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Abstract
Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fi-

brillar substrates, and previous observations have shown that a significant time lag exists

before the onset of granulation tissue. We therefore conducted a series of experiments to

understand the impact of both fibrillar morphology and migration time. Substrate topography

was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar sur-

faces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-

mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an

enhanced velocity, v = 52μm/h, that decreases to the single cell value, v = 28μm/h within 24

hours and remained constant for at least four days. Fibroblasts emerging on fibrillar sur-

faces emerged with the single cell velocity, which remained constant for the first 24 hours

and then increased reaching a plateau with more than twice the initial velocity within the

next three days. The focal adhesions were distributed uniformly in cells on flat surfaces,

while on the fibrillar surface they were clustered along the cell periphery. Furthermore, the

number of focal adhesions for the cells on the flat surfaces remained constant, while it de-

creased on the fibrillar surface during the next three days. The deformation of the cell nuclei

was found to be 50% larger on the fiber surfaces for the first 24 hours. While the mean defor-

mation remained constant on the flat surface, it increased for the next three days by 24% in

cells on fibers. On the fourth day, large actin/myosin fibers formed in cells on fibrillar sur-

faces only and coincided with a change from the standard migration mechanism involving

extension of lamellipodia, and retraction of the rear, to one involving strong contractions ori-

ented along the fibers and centered about the nucleus.

Introduction
It has been nearly 20 years since Grinnell et al [1–4] first proposed that cell migration studies
be performed in a 3-D collagen environment which mimics the human skin ECM. The ECM is
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a very complex system of fibers composed of a variety of different proteins such as collagen
and fibronectin, whose sizes range from nanometer to micrometer. Cell migration, a critical
process in wound healing, [5, 6] has been shown by numerous groups to be a function of sub-
strate topography [7–12]. The micro-droplet technique is an accepted method for measuring
cell migration, simulating wound healing, and allowing for the study of chemotaxis and hapto-
taxis. Yet, most studies, utilizing this method were performed on flat surfaces. In the case of fi-
broblasts, the “sunburst” or patterns of rays emanating from a central source, observed were
shown to result from haptotaxis as the cells try to maximize the distance between adjacent
cells. Liu et al [13] compared the migration of cells on flat surfaces to that on fibrous mats and
found some fundamental differences. Measuring the migration velocity as a function of dis-
tance from the droplet, over a period of 24 hours, they found that on flat surfaces, the cells
move fastest as they exit the droplet, but slow down as the distance between them increases,
reaching a terminal velocity similar to the single cell value. When the droplets were placed on a
mat of parallel fibers with diameters greater than 8 microns, the cells organized to form a ring
around the perimeter of the droplet, and exited by moving only along the fibers. Therefore, for
the first 24 hours, the distance between cells remained constant with time, being determined by
the fiber pattern rather than the cell trajectory. The cell velocity also remained constant at the
single cell value, which was much lower than the exit velocity on the flat film.

McClain et al studied the time scale for healing of punch wounds in a Yorkshire pig model
and found a three day lag period before the onset of granulation tissue formation [14]. Since
granulation tissue forms via en mass fibroblast cell migration, we wanted to investigate the na-
ture of the cell velocity on different substrates after the first 24 hours. Even though the in-vivo
process is more complex, being the result of multiple factors, here we focused on the influence
of substrate morphology by measuring the migration for up to seven days and correlating the
results with changes in cell and nuclear morphology, cell metabolism, and expression of vincu-
lin and myosin IIA.

Materials and Methods

Fabrication of PMMA thin film and microfibers
Clean glass coverslips were coated with a thin film of PMMA (Mw = 120,000 Da, Mw/Mn = 3;
Sigma-Aldrich inc., St Louis, MO) which were spun cast from toluene solution ((Fisher Scien-
tific, Pittsburgh, PA) at a concentration of 30mg/mL by at 2500PRM for 30 seconds. Samples
were then annealed at 120°C in a vacuum of 10−7 Torr overnight to remove the remaining sol-
vent, remove stress in the film, and sterilize the substrates. Fiber scaffolds were generated by
electrospinning different PMMA solution and colleting by a rotating drum at 6750 r/min. Be-
fore seeding the cells, all samples had been sterilized under ultraviolet (UV) light for 20 min.
Then, a solution of 30μg/ml intact human plasma fibronectin (Fn) (Millipore, Temecula, CA)
solution in serum free Dulbecco’s Modified Eagle medium (DMEM) was added at 37°C for 2 h.
Similar procedure was used for the coating of collagen (PureCol, San Diego, CA)

Cell culture and cell migration assay
Adult Human Dermal Fibroblasts (CF29) were purchased from ATCC, and the experiment
only used cell passages from ten to twelve. Cells had been routinely cultured in Dulbecco’s
Modified Eagle medium (DMEM), with 10% fetal bovine serum (Hyclone, Logan, UT) and an-
tibiotic mix of penicillin, treptomycin, and L-glutamine (GIBCO BRL/Life Technologies,
Grand Island, NY) in a humidified incubator at 37°C. The traditional agarose gel migration as-
sessment was performed. The membranes of fibroblasts were stained with DiD dye, and then
re-suspended in a volume of 0.2% (w/v) agarose solution to obtain the final cell density of
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1.5×107 cells/ml. The agarose droplet was then introduced to the sterilized sample with micro-
pipette, and each droplet was of 1.25μL. Samples with cells were then placed at 4°C for 10 min
to allow the agarose to solidify. After cooling, full- DMEM was added to each sample. Cells
were then cultured in the 37°C incubator with 5% CO2 for 4 days.

Measurement of cell migration speed
Time-lapse images of fibroblasts cell migration are recorded by MetaMorph-operated Cool-
SNAP HQ camera (Universal Imaging Corporation, Downingtown, PA) attached to a Nikon
Diaphot-TMD inverted microscope fitted with a 37°C incubator stage and a 10× objective lens.
Images were automatically taken each 15 min and for total 60 min, so 5 pictures were taken
every time. Migration velocity could be calculated by measuring the total migration distance di-
vided by migration time. Single cells that were at the leading edge of migration were chosen be-
cause they there are no cell-cell interference. Dividing cells and those that were out of focus
plane are excluded. Final data was calculated after repeating the above experiment for at least 4
times and measuring at least 20 cells, with 3 replicates.

Immunofluoresent staining
Cells were rinsed with PBS, fixed with 3.7% formaldehyde for 20 min, then permeabilized with
0.4% Triton for 7 min, and blocked with 2% BSA in PBS for 30 min at room temperature. Focal
adhesions were visualized by immunostaining for vinculin (Sigma, Saint Louis, MO), at a 1:600
dilution for 1 h then incubated with the Oregan Green 488 goat anti-mouse secondary anti-
body (Invitrogen, Carlsbad, CA) at a 1:600 dilution for 1 h at room temperature. Similar meth-
od was used for the myosin IIA (Cell Signaling Technology, Danvers, MA) staining. Nuclei
were stained with 4’,6-diamiadino-2-phenylindole (DAPI, Sigma-Aldrich, Inc., St. Louis, USA)
for 10 min at room temperature. F-actin was stained with phalloidin (Invitrogen, Carlsbad,
CA) for 20 min. Samples were then imaged by a Leica TCS SP2 laser scanning confocal micro-
scope (Leica Microsystems, Bannockburn, IL) with water objective lens. The number of vincu-
lin-positive focal adhesion sites, the aspect ratio of nuclear, and the intensity of mysion IIA
staining were quantified by Image J.

XTT assay for cell metabolism
The standard XTT assay kit was purchased from Roche (Indianapolis, IN), and followed the
company procedure. The initial cell density was 2500cells/well with 400 μL medium. After 4
days incubation, a mixture with 50:1 ratio of labeling reagent and electron-coupling reagent
was added to the medium and detected by an Bio-RADmicroplate reader (Hercules, CA) at
450 nm after 4 hrs in a humidified incubator.

RT-PCR of myosin IIA
Myosin IIA mRNA levels were determined using quantitative real time polymerase chain reac-
tion (qRT-PCR) of cDNA. In order to ensure that all cells analyzed experienced the same sur-
face environments, rather than having to emerge from a droplet, the cells were plated directly
on either FN coated PMMA fibers or flat PMMA spun cast films. As will be discussed later, the
cells experienced the same speed on the surfaces whether they exited from droplets, or were
plated directly. Samples were first washed twice with PBS, detached from each surface with
trypsin (0.05%; Gibco Trypsin) and harvested by centrifugation. The cell pellet was then lysed
and RNA isolated with the Qiagen RNEasy Kit according to the manufacturer’s instructions
(RNeasy kit, Qiagen, Valencia, CA). To prepare cDNA, 1 μg of total RNA was reverse
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transcribed with Superscript II Reverse Transcriptase (200 units/reaction; Invitrogen). The
cDNA was then used as a template for qRT-PCR with primers for myosin IIA (forward:
TACGCTGAGGAACACGAACC and reverse: TCCCGTCCATGAACCCTTG) and for 18S
RNA (forward: GTAACCCGTTGAACCCCATT and reverse: CCATCCAATCGGTAG-
TAGCG) which served as control for normalization. qRT-PCR was performed at the Stony
Brook University DNA Sequencing Facility using the SYBR Green PCR Kit (Qiagen, Valencia,
CA) and controlled in a DNA Engine MJ Opticon 2 Thermal Cycler with continuous fluores-
cence detection (MJ Research Inc., Union, NJ). Following a 15 min incubation at 95°C, amplifi-
cations were performed with 40 cycles of 94°C (30 sec), 55°C (30sec) and 72°C (30 sec). A
melting curve program was performed immediately after the above cycling program in order
to generate a first derivative dissociation curve. Each sample was assessed in triplicate.

Statistics
Statistical analysis of the data was performed using GraphPad Prism (version 6) with an un-
paired t test and Welch’s correction. The typical sample size used exceeded n = 30 for each data
set. The p values for each set of data groups is presented on the graph by the symbol, �, which
represents P<0.001. Values of P>0.05 were not considered significant.

Results

Migration Speed
In Fig. 1A, 1B we show fluorescent microscope images of the droplet and the cells emanating
from the droplet onto spun cast flat PMMA film substrates and parallel electrospun PMMA fi-
bers, both coated with fibronectin. The images are formed by a superposition of the image
taken after four hours (red, DiD), onto the image of cells obtained after incubation for an addi-
tional 24 hours, after which the cells are fixed and stained for F-actin with Alexa Fluor (Green).
From the figures we can see that immediately upon emergence, the pattern of the migration
differs between the cells on the flat film and the cells placed on the fibers. Since the chemical
composition of the two types of substrates is the same, the differences reflect primarily sub-
strate topography and are a consequence of the confinement of the cells. The cells on the flat
film form a sunburst pattern as they emanate from the droplet (Fig. 1A), where their trajecto-
ries reflect a tendency of fibroblasts to migrate away from each other. In contrast, those coming
out from the droplet placed on the fibers (Fig. 1B), orient themselves along the fibers and mi-
grate only in the fiber direction. The velocity, as measured from the distance traveled from the
droplet edge to the perimeter of the migrating cells, is plotted as a function of time in Fig. 1C.
From the figure we find that the cells emerge from the droplet with an initial velocity which is
approximately 60% greater on the flat than on the fibrillar surface. With increasing time, the
distance between cells increases and the migration velocity decreases, approaching the single
cell value after 24 hours. In contrast, the cells placed on the fibrillar substrate emerge from the
droplet with the single cell migration velocity, which remains constant for the first 24 hours.
These results are consistent with those previously reported study [13] where they explained
their results in terms of a haptotaxis like phenomenon due to cell crowding, as opposed to a
chemotaxix effect where soluble factors were present. Fibroblasts put out cell processes which
can sense adjacent cells. On the flat surface, the cells chose a trajectory which would continu-
ously increase the distance between cells. The largest speed was observed at the smallest cell-
cell distance. On micron sized fibers, once the cells emerged from the droplet, the cell-cell dis-
tance was determined by the fibers which on the oriented fiber surface remained constant with
minimal cell-cell contact. Hence in the absence of a haptotaxic gradient, the cell migration
speed remained constant at the value of the single isolated cell for the first 24 hours.
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In Fig. 2A we plot the migration speed, measured at 24 hour intervals, during the subse-
quent three days following the initial 24 hours. From the figure we see a dramatic reversal of
the response. The cells migrating on the flat films are now moving at the constant single cell ve-
locity, while those in the fibrillar surfaces are accelerating at a constant rate of |a| = 0.56μm/h2,
reaching, by the fourth day, a velocity nearly double the single cell value of v = 68.5 μm/h, and
exceeding the initial velocity of those on the flat surfaces. Further measurements from day 4 to
day 7, show that no further change in the velocity on both flat and micron fiber substrates.

In order to rule out any chemotaxic or haptotaxic effects from the droplet, we also measured
the single cell migration speed with incubation time, where cells were plated directly on the
substrate at an initial cell density of 2500cells/well without the agarose droplet. The results are
shown in Fig. 2B, where we find that on the flat surfaces the magnitude of migration speed
after 24 hours is the same as which achieved by the cells that had migrated out of the droplet,
confirming that the cells migrating on the perimeter of the droplet had achieved single cell be-
havior. The response of the cells to increasing incubation time is also similar to that observed

Fig 1. En-mass cell migration within 24 hours. The overlapped image of en-mass cell migration of live cells stained with DiD (red), and incubated for four
hours, onto the image of cells incubated for 24h, fixed and stained for F-actin with Alexa Fluor (green) (a) On a spun cast, FN coated PMMA thin film and (b)
On electrospun FN coated, PMMAmicrofibers. The lines are drawn to guide the eye towards the perimeter of the migration front at 4 and 24 hours,
respectively. Error Bar = 250 μm. (c) The en-mass cell migration velocity, as measured from the motion of the front, on the thin film (black) and 8μm fibers
(red) as a function of time.

doi:10.1371/journal.pone.0119094.g001
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when the cells are initially plated within the droplet, namely the migration speed of the cells
plated on the flat films remains constant for the four day observation period, while the speed of
the cells plated on the fibrillar surface increases with the same constant rate of |a| = 0.56 μm/h2.
The only difference between the cells plated directly on the substrate and those emanating
from the droplet, is the magnitude of the plateau speed = 59.1μm/h which is reached at day 3,
rather than day 4, and is similar to the value 52.2μm/h of the cells existing the droplet on the
flat surface. Hence the increase in migration speed appears to be caused by the fibrillar topogra-
phy of the substrate rather than a consequence of the en-mass behavior of the migration im-
posed by the crowded condition in the droplet.

In order to rule out any effects specific to fibronectin, the fibers were also coated with collagen
and the en mass velocity of the cells emanating from a droplet was measured as a function of time.
From the results plotted in Fig. 2C, where we can see that even though the initial velocity is some-
what lower, the functional behavior is similar to the single cell response shown in Fig. 2B. The mi-
gration velocity increases linearly, reaching a plateau at v = 60.0μm/h on the third day, and hence
the phenomenon is not related to activation via any functional domains specific to fibronectin.

Morphology and metabolic activity
Observation of the morphology of the cells plated on the flat and fiber surfaces shows that the
cells on the flat surface have multiple orientations, which are continuously changing during the

Fig 2. Cell migration velocity after 24 hours under different conditions. (a) En-mass cell migration velocity on FN coated thin film and 8μm fibers. (b)
Single cell migration velocity on FN coated thin film and 8μm fibers for 4 days. (c) En-mass cell migration velocity on collagen coated 8μm fibers for 4 days.

doi:10.1371/journal.pone.0119094.g002
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migration process, while those on the fibers remain orientated along the fiber direction. In
Fig. 3A we plot the time averaged aspect ratio of the cells at day 4 on the flat and fibrillar sur-
faces, where we see that the value on the fibrillar surfaces is significantly larger, 7.1 vs 5.1
(p<0.001).

In order to determine whether placement of the cells on the fibers affects the rate of metabo-
lism, an XTT assay, was performed on day 4, and as shown in Fig. 3B, no significant differences
were observed between the cells plated either on the flat surfaces versus the electrospun fiber
surfaces. Hence no additional mitochondrial activity occurs as a result of the cell continuously
conforming to the three dimensional topography of the fibers.

Localization of vinculin
The migration velocity is closely related to the number and size of focal adhesion sites for the
cells on the substrate [11, 15, 16]. To achieve the maximum velocity, cells must be able to form
optimal strength of focal adhesions. If the adhesion is too strong cells will migrate at a low
speed, and if the adhesion is too weak, cells will not be able to exert adequate traction forces
and will be unable to migrate. A recent study has shown that the size of the focal adhesions
may be correlated to the cell migration [17]. We therefore, stained the cells using fluorescent
secondaries against anti-vinculin, obtained images with confocal microscopy, and the results
are shown on Fig. 4A, and 4B. From the figures, we can immediately see that the pattern of
focal adhesion contacts, as determined from the vinculin stain, varies drastically between the
cells plated on the flat films and those plated on the 8μm fibers. On the flat films one can see
focal adhesions distributed both at the periphery of the cells as well as on the interior, whereas
on the 8μm fibers the focal adhesions were clustered only along the edges, following the con-
tours of the fibers. The distribution of the focal adhesion points can be quantified by plotting
the percentage of the focal adhesions present at different distances from the cell edge. The re-
sults are shown in Fig. 4C, where we can see that on the flat surface only approximately 20%

Fig 3. Cell aspect ratio and ID50 per cell reading on thin film andmicrofibers at day 4. (a) Cell aspect ratio was calculated as: the length of the cell/width
of the cell plated on thin film and micron fiber surfaces, P<0.001 (*). (b) The XTT assay at day 4 was performed and followed with a DAPI nuclear staining.
The reading of ID50 value reflects the metabolism level of all the cells at day 4. However, the cell proliferation varied on different surfaces. As a result, we
divided the ID50 value by the actual nuclear number counted after DAPI staining, and evaluate the metabolism level per cell. P>0.05 which was not
considered as significant.

doi:10.1371/journal.pone.0119094.g003
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are within 5μm of the cell edge, with the remainder distributed almost uniformly up to 35μm
from the edge. On the fibers more than 60% are within 5μm, with a sharp decrease to only a
few percent at 10μm from the edge. The distribution of loci of the focal adhesions may reflect
the mechanism of motion of the cells. On the flat surfaces the cells migrate either radially out-
ward from the droplet or along random directions, following processes which may be extend in
all directions. On the fibers though, motion occurs in only along the fiber, and the cell shape is
defined by the edge of the fiber.

The number of focal adhesion points per cells was also counted and the results are plotted
in Fig. 4D as function of incubation time. From the figure we see that the number of focal adhe-
sion per cell on day one is 70 on the flat films vs. only 50 on the 8μm fibers, even though at this

Fig 4. Vinculin distribution on flat film and 8μm fibers. (a) Confocal images of vinculin distribution on thin film at day 4 (b) Vinculin distribution on 8μm
fibers at day 4. (c) The distribution of vinculin as a function of distance from cell boundary at day 4. The percentage of vinculin number was plotted as a
function of the distance between vinculin locations to the edge of the cell. (d) The number of vinculin per cell on different surface for 4 days.

doi:10.1371/journal.pone.0119094.g004
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time the migration velocities on the two substrates are nearly the same. With increasing incu-
bation time the number on the flat films remains constant while the number on the 8μm fibers
decreases gradually to 35 by the fourth day. The decrease in focal adhesion number is consis-
tent with the increase in migration speed during the same period of time on the 8μm fibers.
The lack of change in number on the flat surface is consistent with the lack of change in the
speed of migration on these substrates.

Aspect ratio of the nucleus
In the pervious study, we have shown that on flat surfaces, migration was triggered by nuclear
deformation [18], which initiated a cycle of traction force exertion to reduce deformation and
ultimately resulted in center of mass translocation. Conversely, it was recently shown that inhi-
bition of nuclear deformation via physical constraints led to complete cessation of cell migra-
tion [19]. We therefore investigated whether nuclear deformation may also be involved in
triggering the enhanced migration on the fibrillar surfaces.

In order to observe the nuclear structure we stained the nucleus of cells cultured on the dif-
ferent substrates with DAPI, and their aspect ratio was measured (Fig. 5A-5D). From Fig. 5E,
we found that the nuclei of the cells on the flat films ranged from spherical to slightly
(Rmax~2.1) elongated, with the mean elongation R~1.4 remaining constant over the four day
observation period. The relatively large dispersion reflects the fluctuation in nuclear aspect
ratio previously reported by Pan et al to be associated with different stages of the migration
process on flat surfaces. On the fibrillar surfaces the aspect ratio was larger immediately after
the cells exited from the droplet, with an average value of R = 2.0 after 24 hours. This value in-
creased gradually reaching a plateau of R = 2.5 on the third day. Since nuclear deformation is a
vital part in cell migration, [20–22] it is tempting to postulate that it may be responsible for the
acceleration of the cells on the fibers, where nuclear deformation is observed to increase during
the same period as the cell migration velocity increases. In contrast, on the flat surfaces, both
the mean velocity and the mean nuclear deformation remain constant over this period of time.

Intensity of myosin IIA and cell contraction
Myosin IIA is another important protein associated with cell migration since it plays a large
role in transmitting the traction forces responsible for cell contraction as well as nuclear defor-
mation [23, 24] during migration. Traction forces are transmitted via fiber bundles consisting
of actin/myosin complexes where the actin fibers are contracted via connections to the myosin,
hence transmitting forces due to focal adhesions with the surface [25–29]. In addition Myosin
II also regulates vinculin recruitment and focal adhesions, which in turn determine migration
velocity [30]. In order to observe Myosin fiber formation we stained the cells with immunoflu-
orescent antibodies against Myosin IIA. We chose Myosin IIA over Myosin IIB since it is more
prominent [31] in generating forces in nonmuscle cells. The results are shown in Fig. 6A for
cells on the 8μm fibers and on flat substrates. In all images we found uniform myosin staining
across the cell cytoplasm, where the intensity does not vary significantly between cells plated
on flat or fiber surfaces that incubated for one or four days. This finding is consistent with the
RT-PCR data (Fig. 6B) where no significant differences were detected in the levels of Myosin
IIA RNA.

Closer examination of the images (expanded segment of typical cells) show that on day one
the myosin is organized into thin fibrils, approximately 0.7μm in diameter, which are extended
across the long axis of the cell. These fibrils appear on all samples but are more pronounced on
the flat surfaces. In Fig. 6A we show the corresponding images for the cells, which also stained
for F-actin. Comparing the figures, we can see that the distribution of the thin myosin fibers
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parallels that of the actin fibers which is consistent with the formation of the actin/myosin
complexes reviewed in the literature [24, 32].

The appearance of the cells on the flat substrates does not change much between days 1 and
4. On the other hand, on the fibrillar surfaces, much thicker fibers become visible which span
the length of the cells, and are oriented parallel to the underlying direction of the 8μm fibers.
Even though these fibers appear brighter, the intensity ratio of actin to myosin is not

Fig 5. Nuclei morphology on different surfaces. The nuclei morphology at day 1 on (a) thin film (b) 8μm fibers, (c) Nuclei morphology at day 4 on thin film
(d) 8μm fibers. (e) Measurement of cell aspect ratio on different surfaces for 4 days.

doi:10.1371/journal.pone.0119094.g005
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Fig 6. Immunofluorescent staining, RNA expression, and fiber diameter of Myosin IIA at day 1 and day 4. (a) Confocal images of cells stained with
myosin IIA (green), F-actin (red), and the merged pictures on thin film and 8μm fibers. Error bar = 75μm. (b) RT-PCR result of MyosinIIA (2208F-2440R)
expression on thin film and 8μm fibers P>0.05: not significant. (c) Myosin fiber diameter on thin film and 8μm fibers *: P<0.001.

doi:10.1371/journal.pone.0119094.g006
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significantly different from the thinner fibers, indicating that they consist of similar actin/myo-
sin complexes. The average diameters measured for the actin/myosin complies on the flat and
fibrillar surfaces on days 1 and 4 are compared in Fig. 6C.

It has been demonstrated by numerous groups [32–34] that actin/myosin fibers are respon-
sible for the exertion of traction forces which in turn mediate the process of cell contraction
and translocation of the cell center of mass. We therefore measured the average amount of cell
contraction on day 1 associated with migration and the degree of contraction associated with
the migration on day 4 (Fig. 7A). From the figure we can see that the degree of contraction on
day 1 on the fibrillar surface resembles that on the flat surface, but by the fourth day the degree
of contraction on the fibers had nearly doubled, while the one on the flat surfaces
remains unchanged.

Examination of the moving videos of the cells taken on days 1 and 4 (S1–S4 Movies) shows
that this difference in contraction is a result of a complex set of motions which the cells under-
go and which ultimately result in nuclear translocation or cell migration. In Fig. 7B and 7C, we
illustrate the processes that are observed in the videos of the migrating cells. The motion on the
flat surface is illustrated in Fig. 7B, where we observed a “fluttering” of the cytoplasm as the cell
extends processes in multiple directions. Then as discussed in previous paper [18] we find that
the nuclear shape changes abruptly, becoming more symmetric, which then causes retraction
of the rear of the cell and nuclear translocation. Initially similar type of motion is observed on
the fibrillar surface. On this surface one sees that most cells have one side attached to the sides
of the fibers, while the other side is fluctuating freely. Initially, (first 24 hours) cell migration is
similar on both types of surfaces but with increasing time the cells on the electrospun fibers ap-
pear to switch to a different mode. Instead of putting out processes in random directions, they
are committed to following the direction of the fiber, and fluctuations of the periphery of the
cytoplasm are no longer apparent. Hence the appearance of the large diameter of actin/myosin
fibers also coincides with the increase in cell contraction and the rapid highly oriented motion.

Discussion
Cell migration on fibrillar substrates appears to differ in a fundamental fashion from migration
on planar surfaces. Since cells rarely migrate on flat planes in vivo, it is important to under-
stand the changes induced on fibrillar surfaces. Two types of surfaces were prepared for these
experiments, a flat spun cast PMMA film and 8μ diameter electrospun fibers. Both types of sur-
faces are not particularly cell adhesive, and therefore they were coated with fibronectin for 2
hours prior to plating the cells or the cell laden droplets. Hence the surfaces had identical
chemical composition, but differed mostly in topography. On the flat surface the cells emerged
en-mass from the droplet in a star burst trajectory with a velocity that decreased over the next
24 hours to the single cell value, as the cells separated. This value remained unchanged over the
next seven days. For droplets placed on the fibrillar surfaces, the cells emerged only along the
fibers. Careful examination indicated that most of the cells were attached on one side to the
edge of the fibers with the other side of the cell on the adjacent flat surface. Immunohistochem-
ical staining of vinculin proteins showed that on the fiber surfaces, the majority of the focal ad-
hesions were concentrated in a straight line along the contact area with the fiber and along the
periphery of the cell adherent to the flat surface. Very few focal adhesions were detected in the
center of the cell. On the flat surfaces, on the other hand, even though some focal adhesions
were seen along the leading and trailing edges, focal adhesions were distributed throughout the
cell’s plasma membrane. As a result cells on flat surfaces had approximately 40% more focal ad-
hesions after 24 hours. On the flat surfaces the number remained constant, while on the fibril-
lar surfaces they decreased by approximately 30% on day 4.
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Focal adhesions are also responsible for anchoring the actin fibers and transmission of trac-
tion forces across the cytoplasm. Pan et al. [18] had shown that the distribution of the traction
forces was also responsible for causing nuclear deformation, and initiating cellular transloca-
tion. Hence we postulated that the differences in focal adhesion distribution would also results
in differences in the traction forces exerted and hence migration velocities and modes of cellu-
lar locomotion. Measurements of the cell migration velocity indeed showed that while the mi-
gration velocity remained constant on the flat surfaces, the velocity increased, nearly doubling,
over the next four days for the cells on the fibrillar surface. This increase mirrored the decrease

Fig 7. Cell contraction associated with migration on thin film and 8μm fiber—(a) Measurement of cell contraction onmicron fibers and flat films at
day 1 and day 4. Cell contraction on micron fiber is defined as: (cell length at t0- cell length at t1)/cell length at t1 *: P<0.001. (b) Illustration of cell contraction
when migration on flat film. (c) Illustration of cell contraction when migration on 8μm fibers at day 4.

doi:10.1371/journal.pone.0119094.g007

Continual Deformation Enhances Cell Migration

PLOS ONE | DOI:10.1371/journal.pone.0119094 March 16, 2015 13 / 16



in focal adhesions, possibly enabling the faster motion. Another interesting observation though
was the difference in nuclear deformation. The mean deformation on the fibrillar surfaces was
nearly twice as large as on the flat surfaces, which was consistent with previous reports where
cells were confined in porous substrates and migration was interrupted when the degree of
confinement prevented nuclear deformation [18]. Furthermore, the nuclear deformation in-
creased between days one and four, also mirroring the increase in cell migration velocity.

Observation of the mode of migration also showed differences between the flat and the fi-
brillar surfaces, where the differences were initially small on day 1, but increased and became
very noticeable by day 4. On the flat surfaces migration was accompanied by a series of fluid
deformations of the cytoplasm due to extension of lamellipodia, nuclear deformation and re-
traction of the rear of the cell, as shown in Fig. 7B. This mechanism was also observed initially
on the fibers, on the first day, when the magnitude of the speed for cells migrating on both sur-
faces was similar. As the cells accelerated over the next three days on the fibrillar surfaces a dif-
ferent mode of migration started to spread. The cytoplasm contracted and expanded, in a
manner similar to muscle cells, while the nucleus remained highly deformed. While RT-PCR
and immunofluorescence indicated that the amount of myosin did not change for the cells on
the fibrillar surface during the four day observation period, immunofluorescence images
showed that large myosin/actin fibers had formed. Measurements of the cell contraction also
showed that during this time the contraction amplitude doubled for cell migrating on the fi-
bers, while remaining unchanged for those migrating on the flat surface, suggesting that these
larger fibers, were more efficient at contracting the cells.

Taken together, these results indicate that the continual deformation of the cells imposed by
the fiber topography was responsible for triggering a different mode of migration, which is
more oriented, faster, and more efficient than that observed on flat surfaces.

Supporting Information
S1 Movie. Cell migration on fibers at day 1.
(MP4)

S2 Movie. Cell migration on fibers at day 4.
(MP4)

S3 Movie. Cell migration on thin film at day 1.
(MP4)

S4 Movie. Cell migration on thin film at day 4.
(MP4)
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