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Regulation of eukaryotic gene expression depends on groups of related proteins acting at the levels
of chromatin organization, transcriptional initiation, RNA processing, and nuclear transport.
However, a unified understanding of how these different levels of transcriptional control interact
has been lacking. Here, we combine genome-wide protein–DNA binding data from multiple sources
to infer the connections between functional groups of regulators in Saccharomyces cerevisiae. Our
resulting transcriptional network uncovers novel biological relationships; supporting experiments
confirm new associations between actively transcribed genes and Sir2 and Esc1, two proteins
normally linked to silencing chromatin. Analysis of the regulatory network also reveals an elegant
architecture for transcriptional control. Using communication theory, we show that most protein
regulators prefer to form modules within their functional class, whereas essential proteins maintain
the sparse connections between different classes. Moreover, we provide evidence that communica-
tion between different regulatory groups improves the robustness and adaptivity of the cell.
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Introduction

The nucleus provides several mechanisms for regulating gene
expression at the levels of chromatin organization, transcrip-
tional initiation, RNA processing, and selective export via the
nuclear pore complex. Groups of proteins that mediate these
processes have been extensively characterized to provide
insight into their mode of action within a living cell. For
example, chromatin-immunoprecipitation experiments in
combination with microarrays (termed ChIP-chip) have
mapped the genomic occupancy of several protein classes in
living cells. Genome-wide identification of binding sites has
allowed for the inference of which genes are regulated by such
factors. A number of previous studies have used genomic
localization data from transcription factors (TFs) in order to
build transcriptional regulatory networks in Saccharomyces
cerevisiae (Lee et al, 2002; Bar-Joseph et al, 2003; Garten et al,
2005; Balaji et al, 2006a, b). Other work has implicated histone
modifying proteins and nucleosome remodelers (NRs) in
regulating different gene expression programs (Ng et al, 2002;
Robyr et al, 2002; Robert et al, 2004). However, a unified model
that integrates the genome-wide interplay of all of these
different protein regulators remains undefined.

Achieving such a model is hindered by several technical
difficulties. For example, different labs devoted to the study of

particular classes of proteins often use disparate microarray
technologies and statistical approaches to decide what
constitutes a bona fide binding site. Ideally, combining
genome-wide binding data from different labs would not only
uncover new connections within specific fields of study, such
as cooperativity among TFs, but also between diverse fields,
such as the effect of NRs on TF recruitment. Moreover, a
unified model could allow for a global, systems-level descrip-
tion of the eukaryotic transcriptional architecture.

Here, we combine and normalize ChIP-chip data from
multiple sources to gain a unified view of the interplay
between functional groups of proteins in the budding yeast
S. cerevisiae. We propose that these functional groups define
discrete levels of the eukaryotic transcriptional architecture
(Figure 1A). These levels include TFs, RNA processing and
nuclear proteins (RPs), nuclear transport (import/export)
proteins (NTs), NRs, histone modification (e.g., acetylation)
states (HSs), and histone modifying proteins (HMs). Using
communication theory, we identified biologically meaningful
relationships within and between all the aforementioned
regulatory groups. Our resulting transcriptional network
uncovers novel connections in gene activation pathways,
including associations between actively transcribed genes and
silencing proteins Sir2 and Esc1. We also analyzed the
topology of the network in order to quantify the interplay
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between different regulatory groups. Our results demonstrate
that most protein regulators prefer to form modules within
their functional class, whereas essential proteins maintain the
sparse connections between different classes. Moreover, we
provide evidence that communication between different
regulatory groups improves the robustness and adaptivity of
the cell.

Results

Building a transcriptional network

We obtained genome-wide binding data for 317 regulators
during normal, glucose-rich growth conditions. As different
groups use microarrays that are comprised of open reading
frames (ORFs) or intergenic regions (IGRs), we integrated the
heterogeneous data by assigning each ChIP-chip measurement
to its pertinent annotated gene (see Materials and methods).
Further, we normalized the data to mitigate variability in
statistical analyses used by different groups (Figure 1B). We
developed a general method for standardizing the level of
binding to P-values (see Materials and methods), consistent
with the statistical model of Ren et al (2000). Our normal-
ization method extracts 67% more information at known
interactions and attenuates the ‘noise’ at unlikely interactions
by 12%, outperforming the percentile rank normalization
technique (Supplementary Table 1).

Using the normalized data, we inferred biological connec-
tions between any two regulators by identifying significant
binding relationships (e.g., TF X and HM Y bind to a
significantly similar/dissimilar number of genes). Using
communication theory, we developed two methods for
identifying pairwise connections between regulators. First,

we introduced a simple but powerful technique of filtered
correlation coefficient. This analysis localizes the correlation
calculation to the most relevant genes in the ChIP-chip data
and detects linear binding relationships with great sensitivity
(see Materials and methods). In order to uncover more
general, nonlinear binding dependencies, we also measured
the mutual information—the amount of information gained
about the binding profile of one factor from knowledge of the
binding tendency of another factor (see Materials and
methods). Mutual information is a very natural and biologi-
cally meaningful measure of binding dependence that will
ultimately help us decide whether two proteins participate in
the same biological process. Finally, we combined the P-values
from the two complementary pairwise approaches in order to
increase the confidence of our overall predictions (Figure 1C;
see Materials and methods).

To identify significant binding relationships between three
or more regulators, we developed a semi-supervised clustering
algorithm that preserves information about elements of a
cluster to better capture groupwise binding dependencies
between proteins (see Materials and methods). Our algorithm
identified 35 highly significant clusters (Po10�60), merging
factors from different levels of the transcriptional architecture.
Of these clusters, 26 were confirmed by published literature
(Supplementary Table 2), thereby indicating that using ChIP-
chip data in this manner was a viable way to infer biological
relationships between different proteins.

Based on our pairwise and groupwise statistical methodol-
ogies, we created a network algorithm (Figure 1C and D) that
identified connections within and between regulatory groups.
In the first pass of the algorithm, we assigned a link between
two factors if their combined analysis P-value (PVT) was less
than 10�40. This conservative threshold was chosen to
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Figure 1 Building a network. (A) Levels of the eukaryotic transcriptional architecture integrated in our analysis. (B–D) TF X’s and NR Y’s genome-wide binding data
are integrated, normalized, and traced through the network algorithm (see text).
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minimize false-positive predictions in our data, while still
capturing known biological relationships (Supplementary
Table 3). We next clustered the factors to identify probable
DNA-binding complexes. In the algorithm’s second pass,
we checked for communication between regulator X and
the DNA-binding complex of regulator Y (and vice versa);
if the accumulated evidence of interaction between X and the
members of Y’s complex (or vice versa) was significant, we
defined a link in the network between X and Y at a less
stringent pairwise threshold of 10�30. The purpose of the
second pass was to uncover probable false-negative inter-
actions omitted by the first pass (Supplementary Table 3). The
resulting network is displayed in Figure 2.

Validation of network

Many of our predicted binding relationships that occur near
DNA represent previously reported protein–protein associa-
tions. We compared our network predictions to protein–pro-
tein interactions from several high-throughput and small-scale
studies (Yu et al, 2004a). Yu et al reported a compendium
of physical interactions between all yeast proteins, including
309 interactions between proteins considered in our work.
Although protein–protein associations may form anywhere
within a cell, our predicted binding relationships occur only
near DNA; hence, we did not expect full overlap with the data
set of Yu et al (2004a). Despite the noise in protein–protein
experiments, 100 out of the 309 pertinent connections detected
by previous studies were also found to be significant by our
method (Po10�60; Figure 3A). As connections in our network
do not necessarily imply that proteins are resident at gene
targets simultaneously, this result suggests that many of our
interacting regulators are in fact part of protein–protein
complexes.

Our network algorithm also identified over 340 biological
relationships confirmed by published literature (Supplemen-
tary Table 3). For example, Figure 2 highlights the known
associations within the SIR silencing complex, nuclear pore,
RSC NR, and MCM–ORC DNA replication complex (Lieb et al,
2001; Wyrick et al, 2001; Ng et al, 2002; Casolari et al, 2004).
Additionally, our analysis captured known interactions be-
tween protein complexes studied by different groups using
varying microarray technologies, including NR Isw2, TATA
box protein, and Pol3 transcriptional machinery (Kim and Iyer,
2004; Moqtaderi and Struhl, 2004; Gelbart et al, 2005). The
network also confirmed the previously published dependen-
cies between histone deacetylases Hst1 and Rpd3, and their
corresponding recruitment factors Sum1 and Ume6, respec-
tively (Robyr et al, 2002; Robert et al, 2004). Finally, groups of
TFs that regulate common biological processes were identified
and are highlighted in Figure 2, including the Swi cell cycle and
Ste12 development clusters (Lee et al, 2002; Bar-Joseph et al,
2003; Zeitlinger et al, 2003).

New biological predictions

Our resulting network uncovered a novel connection between
proteins implicated in active gene expression and silent
information regulator Sir2 (Figure 2B). We experimentally
confirmed by ChIP-chip (Supplementary Table 4) that Sir2

associates with a significant number of active genes in both
normal and stimulus-induced growth environments. In
standard, glucose-rich medium, Sir2 was bound to 244 of the
1013 (Po10�10; Figure 3B) most frequently transcribed genes
(Holstege et al, 1998). Upon exposure to the mating
pheromone alpha-factor, Sir2 was bound to 15 of the 50
(Po10�7; Figure 3C) most highly induced genes (Spellman
et al, 1998). This process may involve TF Rap1, which binds
numerous active genes and helps recruit Sir2 to its genomic
targets (Lieb et al, 2001).

Our observations of Sir2’s occupancy at active genes suggest
a coupling between nuclear transport factors and silencing
proteins such as Sir2, which colocalizes with Rap1 to the
nuclear periphery (Gotta et al, 1997). To explore this
connection further, we experimentally measured the gen-
ome-wide binding of Esc1, another silencing protein known to
localize to the nuclear periphery (Supplementary Table 4). The
genomic occupancy of Esc1 closely resembles that of Sir2,
including binding at subtelomeric regions and a significant
number of active genes (Figure 3D and Supplementary Figure
2). We reason that coupling may occur between silencing and
nuclear transport factors at the nuclear periphery, which may
facilitate the unloading of imported TFs, transcriptional
initiation, or mRNA export. These experimental results
demonstrate the ability of our integrative, network-based
analysis to predict new biological phenomena (enumerated
in Supplementary Table 5).

We validated our genome-wide localization experiments
using previous literature and new experiments. Lieb et al
(2001) previously performed genome-wide localization ana-
lysis for Sir2 in glucose medium. Figure 4A shows that over
75% of the previously reported Sir2 targets were confirmed by
our study (P¼10�46). We also validated several novel Sir2 and
Esc1 ChIP-chip binding sites at actively transcribed genes by
performing quantitative PCR on Sir2 and Esc1 chromatin
immunoprecipitations (Figure 4). Two genes chosen for
validation, PGK1 and ILV5, were present in both ChIP-chip
data sets. RPA34 and TEF2 were also targeted for validation
from the Sir2 and Esc1 data sets, respectively. As shown in
Figure 4B, primers were designed to amplify selected regions
from these genes. All of the tested actively transcribed genes
considered bound by Sir2 and Esc1 were confirmed as targets
by quantitative PCR as they were present at a higher level in
our directed chromatin immunoprecipitations compared to
our control, an intergenic region not known to be bound by
either (Figure 4C and D). Finally, we tested CHA1, an active
gene that was bound in our Sir2 data set and was also
identified as a Sir2 target by Lieb et al (2001), and found that it
too was significantly enriched (data not shown). These results
validate the genome-wide observations from our ChIP-chip
data that both Sir2 and Esc1, proteins believed to be solely
involved in silencing, are associated with actively transcribed
genes.

Network analysis

We next analyzed the topology of the network to quantify the
interplay between different regulatory levels as defined in
Figure 1A. We determined each node’s degree, or number of
interacting neighbors. Figure 5A shows that NTs were most
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promiscuous in their association with other factors, with an
average degree of two times higher than the pathway-specific
class of TFs. For each regulatory level, we also measured the
characteristic path length (average shortest-edge distance
between similarly categorized pairs of regulators, allowing

for transitions through proteins in other levels) and class
diameter (the maximum path length within a class). Short
characteristic path lengths and small diameters between
proteins allow for rapid propagation of information and
quicker response to dynamic conditions (Barabasi and Oltvai,
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Figure 2 Resulting network. (A) Each circle (node) represents a regulator from a color-coded group and each link (edge) represents a significant synergistic (positive)
binding relationship between two factors (see Supplementary Figure 1 for opposing (negative) links). Each node is labeled by the regulator’s common name followed by
an ‘i’ or ‘o’ if its genomic occupancy was measured at intergenic or ORF regions, respectively. The dotted box shows factors that have a preference for binding active
genes. (B–G) Zoom in on several known interactions highlighted in solid boxes (see text). Network visualization was performed using Pajek (http://vlado.fmf.uni-lj.si/pub/
networks/pajek/doc/pajekman.htm).
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2004; Luscombe et al, 2004). We found that NTs had a
characteristic path length and class diameter two times smaller
than that of TFs, indicative of their highly responsive
regulatory topology. Based on these measures, RNA proces-
sing proteins (RPs) and NRs also shared a highly responsive
topology and affected transcription in a more global manner
similar to NTs, whereas HMs regulated more localized
transcriptional programs similar to TFs (Figure 5A).

Network robustness

Communication between regulatory levels improved the
robustness of the eukaryotic transcriptional network. For
comparison to the overall network, we synthesized six
subnetworks composed solely of interactions between nodes

from a single level. In each subnetwork, one largest connected
component (the largest set of nodes that are interconnected
through some path) emerged; however, the overall network
connected 33 more regulators than the sum of the individual
subnetwork LCs (Figure 5A). A disconnected node cannot
exchange information with the rest of the network, which may
lead to a cellular malfunction (Barabasi and Oltvai, 2004);
hence, communication between levels improved the resilience
of the overall network. In silico removals of network nodes,
analogous to in vivo biological deletions (Barabasi and Oltvai,
2004), further supported these results. Single in silico deletion
of each regulator led to 51 disconnected nodes in the
subnetworks, but only 25 in the overall network. Moreover,
sequential attacks against TF nodes broke down the con-
nectivity between TFs in the overall network more slowly than
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in the TF subnetwork (Figure 5B). Hence, communication
between levels made the overall network more robust to
sequential deletions, keeping many more TFs connected than
the TF subnetwork (Figure 5C).

In our overall transcriptional network, proteins preferred to
form modular subunits within their own level and commu-
nicate with other regulatory groups in a more selective

manner. We defined inter- and intra-class affinity as the
percentage of interactions realized between regulators from
the same and from different classes, respectively. Each
regulatory group exhibited a much higher intra- than inter-
class affinity, indicative of each group’s inherent modularity
(Figure 5A). To further quantify the modularity within each
regulatory level, we calculated the clustering coefficient
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(fraction of interactions realized between a node’s nearest
neighbors) for proteins in each subnetwork. NTs, RPs, and NRs
had greater intra-class modularity than TFs and HMs, as
indicated by their higher average clustering coefficient, intra-
class affinity, and propensity to stay connected within their
subnetwork LC (Figure 5A). Taken together, our network
analysis formally shows that NTs, RPs, and NRs act as modular
units that mediate general functions for large numbers of
transcripts, whereas TFs and HMs are the specialists that
provide gene target specificity.

Modularity within levels helps localize the deleterious effect
of a dysfunctional regulator to its level. The flat lines in Figure
5B and C show that sequential removal of over 70 TFs had
negligible effects on the connectivity within other levels.
Moreover, single in silico deletions in the overall network led
to 25 disconnected factors, 23 of which were from the same
level as the removed node.

Essential proteins comprised a significant proportion of the
hubs that link levels of the transcriptional architecture.
Excluding histone modifications, the network consisted of 56
essential and 230 non-essential proteins (Winzeler et al, 1999).
Essential proteins were more highly connected than non-
essential nodes, with an average degree of 16 versus 11,
respectively. We determined the number of regulatory groups
each node linked, or its neighboring levels. We found that 73%
of the essential proteins linked two or more levels and 50%
connected four or more levels, compared to 42 and 14% of
non-essential nodes, respectively (Po3�10�5, Po4�10�8).
For example, the essential TF Rap1 has been implicated in the
recruitment of regulators from several levels to active genes
(Lieb et al, 2001; Bernstein et al, 2004; Casolari et al, 2004).

Network adaptivity

Regulators that preferentially bound to either active or inactive
genes had opposing topological characteristics that significantly
differed from the rest of the nodes in our network. We defined a
factor as active/inactive if it was bound to a significant fraction
(Po10�10) of the 20% most/least frequently transcribed genes
(Holstege et al, 1998). The 31 active factors in our network
displayed a high average degree (Po10�5) and low characteristic
path length and diameter (Po10�5), indicative of fast propaga-
tion of information between regulators of a highly responsive,
global process (Figure 5A). The modular structure of active
factors also emerged in the large intra-class affinity (Po10�5),
subnetwork LC size, and clustering coefficient (Po10�5).
Interestingly, active regulators showed a high preference for
associating with nodes from other levels, with near maximal
average neighboring levels of 5.5 (Po10�5) and a high inter-class
affinity (Po10�5). In contrast, the 16 inactive factors shared a
significant topology with completely opposite properties, includ-
ing low intra- and inter-class connectivity (Po10�5), reluctance
for neighboring levels (Po10�5), slower propagation of informa-
tion, and a more disjointed, non-modular subnetwork.

These results suggest a model whereby increased commu-
nication between levels at active genes may improve the
adaptivity and redundancy of the cell’s response to changing
conditions (Figure 5D). We observed that control of inactive
genes depends on disconnected, level-specific regulators.

Upon induction, proteins from all six levels converge onto
genes that require activation.

Discussion

By combining genome-wide binding data, we have defined
a transcriptional architecture for S. cerevisiae. Our normal-
ization of ChIP-chip data extracted more information at known
interactions while attenuating the noise at unlikely interac-
tions. Moreover, we applied aspects of communication theory
to identify the connections between different regulatory levels
of the transcriptional network. In the process, we introduced
mutual information, filtered correlation, and semi-supervised
clustering approaches for analyzing genome-wide binding
data. Previous literature confirmed the validity of our method.
Further, our integrative network approach accurately pre-
dicted novel biological phenomena, including unexpected
connections between actively transcribed genes and silencing
proteins Sir2 and Esc1. We validated these associations using
ChIP-chip and quantitative PCR experiments. Hence, our
network predictions represent an in silico screen for discover-
ing new biological processes.

We analyzed the topology of the network to quantify the
communication between levels of the transcriptional archi-
tecture. Our work formally showed that TFs and HMs
associated in more localized, pathway-specific regulation,
whereas NTs, RPs, and NRs controlled more responsive, global
processes. We also found that the overall network had higher
connectivity than level subnetworks, making it more robust to
single and sequential in silico deletions. Further, regulatory
levels exhibited high intra-class modularity, which localizes
the effect of deletions to each level. Essential proteins often
form the connections between the highly clustered levels.
Moreover, increased communication between levels expedites
the propagation of information at active genes and may
improve the speed and redundancy of the cell’s response to
dynamic environmental conditions. Taken together, commu-
nication between levels of transcriptional control improves the
robustness and adaptivity of the eukaryotic cell.

Several recent papers have focused on characterizing the
regulatory effect of a single class of protein regulators, TFs.
Combining ChIP-chip and other data for TFs, the authors
discovered combinatorial relationships that control specific
gene expression programs in S. cerevisiae. For example,
co-occurrence of TF DNA-binding motifs and the distance
between motifs at bound promoter sequences was used to
predict interacting TF pairs. Presence of DNA-binding motifs,
coexpression, and TF partnerships were also used to reduce
false binding sites in ChIP-chip experiments and to predict TF
occupancy in untested environmental conditions (Garten et al,
2005; Beyer et al, 2006). In two separate studies, Hwang et al
(2005a, b) developed a general method for integrating numer-
ous types of data that provide evidence for TF regulation and
used it to accurately reconstruct the regulatory network for
galactose utilization in yeast. Finally, Balaji et al (2006a, b)
combined genomic localization data from over a hundred TFs
and revealed an ‘over-engineered’ distributed network archi-
tecture for TF co-regulation in yeast.

In this work, we found interactions not only between TFs
but also between all the proposed levels of transcriptional
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control. Hence, unlike previous studies, we unified ChIP-chip
data from several different laboratories that use varying
microarray technologies and statistical platforms for measur-
ing protein–DNA binding. Our integrative method standar-
dized all ChIP-chip data to P-values that measure confidence
of protein–DNA interactions in a uniform manner.

We next developed a method for comparing the normalized
data in a biologically meaningful manner by combining
P-values from two complementary techniques—filtered corre-
lation and mutual information. Mutual information makes
a hard decision on classifying the data as 0’s and 1’s before the
analysis, filtering out likely false positives. In contrast,
the filtered correlation cost function considers a soft and
continuous version of the data, capturing many likely false
negatives omitted by the mutual information analysis.
Combining P-values integrates evidence from both analyses,
thereby causing fewer errors in deciding whether two factors
have a significant binding dependence.

Our work shows that integrating ChIP-chip data can provide
new insight into the eukaryotic transcriptional architecture as
a whole while also predicting novel interactions between
individual components. As more genome-wide localization
data sets become available, we believe that the statistical
methodology presented here can be extended to mammalian
cells. Moreover, we expect that future time-dependent ChIP-
chip experiments from different developmental stages will
allow for a dynamic description of the transcriptional
architecture in complex organisms.

Materials and methods

Data integration

We obtained published genome-wide binding (ChIP-chip) data for TFs
(Lieb et al, 2001; Wyrick et al, 2001; Lee et al, 2002; Bar-Joseph et al,
2003; Harbison et al, 2004; Kurdistani et al, 2004), NTs (Casolari et al,
2004; Hieronymus et al, 2004; Yu et al, 2004b), RPs (Geisberg and
Struhl, 2004; Hieronymus et al, 2004; Kim and Iyer, 2004; Moqtaderi
and Struhl, 2004; Yu et al, 2004b), NRs (Damelin et al, 2002; Ng et al,
2002; Santos-Rosa et al, 2003; Gelbart et al, 2005), HMs (Lieb et al,
2001; Robyr et al, 2002; Wang et al, 2002; Ng et al, 2003; Robert
et al, 2004), and HSs (Bernstein et al, 2002, 2004; Kurdistani et al,
2004). Factors were placed into groups according to each protein’s
primary annotated function.

For ORF microarray data, we mapped the ChIP-chip information at
each ORF to its corresponding annotated gene. For intergenic
microarray data, where each intergenic region can control zero, one,
or two genes, we assigned each DNA probe to the gene that it most
likely regulates using a many-to-many mapping. This algorithm uses
the union of intergenic probe–gene assignment pairs from several
different groups (Ren et al, 2000; Lieb et al, 2001; Simon et al, 2001;
Wyrick et al, 2001; Damelin et al, 2002; Ng et al, 2003; Bernstein et al,
2004; Geisberg and Struhl, 2004; Harbison et al, 2004; Moqtaderi and
Struhl, 2004). Moreover, when two or more intergenic fragments
mapped to the same gene, the probe that contains the most amount of
information was chosen. As ChIP-chip experiments contain more
information at the tails of the binding distribution, we chose the most-
bound fragment for multiple probes that were consistently bound and
the least-bound fragment for multiple probes that were consistently
not bound.

Data normalization

To normalize the ChIP-chip data sets, we used P-values as a source
of binding information (Supplementary Table 1). Most data sets

calculated P-values based on the single array error model (Ren et al,
2000). To make data sets from our group consistent, we converted the
P-values from two-sided to one-sided. To find the missing P-values for
the remaining quarter of the data sets, we estimated the mean and
variance of the log binding ratio distribution of the unbound
population of genes using the left side of the overall log binding ratio
distribution. Based on the estimate of the unbound distribution, we
assigned a P-value for each observed binding ratio (see Supplementary
information). To facilitate dissemination of our results and to stimulate
further research, we have included our unified data sets and our
Matlab code used for the analysis (Supplementary Table 6, Supple-
mentary file MatlabCode.zip).

Filtered correlation and mutual information

To calculate the filtered correlation coefficient between normalized
data vectors x and y for two proteins, r(x,y), we used maximum
likelihood estimators to find the means of x and y across all genes, and
the filtered variance and covariance for x and y across only genes
bound by either protein. We found r(x,y) using these quantities and
used the Student’s t-test statistic to assign P-values for r(x,y) (see
Supplementary information).

To estimate mutual information, we discretized x and y to binary
data vectors of bound (1) and unbound (0) gene–protein interactions,
by choosing a threshold that maximizes the information at 356 known
interactions (Supplementary Table 7). Using the discrete data, we
estimated the marginal and joint distribution for the binary (Bernoulli)
binding profiles X and Y of any two proteins and found their mutual
information I(X;Y) as follows:

IðX;YÞ ¼
X
x¼0:1

X
y¼0:1

P̂ðX ¼ x;Y ¼ yÞ log
P̂ðX ¼ x;Y ¼ yÞ

P̂ðX ¼ xÞP̂ðY ¼ yÞ

Next, we computed the P-values for I(X;Y) estimates using a
hypergeometric test statistic. Finally, we used Fisher’s method to
combine the P-values from the two complementary pairwise
approaches and obtained an overall P-value (PVT) for the pairwise
dependence between two proteins (see Supplementary information).

Semi-supervised clustering

Unlike hierarchical clustering, our semi-supervised clustering algo-
rithm maintains information about the groupwise relationship
between elements in each cluster (see Supplementary information).
The algorithm keeps track of two groupwise information vectors—the
average binding profile xk of all joined proteins in each cluster Ck and
the fraction of factors that occupy each gene fk—and uses these vectors
to calculate the pairwise P-values (PVT) between partitions. At the
start, the algorithm treats each of N elements (protein binding vectors)
as a cluster and proceeds for N�1 iterations. At each iteration, the
algorithm joins the two most similar partitions, based on the smallest
pairwise P-value distance

dðxk;xlÞ ¼ � logð1 � PVTðxk;xlÞÞ
until all N elements are unified into one partition. When merging two
clusters Ck and Cl into cluster Co, the algorithm updates the groupwise
information vectors

xo ¼ 1

jCkj þ jClj
jCkjxk þ jCljxlð Þ

fo ¼ 1

jCkj þ jClj
jCkjfk þ jCljflð Þ;

where |Ck| represents the size (cardinality) of cluster Ck. To identify
only highly significant clusters, we use a P-value threshold of 10�60,
more stringent than the pairwise threshold of 10�40 for connecting
nodes in the network.

Hypergeometric P-values

To find the probability that k or more elements intersected subsets of n
and m members at random (or the P-value for overlap of k) in a
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superset of size N, we summed over the right tail of a hypergeometric
distribution:

P-valueðn;m; k;NÞ ¼
Xminðn;mÞ

l¼k

N � m
n � l

� �
m
l

� �

N
n

� �

We used this method to measure the significance of overlaps between
essential proteins and hubs, for the network validation in Figure 3, for
the overlap with the Lieb et al (2001) data set in Figure 4A, and for
determining active/inactive factors (enumerated in Supplementary
Table 8).

ChIP-chip and quantitative PCR

ChIP-chip experiments for Sir2 and Esc1 were performed essentially as
described (Casolari et al, 2004). All the experiments were performed
in biological triplicates. Immunoprecipitation was performed as
described previously (Casolari et al, 2004). ChIPs were performed in
biological duplicates as previously described (Lei and Silver, 2002)
with the modification of using Dynal beads instead of Sepharose beads
during immunoprecipitation. For immunoprecipitations, monoclonal
anti-Myc (9E11, Santa Cruz) antibody was pre-coupled to pan-mouse
IgG Dynal beads (Dynal Co.) followed by extensive washing.
Immunoblotting was performed to confirm consistent protein levels
and immunoprecipitation efficiency in each experiment. For quanti-
tative PCR, primer sets spanning predicted novel associated genes
were used. The results were compared against signals from an
intergenic region to determine the magnitude of enrichment. The
sequences of primers used were as follows: PGK1, GGACTTGAAGGA
CAAGCGTGTC and GCAATTCCTTAGCAACTGGAGCC; ILV5, AGATT
GATCTGCAACTCCCGTG and ACCTTGGGAACCGTAACCGATC; RPA34,
CGAGTTCAGCATACCAGATGG and CATTATCCTTGGCAGTGCTAGC;
TEF2, CGGTCATGTCGATTCTGGTAAG and TCTCTGTGACCTGGAG
CATC; intergenic region, GAAAAAGTGGGATTCTGCCTGTGG and
GTTTGCCACAGCGACAGAAGTATAACC.

Network analysis

Single in silico deletion for each protein regulator (i.e., no deletion of
HSs) involved removing the protein’s node and all links connected to it
in both the overall network and the pertinent subnetwork. For each in
silico deletion in both perturbed networks, we calculated the number
of resulting disconnected nodes from the same/different level as the
removed node. Sequential attacks against TFs involved removing
nodes in a sequential and cumulative manner, starting with the most
highly connected TF and proceeding in a descending order (Albert
et al, 2000). Choosing the order of sequential deletions at random did
not affect the overall conclusions.

To find P-values for a measured topology of a class of m regulators
(e.g., active factors), we repeated the network analysis for m randomly
selected regulators in 105 independent trials. We counted the number
of times, n, the same or more significant network topology occurred
and assigned a P-value of n/105.

All the network analysis results remained consistent after incorpor-
ating corrections for level size and negative links (Supplementary
Figure 3).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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