point that is well sum-
marized by their title: the need to approximate the use-case
when evaluating machine learning methods for clinical appli-
cations. The central aspect of the problem is cross-validation:
How should it be done? How should the results be interpreted?

The reviewers of this important paper worried that readers
might retain overly simple messages, maybe originating from
the paper’s efforts at being didactic. Focused on diagnostic appli-
cations, the paper stresses the importance of subject-wise cross-
validation, often performed by leave-one-subject. But there is
no one-size-fits-all solution to methodological mistakes. In ad-
dition, the usage of leave-one-out cross-validation, frequent in
medical informatics communities, is fragile to confounds. Here,
I givemy take on some issues raised by the original paper [1] and
by Dr. Little’s comments.

Confounded predictions are indeed an important
problem

Given data and a target, a good predictor predicts; in other
words, it tries to find statistical associations between the data
and the target. Machine learning techniques can, and will, draw
their predictions from effects of non-interest - confounds - or
from stratifications in the data. Given two visits of the same pa-
tient with a chronic disease, who would not be tempted to con-
clude on a diagnostic upon recognizing the patient? If a diag-
nostic method is meant to be applied to new patients, it must
be evaluated as such. Hence, the cross-validation strategy must
test generalization to new subjects, as recommended by Saeb
et al. [1].

However, if the method is meant for prognosis from continu-
ous measurements, it may fine-tune to a subject’s data. In such
a case, the cross-validation must be made by leaving out fu-
ture measurements, and not full subjects. The central aspect
to choose how to separate train and test data is the depen-
dence structure between these. While most mathematical stud-
ies of cross-validation are for i.i.d. data, applications often have
dependencies across observations that are due to unobserved
confounding effects: samples belong to multiple subjects, and
movements differ across populations. Whether these effects are
confounds or not depends on the scientific or clinical question.

I have recently encountered two interesting situations that
warranted specific cross-validation settings. In Abraham et al.
[9], we were interested in diagnostics from imaging data of mul-
tiple sites. An important question was whether the predictive
biomarkers would carry over across sites. To test this question,
we measured prediction by leaving out full sites in the cross-
validation. In a different application, Liem et al. [10] showed pre-
diction of brain age from magnetic resonance images. However,
it is known that elderly people tend to move more in the scan-
ners, and that this movement has a systematic effect on the im-

ages. To demonstrate that the prediction of brain age was not
driven by movement, they showed prediction on a subset of the
data specifically crafted so that age and movement were uncor-
related.

In the first section of this review, Dr. Little correctly points
out that, in the presence of a confounds changing the cross-
validation method can measure the impact of a confound but
not fix it. More so, it may lead the predictors to underfit, in other
words, to use only a fraction of the information available to pre-
dict. For instance, to demonstrate prediction of brain age inde-
pendent of movement, training predictive models on a data set
crafted to only have subjects with a given amount of movement
would give less powerful predictors. Indeed, the required data
culling would deplete the train set. In addition, it would lead to
predictors easily fooled by movement: they would be applicable
only on data with the same amount of movement.

Avoid leave-one-out: cross-validation with small test
sets is fragile

Beyond the dependency structure of the data, another impor-
tant aspect of choosing a cross-validation strategy is to have
large test sets. Unfortunately, in communities such as medical
imaging, leave-one-out is the norm. In such a situation, there is
only one sample in the test set, which leads to a subparmeasure
of the error. An erroneous intuition is that this strategy creates
many folds that will compensate. The standard recommenda-
tion in machine learning is to use test sets of 10% to 20% of the
data (see [11,12] for historical references and [13, 7.10] for amod-
ern text book). Experiments on brain imaging confirm this rec-
ommendation [14].

Intuitions on cross-validation are challenging as there are
multiple sources of randomness: the train data which estimate
the expectancy on the family of models learned, and the test
data, which estimate the expectancy on the data on which the
models will be applied. However, the example of creating a bal-
anced test set in age prediction [10] outlines the importance of
having many observations in the test set. It is impossible to ac-
cumulate rich statistics on errors in small test sets. It is not le-
git to accumulate statistics in the union of all test sets across
cross-validation folds. Indeed this would break their indepen-
dence with the train sets and open the door to leaking of infor-
mation from the train sets to the corresponding statistics [5].

Leave-one-out must be avoided. Cross-validation strategies
with large test sets - typically 10% of the data - can be more ro-
bust to confounding effects. Keeping the number of folds large is
still possible with strategies known as repeated test-train split,
shuffle-split, repeated K-Fold, or Monte-Carlo Cross-Validation
[2,14].

Modeling cross-validation in heterogeneous data

Discussions are made more complex by the difficult question of
what exactly a cross-validation strategy is measuring. In partic-
ular, Dr. Little mentions in the first section that models may un-
derfit or lead to large variations when predicting across subjects.
These considerations have some truth. Yet, in a clear application
setting, as for a clinical purpose, the intended usage should dic-
tate the cross-validation setting. For research purposes, under-
standing what drives cross-validation results is important. This
may be difficult, as stressed by Dr. Little. To complement these
arguments with a different perspective, I expose below concep-
tual tools that I find useful in thinking about this rich set of
questions, though I do not claim to answer them. Intuitions can
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enable easy communication, but here I need to rely on mathe-
matical formalism.

First, let us give a formalism for confounding structures: for
N observations, we consider a variable y ∈ Rn that we are try-
ing to predict from data X ∈ Rn×p in the presence of confounds
Z ∈ Rn×k. The confounds could be labels denoting subject mem-
bership in the across-subject prediction case of Saeb et al. [1] or
indicators of movement in Liem et al. [10]. y is then a function
of X and Z:

y = f (XZ) + e, (1)

for linear associations : y = Xw + Zu + e, (2)

where e is observation noise. In such model, e may be i.i.d. even
though the relationship between y and X is not i.i.d, e.g., chang-
ing from subject to subject as in Saeb et al. [1]. This formalism
is a classic way of modeling confounding effects used, e.g., in
statistical testing for linear models [15].

The machine learning problem is to estimate from train data
{train} = (ytrainXtrain) a function f̂{train} that predicts best y from
X. In other words, we want to minimize an error E(y, f̂ (X)). The
purpose of cross-validation is to estimate this error. The chal-
lenge is that we are interested in the error on new, unknown,
data, i.e. the expectancy of the error for (y,X) drawn from their
unknown distribution: E(y,X)[E(y, f̂ (X))] [2]. This is why evalua-
tion procedures must test predictions of the model on left-out
data that should be independent from the data used to train
the model. Another aspect is that we would like the measure
to be also an expectancy on this train data: given future data to
train a machine learning method on a clinical problem what is
the error that I can expect on new data? This is a reason why
cross-validation procedures vary the train set by repeating the
train-test split many times. They strive to measure the follow-
ing quantity:

E{train}
[
E(y,X)

[
E(y, f̂{train}(X))

]]
. (3)

Given models (1) and (2) thatinclude a confound Z, (3), which
gives the cross-validation error, must be refined to include Z in
the expectancies, marginally or conditionally on Z. If Z models
subjects and the goal is to predict across to new subjects, the
expectancies must be marginal with respect to Z. This tells us
that all the data from a given subject should be either in the train
or the test. If the prediction is a prognosis knowing the subject’s
past, the expectancies are then conditional to Z, and a subject
should be spread between the train and test sets.

Gaël Varoquaux

The authors’ perspective

We do not live in a perfect world, and we thus are always facing
trade-offs when analyzing the performance of machine learn-
ing algorithms. All cross-validation (CV) methods, at best, es-
timate the true prediction error. Acquiring the true prediction
error would require infinite amounts of usage case data. In this
sense, we completely agree with Dr. Varoquaux on the complex-
ity of the process, which is partially reflected in the review by
Dr. Little as well.We have also encountered similar complex sce-
narios in our own work, where subject-specific models needed
to be cross-validated across time, e.g., in cases where tracking,
not diagnosis, was the objective [16,17]. We thank both Dr. Varo-
quaux and Dr. Little for bringing these additional discussions
and didactics to this important problem. However, in his review,
Dr. Little has criticized three of our claims that (i) subject-wise

CVmimics the use-case, (ii) subject-wise CVwill, under the right
assumptions, estimate the out-of-sample prediction error, and
(iii) record-wise CV underestimates use-case prediction errors.
We will critically review these three points here.

When subject-wise CV mimics the use-case scenario

If we are to usemachine learning to diagnose a disease, we want
to generalize from known subjects, some having the disease and
some not, to new patients who have to be diagnosed in the fu-
ture. In this setting, subject-wise CV obviously mimics the use-
case scenario by dividing the data set into known (train) and
future (test) subjects. Therefore, we are not clear why Dr. Little
asks if “subject-wise can be a replacement for record-wise.” For
such awide set of use-case scenarios, that is not even a question.
Record-wise CVwould, on a reasonably small data set, readily al-
low diagnosing a disease using any feature that can identify the
individual. For example, we would be able to diagnose Parkin-
son’s disease from subjects’ nose length.

Now, there are also other scenarios: we may want to ask if a
patient develops a disease, based on past baseline measures of
the same patient and new data. In this case, using data from the
same patient is mandatory. Here, our machine learning system
needs to use information from the same subject to predict their
future state. However, record-wise CV, which randomly splits
data into train and test sets regardless of time, is still not mim-
icking the use-case scenario. Using record-wise CV here would
mean detecting the disease based on future knowledge about
the disease state of a subject.

When subject-wise CV correctly estimates the
out-of-sample prediction error

When we build a machine learning system that diagnoses a dis-
ease, then we must consider how often it will misdiagnose the
disease on new subjects. Provided that subjects are recruited
randomly from the target population, a subject that has not
been seen by the algorithm is, for all practical purposes, indis-
tinguishable from other people in the population who are not
in the study. However, there are situations where this assump-
tion will not hold: if our data set is small, even if the algorithm
has not seen those other subjects, the algorithm developer cer-
tainly has, and may therefore bias the meta-parameters of the
algorithm. As such, the algorithm will implicitly contain infor-
mation from all data points, which means that whenever we try
something on our test set, we are using the test set informa-
tion. Therefore, the most important issue with subject-wise CV
is the implicit re-use of test data. To deal with this problem, we
can use large data sets where train and test sets are completely
isolated from the beginning or run a pre-registered replication
study. In this sense, we agree with Dr. Little that even subject-
wise CV is not sufficiently conservative. However, subject-
wise CV will still be a much more meaningful metric than
record-wise.

When record-wise CV underestimates the use-case
prediction error

Quite simply, whenever there is any subject-specific component
in the data, there will likely be a bias. In fact, Fig. 3 of our pa-
per shows this dependency in simulation. The idea is also in-
tuitive: in a small cohort, we would be able to use machine
learning to “diagnose” any disease based on any subject-specific
feature (e.g., the nose length), because the algorithm could, at
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least partially, identify subjects based on those features. This
would give us an obviously misguided belief that our machine
learning system will work perfectly on a new cohort. For sim-
ple confounds, such as linear ones, we can use a formalism
similar to that of Dr. Varoquaux and mathematically derive the
biases. Obviously, we can construct cases where there is no
bias despite subject-specific variation, e.g., when the subject-
specific variance is impossible for the machine learning sys-
tem to learn or represent. In years of experience working with
biomedical data, we have yet to see signs of such variance. In
other words, the biases are mathematically predicted, are in-
tuitively obvious, and are experimentally demonstrated by our
paper.

In summary, we agree with Dr. Little and Dr. Varoquaux
on the complexity of the cross-validation problem and are
thankful for bringing this up. We can not, however, agree with
Dr. Little’s three criticisms of our paper. We strongly urge sci-
entists and clinicians who want to diagnose diseases to avoid
record-wise cross-validation. Or if they do, we would like to be
given the opportunity to short the stocks of the resulting start-
ups.
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