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ABSTRACT 
Saccharum species are of great importance as fruit crops due to their economic and food value. S. ful-
vum is a wild relative of sugarcane that has a wide geographic distribution and is well-adapted to vari-
ous environmental conditions. It exhibits high resistance to pests, diseases, drought, cold, and 
degraded soils, making it a valuable resource for sugarcane research. Here, we report the chloroplast 
genome of S. fulvum. This chloroplast genome was 141,151 bp in length with a GC content of 38.41%. 
The large single-copy, small single-copy, and inverted repeat regions were 83,030 bp, 12,533 bp, and 
22,794 bp in length, respectively. The chloroplast genome contained 111 different genes, including 77 
protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Phylogenetic analysis indicated that S. fulvum 
was closely related to S. narenga. This study not only enriches the genome information of Saccharum, 
but also will be useful for the evolutionary study of the family Poaceae.
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Background

Saccharum L., which belongs to the family Poaceae, is an 
important wild relative of sugarcane that is important for 
sugarcane breeding research. It is widely distributed in the 
Americas and travels through the Mediterranean region into 
areas such as India, China, Southeast Asia and New Guinea. 
The Saccharum, Erianthus (sect. Ripidium), Sclerostachya, and 
Narenga form a closely related interbreeding unit involved in 
the origin of modern sugarcane cultivars (Mukherjee 1957). 
Saccharum fulvum R.Br. 1810 (also called Eulalia aurea (Bory) 
Kunth (www.worldfloraonline.org/taxon/wfo-0000896603) or 
Erianthus fulvus Kunth (www.worldfloraonline.org/taxon/wfo- 
0000868945)) can be a useful species for sugarcane varietal 
improvement because of its uniqueness (Kui et al. 2023). It 
has the lowest somatic chromosome count within the 
Saccharum complex, has a wide geographic distribution and 
adaptability, and shows strong resistance to pests and dis-
eases, drought, cold, and degraded soils (Amalraj and 
Balasundaram 2006). Introducing its gene into sugarcane is 
expected to improve the sugarcane resistance to pests and 
diseases.

In recent years, chloroplast (cp) genomes of some 
Saccharum species have been published, such as S. hybrid 
(Vidigal et al. 2016), S. spontaneum (Vidigal et al. 2016), S. offi-
cinarum (Evans and Joshi, 2016), S. sinense (Li et al. 2022), S. 
barberi (Li et al. 2022), S. narenga (also called Narenga por-
phyrocoma) (Dyfed Lloyd and Ben, 2020), S. hildebrandtii (Piot 
et al. 2018). These studies have focused on comparative 

genomics, species classification, and origins, elucidating 
phylogenetic relationships within the Saccharum complex 
(Asano et al. 2004; Xu et al. 2019; Dyfed Lloyd and Ben, 2020; 
Li et al. 2022). However, the cp genome for S. fulvum has not 
been reported.

Therefore, we performed genome sequencing of S. fulvum 
and assembled its cp genome. Comparative genomic and 
phylogenetic analyses were then performed with other 
Saccharum species. Our main objective was to characterize 
the cp genome of S. fulvum and to determine its phylogen-
etic position.

Materials and methods

Plant material, DNA extraction and sequencing

In this study, we collected dry leaves of wild S. fulvum from 
the Sugarcane Resource Nursery of Yunnan Agricultural 
University, the National Crop Germplasm Resources Platform 
(Sugarcane), and the National Sugarcane Germplasm 
Resources Nursery, China (Figure 1, 102.75574�E, 25.13488�N). 
The sample was deposited at the herbarium of the College of 
Pharmaceutical Engineering, Xinyang Agriculture and Forestry 
University (voucher number: ZM02301, Guangbo Zhang, 
2007300018@xyafu.edu.cn). Total genomic DNA was extracted 
using the CTAB method (Doyle and Doyle, 1987). The next 
generation sequencing DNA library with an insert size of 
300 bp was constructed and sequenced on the Illumina 
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HiSeq 2500 platform, yielding �4 Gb of raw data, and low- 
quality sequences were removed to obtain clean data.

Genome assembly and annotation

The cp genome assembly from the clean data was performed 
using GetOrganelle v. 1.7.5 (Jin et al. 2020). The parameters 
used for the plastome were ‘-R 25 -k 21,45,65,85,105,127 -F 
embplant_pt’. The samtools v1.7 (Li et al. 2009) and bedtools 
v2.28 (Quinlan and Hall 2010) were used for depth detection. 
The cp genome was annotated using CPGAVAS2 (Shi et al. 
2019), PGA (Qu et al. 2019) and Geneious Prime v. 2022.2.2 
with a reference genome (S. spontaneum, GenBank accession 
number: OP235381). GB2sequin (Lehwark and Greiner, 2019) 
was then used to confirm the annotation results. CPGView 
(Liu et al. 2023) was used to check the accuracy of cis- and 
trans-splicing genes. The cp genome map was visualized 
using CPGView (Liu et al. 2023). Sequence hotspot analysis 
was performed using mVISTA (Frazer et al. 2004) with a refer-
ence genome (S. hildebrandtii, GenBank accession number: 
MF563371).

Repeat and IR boundary analysis

Simple sequence repeats (SSRs) were identified using misa v. 
2.1 (Beier et al. 2017), including mono-, di-, tri-, tetra-, penta-, 
and hexa-nucleotides with minimum numbers of 10, 5, 4, 3, 

3, and 3, respectively. Additionally, REPuter (Kurtz et al. 2001) 
was used to calculate palindromic, forward, reverse, and com-
plementary repeats with the following settings: minimum 
repeat size of 30 bp. Furthermore, comparisons between the 
IR boundaries were generated using IRscope (Amiryousefi 
et al. 2018).

Phylogenetic analysis

We phylogenetically analyzed the cp genome of S. fulvum 
with 15 other Poaceae species. We extracted 76 common 
protein-coding genes (PCGs) from the genome annotation 
files using PhyloSuite v. 1.2.2 (Zhang et al. 2020). Each PCGs 
was aligned using MAFFT v. 7.4 (Katoh and Standley 2013), 
and then aligned genes were concatenated. Based on the 
concatenation matrix, a phylogenetic tree was constructed 
using the maximum likelihood (ML) method implemented in 
IQ-TREE v. 2.1.2 (Nguyen et al. 2014), and the best model 
(TPM3þ Fþ R5) was inferred from ModleFinder 
(Kalyaanamoorthy et al. 2017). The bootstrap value was set 
to 1000. Tree visualization was performed in Figtree v. 1.4.3 
(https://github.com/rambaut/figtree/releases).

Results

General features of the chloroplast genome

We analyzed the coverage depth of the cp genome and 
tested the annotation accuracy of some difficult genes, the 
results indicated that the cp genome of S. fulvum was trust-
worthy (Figure S1; Figure S2). The cp genome of S. fulvum 
had a circular quadripartite structure of 141,151 bp in length 
(Table 1, Figure 2, GenBank number: OR268641), which con-
sisted of a large single-copy (LSC) (83,030 bp), a small single- 
copy (SSC) (12,533 bp), and a pair of inverted repeats (IR) 
(22,794 bp). This cp genome had a total GC content of 
38.41%, the GC content in the IR region (43.89%) was signifi-
cantly higher than that in the LSC region (36.25%) and the 
SSC region (32.83%). In addition, the annotation results 
showed that the cp genome contained 111 different genes, 
including 77 PCGs, 4 ribosomal RNA genes, and 30 transfer 
RNA genes (Table S1). Similar to other Saccharum species, 
the ycf1 and ycf2 genes were missing, and eight PCGs (ndhB, 
rpl2, rpl23, rps7, rps12, rps15, rps19, ycf15) appeared in two 
copies (Table S1). The variation is mainly in the spacer region 

Figure 1. Species reference map (Fruits and leaves) of S. fulvum (Wild species; 
Voucher number: ZM02301; This picture was taken by Guangbo Zhang from the 
Yunnan Agricultural University, Yunnan Province, China; 102.75574�E, 
25.13488�N). S. fulvum is a near-source wild species of sugarcane that has the 
advantages of early maturation, high sugar content, and drought resistance that 
is of great value to the genetic improvements of sugarcane varieties. Core fea-
tures: Culms erect, nodes long-mustachioed, upper and lower parts of nodes pil-
ose or white powdery. Leaf blades long linear and ciliate. Panicle. Spikelet 
sessile and lanceolate, with white filiform hairs. Chromosome number 2n¼ 20. 
Flowering and fruiting period August-November.

Table 1. Summary of the chloroplast genomes of S. fulvum and S. narenga 
species.

Characteristic
Saccharum fulvum 

(OR268641)
Saccharum narenga 

(ON807673)

Chloroplast 
genome

Size (base pair, bp) 141,151 141,218
LSC length (bp) 83,030 83,095
SSC length (bp) 12,533 12,535
IR length (bp) 22,794 22,794
Number of genes 111 111
Protein-coding genes 77 77
rRNA genes 4 4
tRNA genes 30 30
Total GC content 38.41% 38.44%
LSC GC content 36.25% 36.29%
SSC GC content 32.83% 32.84%
IR GC content 43.89% 43.90%
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compared to closely related species (Figure S3). The SSC 
region was more conserved than the LSC and IR regions, 
which have a high number of variant regions.

Repeats and IR boundaries analysis

We identified 41 simple sequence repeats (SSRs) in the cp 
genome of S. fulvum, including 25 mononucleotides, 5 dinu-
cleotides, one trinucleotide, 9 tetranucleotides, and one pen-
tanucleotide (Table 1). The majority of the SSRs were 
mononucleotides accounting for 60.97% of the total. The 
SSRs were the most abundant in the LSC region and were 

mainly concentrated in the non-coding regions (Table 1; 
Table S2). In addition, we identified 50 long repeats, includ-
ing 35 forward repeats, 14 palindromic repeats, and one 
reverse repeat (Table 1, Table S3), which were mainly located 
in the LSC region, with a few presents in the IR region, and 
none in the SSC region (Table S3). The cp boundary genes 
were essentially similar in Saccharum species (Figure S4), with 
both the ndhH and ndhF genes located on the JSA (SSC/IRa) 
and JSB (SSC/IRb) boundaries. Both rpl22 and psbA genes 
were in the LSC region, and rps15 and rps19 genes in the IR 
region. However, the rps15 genes in S. hildebrandtii and S. 
perrieri had a shorter distance from SSC/IRb than in other 
Saccharum species. Compared to each other, the boundary 

Figure 2. The chloroplast genome map of S. fulvum. Genes on the inside of the circle are transcribed in a clockwise direction and genes on the outside of the circle 
are transcribed in a counter-clockwise direction.
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genes of S. fulvum were essentially identical to those of other 
species.

Phylogenetic analysis

To clarify the phylogenetic position of S. fulvum, we per-
formed a phylogenetic analysis. The phylogenetic tree 
showed that our phylogenetic results were generally consist-
ent with previous studies, with most nodes having high sup-
port (Figure 3). The phylogenetic analysis showed that 
Saccharum was not a monophyletic group. Additionally, it 
revealed that S. fulvum was more closely related to S. nar-
enga than to traditional sugarcane (S. officinarum).

Discussion and conclusion

Chloroplast genomes are widely used in phylogeny (Li et al. 
2021). However, the cp genome of S. fulvum has not been 

previously reported. In this study, we presented the cp gen-
ome of S. fulvum, which was 141,151 bp in length and 
encoded a total of 111 genes. The gene order and GC con-
tent of this cp genome were similar to those of previously 
published Saccharum species (Dyfed Lloyd and Ben 2020; Li 
et al. 2022). Unlike most angiosperms, the cp genome of 
Saccharum species generally lacked the ycf1 and ycf2 genes, 
possibly due to adaptive evolution. Previous studies had not 
investigated the phylogeny of S. fulvum, and its exact pos-
ition in the phylogenetic tree was still unclear (Asano et al. 
2004; Evans and Joshi 2016; Xu et al. 2019; Dyfed Lloyd and 
Ben 2020; Li et al. 2022). Our phylogenetic results strongly 
supported that S. fulvum within the Saccharum branch and 
its close relationship with S. narenga. These findings sug-
gested that these cp genomes could provide valuable 
insights into the interspecific relationships within Saccharum. 
However, it is important to consider the chloroplast maternal 
inheritance, which limits the accuracy of phylogenetic 

Figure 3. Phylogenetic tree based on the concatenated sequences of 76 protein-coding genes in 21 species by maximum-likelihood (ML). Values split by back-
slashes above branches represent ML bootstraps. The best-fit model was TPM3þ Fþ R5. Branch supports were tested using ultrafast bootstrap with 1000 replicates. 
Saccharum fulvum (OR268641) was marked in bold. The following sequences were used: Oryza sativa (voucher: HSAGSDYD1802) (MT653617) (Fan et al. 2020), 
Pseudopogonatherum contortum (KY596143), Tripidium ravennae (MH767451) (Lloyd Evans et al. 2019), Saccharum rufipilum (LS974679 (Lloyd Evans et al. 2019), 
Tripidium procerum (LS974677) (Lloyd Evans et al. 2019), Tripidium arundinaceum (LS974675) (Lloyd Evans et al. 2019), Tripidium kanashiroi (LS974674) (Lloyd Evans 
et al. 2019), Eulaliopsis binata (KY596182), Saccharum hildebrandtii (MF563371) (Piot et al. 2018), Saccharum perrieri (MN342163), Eulalia siamensis (KY596149), 
Pseudosorghum fasciculare (KY596139), Miscanthus junceus (LN869216), Miscanthus sinensis (KR822688), Saccharum narenga (ON807673) (Dyfed Lloyd and Ben, 
2020), Saccharum spontaneum (ON227480) (Evans and Joshi, 2016), Saccharum barberi (OP896209) (Li et al. 2022), Saccharum sinense (OP896211) (Li et al. 2022), 
Saccharum hybrid (OR077705) (Li et al. 2022), Saccharum officinarum (MG685915) (Evans and Joshi, 2016).
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analysis (Krawczyk et al. 2018). To obtain more precise phylo-
genetic relationships, it is necessary to integrate the analysis 
of nuclear and organelle genomes (G�orniak et al. 2010). 
Additionally, future research should include genomic analyses 
of other Saccharum species to further explore the complexity 
of Saccharum. This study not only enhances the genomic 
information of Saccharum but also serves as a basis for 
understanding the evolution of Poaceae species.
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