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Genome-wide association studies (GWAS) have hitherto identified several germline variants 
associated with cancer susceptibility, but the molecular functions of these risk modulators 
remain largely uncharacterized. Recent studies have begun to uncover the regulatory 
potential of noncoding GWAS SNPs using epigenetic information in corresponding cancer 
cell types and matched normal tissues. However, this approach does not explore the 
potential effect of risk germline variants on other important cell types that constitute the 
microenvironment of tumor or its precursor. This paper presents evidence that the breast-
cancer-associated variant rs3903072 may regulate the expression of CTSW in tumor-
infiltrating lymphocytes. CTSW is a candidate tumor-suppressor gene, with expression 
highly specific to immune cells and also positively correlated with breast cancer patient 
survival. Integrative analyses suggest a putative causative variant in a GWAS-linked 
enhancer in lymphocytes that loops to the 3’ end of CTSW through three-dimensional 
chromatin interaction. Our work thus poses the possibility that a cancer-associated 
genetic variant could regulate a gene not only in the cell of cancer origin but also in 
immune cells in the microenvironment, thereby modulating the immune surveillance by 
T lymphocytes and natural killer cells and affecting the clearing of early cancer initiating 
cells.

Keywords: noncoding variant, GWAS, breast cancer, functional characterization, immune cells, tumor 
microenvironment

INTRODUCTION

Genome-wide association studies (GWAS) have been effective in identifying common genetic risk 
factors for several diseases including cancer. The cancer-associated genetic variants discovered by 
GWAS, however, are not necessarily causative themselves but may be in linkage disequilibrium (LD) 
with other functional variants. Since most GWAS variants are located in noncoding regions, previous 
functional characterization studies have focused on the gene regulatory function of these linked 
variants in cancer cells themselves and in matched normal counterparts (Cowper-Sal lari et al., 2012; 
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Ghoussaini et al., 2014; Claussnitzer et al., 2015; Zhang et al., 
2018b). For example, usage of breast cancer epigenome 
facilitated the discovery of a GWAS-linked functional variant 
that disrupts a binding site of FOXA1, which is a critical pioneer 
factor in estrogen receptor-positive (ER+) breast cancers 
(Cowper-Sal lari et al., 2012); similarly, another study identified 
a functional diabetes-associated variant using the epigenomic 
information in adipose-derived mesenchymal stem cells 
(Claussnitzer et al., 2015). Although new insights have resulted 
from these investigations, a provocative question that has not 
yet been examined is whether select cancer-associated germline 
variants could also be functional in cell types other than the cell 
of cancer origin, such as endothelial cells and immune cells, 
within the heterogeneous tumor microenvironment (Liu and 
Mardis, 2017). For example, in tumor-infiltrating lymphocytes 
(TIL), genetic variants regulating cytotoxicity-controlling genes 
may impact TIL’s ability to eliminate cancerous cells, thereby 
functioning as cryptic modulators of cancer susceptibility that 
have escaped our attention to date. Since cancer initiation 
not only involves the acquisition of mutations in normal cells 
but also depends on the efficiency of immune surveillance 
against abnormal cells, it is important to identify cancer-
associated germline variants that may contribute to cancer 
susceptibility through modulating immune cells (Lim et al., 
2018; Schmiedel et al., 2018).

We have previously introduced a systematic computational 
framework for studying regulatory functions of noncoding 
GWAS variants associated with ER+ breast cancer by 
employing epigenomic information from breast cancer cell 
lines and normal mammary epithelial cells (Zhang et al., 
2018b). By incorporating additional data in immune cells, we 
here apply this approach to present evidence for the possibility 
that a breast cancer GWAS variant may influence immune 
cells in the microenvironment of tumor or its precursor. We 
demonstrate that the breast-cancer-associated single nucleotide 
polymorphisms (SNP), rs3903072, targets the gene CTSW 
uniquely in TILs. CTSW encodes a cysteine proteinase highly 
specific to natural killer (NK) cells and T cells and is potentially 
involved in regulating their cytotoxity; consistently, CTSW 

expression negatively correlates with both the risk allele at 
rs3903072 and the survival probability in breast cancer. We 
propose an intergenic regulatory variant, in high LD with 
rs3903072, as a predicted functional SNP, which falls in a 
putative regulatory element (PRE) physically interacting with 
the 3’ of CTSW. Our work renews the interest of CTSW in tumor 
surveillance and showcase a situation that shall be considered 
in functional characterization of GWAS variants.

MATERIALS AND METHODS

GWAS Variants
A list of ER+ breast-cancer-associated variants were first 
obtained from Michailidou et al. (2013) and the NHGRI-
EBI GWAS catalog (MacArthur et al., 2017). GWAS variants 
associated with immunoinflammatory traits were identified 
using the disease category information from the Experimental 
Factor Ontology (EFO) database (Malone et al., 2010). We 
ranked the ER+ breast cancer GWAS SNPs based on the number 
of proximal immunoinflammatory GWAS SNPs and found 
rs3903072 to be the top SNP (Supplementary Methods). A 
supplementary table was also obtained from Michailidou et al. 
(2017), which provides all SNPs associated with breast cancer 
with p < 10–5.

The Cancer Genome Atlas (TCGA) Cancer 
Data
The germline genotypes at tag SNPs of breast cancer (Breast 
Invasive Carcinoma, BRCA) patients in the TCGA dataset 
were downloaded from the TCGA Data Portal. The tumor 
copy number segmentation data in hg19 from the NCI 
Genomic Data Commons (GDC) Legacy Archive (Grossman 
et al., 2016) were used to compute gene copy number (CN). 
The processed gene expression data in fragments per kilobase 
million (FPKM) measured by RNA-seq were downloaded 
from the TCGA GDC data portal (Grossman et al., 2016). 
Germline genotypes from normal tissues and CN/RNA-
seq data from tumor tissues were matched using TCGA 
barcodes representing patients. For three other TCGA cancer 
datasets—uterine corpus endometrial carcinoma (UCEC), 
head–neck squamous cell carcinoma (HNSC), and low-grade 
glioma (LGG)—only the germline genotypes and processed 
gene expression levels were used. Genotype imputation was 
then performed for BRCA, UCEC, HNSC, and LGG datasets 
using the Michigan Imputation Server (Das et al., 2016) 
(Supplementary Methods).

The Genotype-Tissue Expression (GTEx) 
Project Data
The GTEx gene expression levels in reads per kilobase million 
(RPKM) and tissue type annotations were obtained from 
the GTEx portal (GTEx Consortium, 2013; Carithers et al., 
2015). We analyzed the GTEx data with two aims: comparing 
the expression levels of a certain gene across different 
tissues, and analyzing the correlation between the genotype 

Abbreviations: GWAS, genome-wide association studies; LD, linkage 
disequilibrium; ER+, estrogen receptor-positive; TIL, tumor-infiltrating 
lymphocytes; SNP, single nucleotide polymorphisms; NK, natural killer; PRE, 
putative regulatory element; EFO, Experimental Factor Ontology; TCGA, The 
Cancer Genome Atlas; BRCA, breast invasive carcinoma; GDC, Genomic Data 
Commons; CN, copy number; FPKM, fragments per kilobase million; UCEC, 
uterine corpus endometrial carcinoma; HNSC, head–neck squamous cell 
carcinoma; LGG, low-grade glioma; GTEx, genotype-tissue expression; RPKM, 
reads per kilobase million; eQTL, expression quantitative trait loci; THPA, the 
human protein atlas; CCLE, cancer cell line encyclopedia; FANTOM, functional 
annotation of the mammalian genome; ENCODE, Encyclopedia of DNA 
Elements; GEO, Gene Expression Omnibus; ChIA-PET, chromatin interaction 
analysis by paired-end tag sequencing; GEO, Gene Expression Omnibus; 3D, 
three-dimension; DHS, DNase I hypersensitive sites; PWM, position-specific 
weight matrices; mRNA, messenger RNA; RNA-seq, RNA sequencing; MAF, 
minor allele frequency; KIRC, kidney renal clear cell carcinoma; KIRP, kidney 
renal papillary cell carcinoma; KICH, kidney chromophobe; DNase-seq, DNase 
I hypersensitive sites sequencing; CAGE, cap analysis of gene expression; SMC1, 
structural maintenance of chromosomes protein 1; IL-2, interleukin-2.
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at a GWAS SNP and candidate target gene expression level. 
For the first purpose, we used the mean expression level 
of CTSW measured in the GTEx tissues (Supplementary 
Methods). For the second aim, we used the fully processed, 
filtered, and normalized gene expression levels in the breast 
mammary tissue and the whole blood from GTEx Analysis V7 
(dbGaP Accession phs000424.v7.p2); the imputed genotypes 
were extracted from the controlled-access dbGaP Accession 
phg000520.v2 (GTEx V2) dataset.

Expression Quantitative Trait Loci (eQTL) 
Analysis for TCGA-BRCA
In this paper, a pilot eQTL analysis was first performed 
among ER+ breast cancer patients. For this ER+ breast 
cancer analysis, we constructed a multivariate linear model 
for each gene within the 3-Mb region centered at rs3903072, 
regressing the gene expression levels against the genotypes at 
the GWAS SNP rs3903072 as well as the gene CN (Zhang et al., 
2018b) (Supplementary Methods). Genes with FPKM ≥1  
( :FPKM mean expression among tumor samples)  and the 
genotype p ≤ 0.05 from the linear regression were selected for 
further investigation. Among them, CTSW was identified as a 
signal different from other genes (Supplementary Methods). 
A second stage of eQTL analyses was performed to validate the 
genotype correlation of CTSW in other cancer types. For these 
eQTL analyses using BRCA, UCEC, HNSC, LGG, and GTEx 
data, linear regression models between CTSW expression and the 
genotype status at rs3903072 were constructed (Supplementary 
Methods).

TCGA Survival Analysis
Survival analysis in TCGA ER+ breast cancer patients was 
performed using the clinical data obtained from TCGA-GDC. 
The differences in survival rate between the two breast cancer 
patient groups separated by CTSW median expression level were 
tested using log-rank test (Supplementary Methods). Survival 
analysis results were also obtained in endometrial cancer 
(UCEC), head and neck cancer (HNSC), and renal cancer, all 
from the human protein atlas (THPA) (Uhlen et al., 2017d), 
choosing the median expression level as the cutoff threshold for 
grouping patients (Supplementary Methods).

Tissue Specificity of CTSW in Expression 
and Promoter Accessibility
CTSW gene expression in a variety of tissues and cell lines 
was obtained from BioGPS GeneAtlas (Wu et al., 2016), 
cancer cell line encyclopedia (CCLE) (Barretina et al., 
2012), and functional annotation of the mammalian genome 
(FANTOM) (The Fantom Consortium and the Riken 
PMI and CLST (DGT) et al., 2014) resources. DNase-seq 
chromatin accessibility measurements in various tissues 
were obtained from the Encyclopedia of DNA Elements 
(ENCODE) (The Encode Project Consortium et al., 2012) 
and the Roadmap Epigenomics project (Bernstein et al., 2010) 
(Supplementary Methods).

Chromatin Interaction Analysis by Paired-
End Tag Sequencing (ChIA-PET) Data 
Analysis
We searched the ENCODE and Gene Expression Omnibus 
(GEO) (Barrett et al., 2013) databases for available three-
dimension (3D) chromatin interaction data in lymphocyte cell 
lines expressing CTSW and found two ChIA-PET datasets in the 
Jurkat cell line for the proteins SMC1 (GSE68978) (Hnisz et al., 
2016) and RAD21 (ENCODE Accession ENCSR361AYD). For 
the SMC1 ChIA-PET data, we used the significant interactions 
processed and merged by the authors from GEO. For the RAD21 
ChIA-PET data, we collected all the raw sequences and generated 
the chromatin interactions using ChIA-PET 2 (Li et al., 2017) 
with default parameters.

Prioritization of Functional SNPs Linked to 
GWAS SNPs
We first selected all common (minor allele frequency, MAF ≥ 
0.05) SNPs from 1000 Genomes Project Phase 3 (The Genomes 
Project Consortium et al., 2015) in high LD (r2 ≥ 0.8, EUR 
population) with rs3903072. To prioritize SNPs located in PREs, 
we collected DNase I hypersensitive sites (DHS) from ENCODE 
and the Roadmap Epigenomics Project in lymphocyte-related 
cells, such as T cells, NK cells, B cells, T helper cells, and common 
myeloid progenitor cells. The LD SNPs overlapping any of the 
DHS peaks were prioritized for further investigation. In addition 
to DHS, we also used H3K4me1 modification (processed wiggle 
track in Jurkat cells from GSE119439) (Leong et al., 2017) to 
prioritize SNPs within putative regulatory elements.

Motif Analysis
TF-position-specific weight matrices (PWM) were collected 
from HOCOMOCO Human v10 (Kulakovskiy et al., 2016), 
FACTORBOOK (Wang et al., 2012), TRANSFAC (Matys 
et  al., 2006), JASPAR vertebrates (Mathelier et al., 2016), and 
Jolma2013 (Jolma et al., 2013). To identify potential binding sites 
affected by SNPs, we used the program FIMO (version 4.12.0) 
(Grant et al., 2011) to scan the 51-bp sequences carrying either 
allele of each prioritized SNP in the center (FIMO threshold 
10–3). The statistical significance of motif disruption or creation 
effect of the SNP alleles was then measured using our previous 
method of simulating null mutations in motif sequences (Zhang 
et al., 2018b).

ChIP-seq Analysis
ChIP-seq data for relevant TFs were collected from ENCODE 
and GEO. Processed wiggle tracks and peaks were downloaded 
and presented when available in hg19 [Jurkat H3K4me1 ChIP-
seq track from GSE119439 (Leong et al., 2017); TBX21 ChIP-
seq pooled wiggle track and peaks in GM12878 from ENCODE 
ENCFF193RDB and ENCFF869HSY]. For TCF3 ChIP-seq 
data in Kasumi1 and KLF1 ChIP-seq in GM12878, the raw 
sequences were downloaded from GSE43834 (Sun et al., 2013) 
and GSE43625 (Su et al., 2013), respectively, mapped to hg19 
using BWA (Li and Durbin, 2010) (-n 2) and analyzed for peaks 
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using MACS2 (Zhang et al., 2008) (callpeak: -q 0.1 --SPMR; 
bdgcmp: -m FC).

RESULTS

The rs3903072 Risk Locus Has Rich 
Immunoinflammatory Signals in Proximity
We hypothesized that the proximity of a genetic variant associated 
with cancer to those associated with immunoinflammatory 
traits might indicate pleiotropy of nearby genes or regulatory 
variants. In this regard, we examined the NHGRI-EBI GWAS 
Catalog (MacArthur et al., 2017) and identified rs3903072 
as the top breastcancer-associated variant having the highest 

density of proximal variants within 100 kb associated with 
immunoinflammatory traits (Supplementary Methods; 
Supplementary Figure 1; Supplementary Table 1). The 
SNP rs3903072 has been found to be associated with ER+ 
breast cancer in multiple GWAS studies (Michailidou et al., 
2013; MacArthur et al., 2017; Michailidou et  al., 2017), and 
lies in close physical distance, but with weak genetic linkage 
(Supplementary Table 2), to multiple variants associated with 
immunoinflammatory diseases—such as rs118086960 with 
psoriasis (an autoimmune disease) (Tsoi et al., 2017), rs77779142 
with rosacea symptom (an inflammatory skin condition) (Aponte 
et al., 2018), rs2231884 with inflammatory bowel disease (Jostins 
et al., 2012), and rs568617 with psoriasis and Crohn’s disease (an 
inflammatory bowel disease) (Ellinghaus et al., 2016) (Figure 1A; 

FIGURE 1 | The breast cancer risk variant rs3903072 in the 11q13.1 region. (A) The top track shows UCSC genes, and the lower track shows the GWAS variants 
grouped by their reported traits into four categories (Supplementary Table 1). The SNP rs3903072 shows a stronger association with breast cancer (p = 2 × 10–12) 
than the variant rs617791 (p = 7 × 10–6). (B) The eQTL results for rs3903072. A full list of eQTL genes is in Supplementary Table 3. Left three bar plots show the 
significance of the contribution from rs3903072 genotype to the expression level of MUS81, CTSW, FIBP and EIF1AD. Positive values represent higher expression 
as the number of risk allele increases, and negative values represent the opposite trend. CTSW is the only eQTL gene with a significant suppression in the risk 
genotype group. This negative correlation between CTSW expression level and the genotype status is confirmed in the three independent datasets shown. The right 
bar plot shows the significance of the contribution from gene copy number to the expression level of each gene. Filled bar plots represent tumor, while transparent 
plots represent normal tissues; in this paper, we use the cyan color to indicate breast-related cancer or normal cells and the magenta color to indicate blood-related 
cells. The dotted lines in gray mark the significance threshold of p = 0.05.
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Supplementary Table 1). A direct link between this noncoding 
SNP rs3903072 and its regulatory function in mammary epithelial 
cells is currently unknown; similarly, it remains uncharacterized 
how and why the aforementioned SNPs in the region affect 
diverse immunoinflammatory traits. Discovering the target genes 
of rs3903072 thus represents a major step towards identifying a 
potential regulatory mechanism common to both breast cancer 
susceptibility and immunoinflammatory traits.

eQTL and Survival Analysis Demonstrate 
the Tumor-Suppressive Role of CTSW
To identify candidate target genes, we applied the approach of 
eQTL, quantifying the correlation of messenger RNA (mRNA) 
levels of nearby genes with the genotype status at rs3903072 
(Material and Methods). Using ER+ breast tumor RNA sequencing 
(RNA-seq) and genotyping data from the BRCA dataset of TCGA, 
we identified several significant eQTL genes in cis for rs3903072, 
including CTSW, FIBP, MUS81, and EIF1AD (genotype p-values 
of a linear model adjusting for gene copy number: p= 3.52 × 10–5, 
p  = 3.22 × 10–5, p = 1.24 × 10–4, p = 3.28 × 10–3, respectively (Figure 
1B); a complete list of eQTL genes in Supplementary Table 3), 
confirming the results previously reported (Michailidou et al., 
2013). Notably, CTSW was among the most significant eQTL 
genes; the negative correlation between CTSW expression and the 
number of risk alleles indicated a tumor-suppressive role of this 
gene (Figure 2A). In line with the eQTL result, survival analysis 
of BRCA patients showed that higher CTSW expression was 
associated with significantly better survival probability [log-rank 
p-value with median expression cutoff; p = 0.026, for ER+ breast 
cancer patients analyzed in this study (Figure 2B); p = 7.3 × 10–4 
for all BRCA patients in the analysis performed by THPA (Uhlen 
et al., 2017d), image: (Uhlen et al., 2017a)]. By contrast, according 
to the TCGA analysis presented in THPA, other eQTL genes were 
not significantly associated with breast cancer patient survival.

Consistent with our finding, a similar drop in survival 
probability with lower CTSW expression was also observed in 
other cancer types including endometrial cancer (UCEC) and 
head and neck cancer (HNSC), according to THPA (Uhlen et 
al., 2017d) [log-rank p-values with median expression cutoff; 
UCEC: p = 4.1 × 10–4, image: (Uhlen et al., 2017c); HNSC: p = 1.9 
× 10–2 image: (Uhlen et al., 2017b); Supplementary Methods]. 
In THPA, although the renal cancer group showed an opposite 
survival trend when kidney renal clear cell carcinoma (KIRC), 
kidney renal papillary cell carcinoma (KIRP), and kidney 
chromophobe (KICH) were combined (THPA p = 1.4 × 10–4; 
log-rank p-value with median expression cutoff), the trend 
was significant only in KIRP when each group was checked 
separately (THPA; Supplementary Methods). Further eQTL 
analysis confirmed a similar negative correlation between CTSW 
expression level and the rs3903072 risk genotype in UCEC and 
HNSC, as well as in LGG, a cancer type not shown in the THPA 
survival analysis webpage (linear model between expression and 
rs3903072 genotype; UCEC: p = 1.52 × 10–3; HNSC: p = 5.45 × 
10–3; LGG: p = 7.09 × 10–3; Supplementary Figure 2). Together, 
these results demonstrate that CTSW likely has an important 
biological function in cancer and that the breast cancer risk 

allele rs3903072-G is significantly associated with decreased 
expression of CTSW.

The GWAS-CTSW Association Arises From 
Tumor-Infiltrating Lymphocytes
Interestingly, the following pieces of evidence show that unlike 
other eQTL genes, CTSW is specifically expressed and functions 
in blood cells, particularly in NK cells and T cells. First, CTSW 
encodes the protein cathepsin W, also named lymphopain, 
which is a cysteine protease reported to be involved in the 
cytolytic activity of NK cells and cytotoxic T cells (Wex et al., 
2001; O’Leary et al., 2016). Second, the CTSW promoter region 
is not accessible in normal mammary cells or breast cancer cells 
(HMEC, MCF-7, T-47D) but is open in CD8+ T cells, CD56+ NK 
cells, CD34+ common myeloid progenitor cells, and the acute 
T cell leukemia cell line Jurkat (Figure 2C), according to the 
DNase I hypersensitive sites sequencing (DNase-seq) data from 
ENCODE and the Roadmap Epigenomics Project. Third, CTSW 
is predominantly expressed in blood cell lines but not detectable 
in human mammary cell lines, according to the gene expression 
measurements in BioGPS (microarray; Figure 2D) and CCLE 
(RNA-seq; Supplementary Figure 3). Fourth, the CTSW 
promoter is actively transcribed in several lymphocytes but not 
in breast cells, according to the cap analysis of gene expression 
(CAGE) sequencing data from FANTOM5 (Supplementary 
Figure 4). Fifth, among different normal tissue types, CTSW 
expression level measured by GTEx (GTEx Consortium, 2013; 
Carithers et al., 2015) is highest in whole blood, moderate in lung 
and spleen, and low or undetectable in other tissues, whereas other 
eQTL genes such as FIBP, MUS81, and EIF1AD are relatively 
ubiquitously expressed across different tissue types including 
the mammary gland (Supplementary Figure 5). Finally, it has 
been recently shown that an elevated level of CTSW expression 
is observed in CD8+ T cells with enhanced immunity against 
bacterial infection and cancer (Oghumu et al., 2015), as well as 
in renal cancer with high lymphocyte infiltration (Ghatalia et al., 
2018). Together, these findings demonstrate the high specificity 
of CTSW expression to immune cells, indicating that the CTSW 
mRNA in the TCGA breast tumor bulk RNA-seq has likely arisen 
from TILs in the heterogeneous tumor microenvironment (Liu 
and Mardis, 2017). In fact, the expression patterns of immune 
signature genes in TCGA RNA-seq data have been used to infer 
the abundance of different immune cells in tumor and quantify 
immune infiltration levels (Li et al., 2016).

We thus hypothesized that the breast-cancer-associated GWAS 
variant rs3903072 may regulate CTSW in immune cells within the 
tumor microenvironment, independent of the other eQTL genes 
that could potentially be regulated separately in breast cancer cells. 
Several observations supported this idea. First, CTSW was the only 
TCGA-BRCA eQTL gene that remained correlated with the GWAS 
genotype status in the GTEx normal mammary tissue (p = 8.64 × 
10–4) and whole blood (p = 0.016; Figure 1B; Supplementary 
Figure 2B). Second, CTSW was the only eQTL gene that showed 
no correlation with DNA copy number in TCGA breast cancer 
data (p  = 0.72; Figure 1B; Supplementary Table 3), suggesting 
regulation unaffected by the genomic amplification or deletion 
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FIGURE 2 | Genotype-dependent suppression and tissue specificity of CTSW expression. (A) The violin plot of CTSW expression levels in three genotype groups 
at rs3903072, using the TCGA ER+ breast cancer patient data. The p-value is for the coefficient of genotype in multivariate linear regression with adjustment for 
gene copy number. (B) Survival analysis of breast cancer patients based on CTSW expression levels. The p-value is from the log-rank test using the two groups 
separated by the median expression of CTSW. (C) The CTSW promoter chromatin accessibility in multiple cell lines from various tissue origins. The top ENCODE 
plot shows the DNase I hypersensitivity (DHS) uniform peaks in ENCODE tier 1 cell lines, along with the tier 2/3 cells in which CTSW promoter is open. The bottom 
plot shows the DHS signals for primary cells from Roadmap Epigenomics data. Cells with breast tissue origin are marked as cyan, and blood-related normal or 
cancer cells are marked as magenta. HMPC, hematopoietic multipotent progenitor cells; CMP CD34+, common myeloid progenitor cells CD34+. (D) Distribution 
of CTSW expression in cell lines and in tissues. The top figure shows data from BioGPS, displaying only 10 cell types with highest CTSW expression. The bottom 
figure shows data from GTEx, displaying only nine tissue types with highest CTSW expression and mammary tissue (ranked 13th).
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events abundant in cancer cells. Third, CTSW was the only eQTL 
gene showing negative correlation with the number of risk alleles at 
the GWAS SNP, whereas other eQTL genes had the opposite trend, 
indicating that CTSW may play a tumor-suppressive role in TILs, 
while others may be involved in promoting cancer progression 
(linear regression coefficient in BRCA ER + eQTL: CTSW, r = –0.22; 
FIBP, r = 0.09; MUS81, r = 0.08; EIF1AD, r = 0.05; Figure 1B). Lastly, 
CTSW was the only gene of known function related to immune cells 
across the region shown in Figure 1A (Supplementary Table 4), 
where multiple GWAS associations point to immunoinflammatory 
traits. Even though we do not exclude the possibility that other 
eQTL genes may also have important functions in TILs or breast 
cancer cells, the tissue specificity and the correlation structure of 
CTSW expression strongly suggest its significant modulation in 
tumor-infiltrating immune cells by the GWAS SNP rs3903072 itself 
or a linked genetic variant.

A Putative Regulatory SNP in CTSW 
Promoter Does Not Solely Explain the 
Breast Cancer Association
As the GWAS SNP rs3903072 itself did not reside in an open 
chromatin region in immune cells (Figure 3A), we next searched 
for putative regulatory variants that could directly control CTSW 
expression. We first found the SNP rs658524 to be located at 
the center of a DHS peak in CTSW promoter among several 
lymphocyte cell lines (Supplementary Figure 6). On the one 
hand, the SNP rs658524 was simultaneously linked to two of the 
immunoinflammatory GWAS variants. Namely, the GWAS SNP 
rs77779142, associated with Rosacea symptoms, was in tight LD 
with the CTSW promoter SNP rs658524 (r2 = 0.78 with rs658524; 
r2 = 0.17 with rs3903072; 1000 Genomes Phase 3 EUR population), 
despite being closer to the breast cancer GWAS SNP rs3903072 
than to rs658524 in genomic distance (16.6 kb to rs3903072 vs. 
47.6 kb to rs658524). Another GWAS SNP rs568617, associated 
with Psoriasis and Crohn’s disease, resided in intron of the gene 
FIBP next to CTSW and was in high LD with the CTSW promoter 
SNP rs658524 (r2 = 0.99 to rs658524; r2 = 0.19 to rs3903072; 
Figure 1A). On the other hand, the promoter SNP rs658524 was 
strongly correlated with CTSW expression, according to our eQTL 
analysis in TCGA (linear model between expression and rs658524 
genotype; BRCA: p = 1.02 × 10–17; UCEC: p = 1.50 × 10–11; HNSC: 
p = 1.32 × 10–12; LGG: p = 1.43  × 10–6; Supplementary Figure 
7A) and GTEx (mammary tissue: p = 2.19 × 10–11; whole blood: 
p = 8.48 × 10–5; Supplementary Figure 7B), consistent with eQTL 
results from other immune cell studies (Raj et al., 2014).

We here note that rs658524-A also showed partial association 
with breast cancer risk, since the haplotypes carrying the 
rs658524-A allele were found to be largely biased towards the 
GWAS risk allele rs3903072-G compared to the alternative allele 
rs3903072-T, despite the balanced MAF of rs3903072 (rs3903072 
MAF = 0.46; 188 haplotypes with rs658524-A-rs3903072-G 
and 3 haplotypes with rs658524-A-rs3903072-T among the 
1,006 haplotypes from the 1000 Genomes Project Phase 3 EUR 
population; Supplementary Figure 6B). In fact, rs658524 was in 
weak LD with rs3903072 (low r2 = 0.186, but high D' = 0.966), with 
the GWAS risk SNP having a much higher allele frequency than 

the risk promoter SNP (rs3903072-G frequency: 0.54; rs658524-A 
frequency: 0.19; 1000 Genomes Project Phase 3, EUR). However, 
the CTSW promoter SNP rs658524 itself did not entirely explain 
either the GWAS association or the CTSW regulation in this 
region. A recent study reporting GWAS SNPs with a p < 10–5 
for breast cancer (Michailidou et al., 2017) included the CTSW 
locus (Manhattan plot in Figure 3A). The top SNP linked to 
rs658524 was rs12225345 (r2 = 0.84), which was only moderately 
associated with breast cancer (p = 1.13 × 10–6), separated from the 
top GWAS signal cluster represented  by rs3903072 (p = 2.25  × 
10–12) (Michailidou et al., 2017). Furthermore, a conditional eQTL 
analysis showed that, within the group of TCGA patients carrying 
the homozygous genotype rs658524-G/G, the rs3903072 risk 
allele still displayed a residual negative effect on CTSW expression 
(Welch t-test, two-sided, p = 6.0 × 10–4; GTEx whole blood data; 
Supplementary Figure 8). Thus, although the CTSW promoter 
SNP was in high D′ with the breast cancer GWAS SNP rs3903072, 
it did not solely explain the breast cancer risk in 11q13.1, and other 
functional SNPs likely influenced the expression of CTSW.

An Active Distal Enhancer of CTSW 
Harbors a Candidate Functional Variant 
Linked to rs3903072
Given that the GWAS SNP rs3903072 was located 64 kb away 
from CTSW promoter, we tested whether some putative 
functional SNPs tightly linked to rs3903072 could affect distal 
enhancer activities modulating CTSW expression. We thus 
examined all common (MAF ≥ 0.05) SNPs from 1000 Genomes 
Project Phase 3 EUR population in high LD (r2 ≥ 0.8) with the 
GWAS SNP rs3903072 and prioritized the potential functional 
ones using epigenetic information. In detail, by overlapping 
the 30 high LD SNPs with DHS of lymphocyte cell lines 
(Supplementary Table 5), we identified three SNP-containing 
PREs): PRE1 located 3 kb away from rs3903072, PRE2 at SNX32 
promoter, and PRE3 at EFEMP2 promoter (Supplementary 
Figure 9). Further investigation of the available 3D chromatin 
interaction data in immune-related cells highlighted PRE1 
as the top regulatory element physically interacting with the 
3’ end of CTSW, as assessed by the structural maintenance 
of chromosomes protein 1 [SMC1; GSE68978 (Hnisz et al., 
2016)] ChIA-PET data (Figure 3A). Another Jurkat ChIA-
PET data for RAD21, a cohesin complex component, showed 
an indirect interaction linking PRE1 and CTSW mediated 
through an anchoring element near EIF1AD, suggesting 
multiway interactions between the several anchoring elements 
or enhancers (Materials and Methods; Supplementary Figure 
9). To contrast the chromatin interaction of PRE1 with CTSW 
between NK/T cells and mammary cells, we predicted high-
resolution (5 kb) Hi-C interactions in NK cells, CD8+ αβ T 
cells, and benign variant human mammary epithelial cells 
(vHMEC). Using random forest-based regression models 
trained separately on high-resolution Hi-C data in five different 
cell lines (Rao et al., 2014) (Supplementary Methods), we 
predicted the contact counts in the three cell types of interest 
within 1  Mb from rs3903072. Consistent with the ChIA-PET 
data, NK cells were found to have the highest predicted contact 
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count for the pair of rs3903072-PRE1 and CTSW in all five 
models (Supplementary Figure 10), in contrast to vHMEC, 
which had the lowest predicted contact counts. These findings 
together suggested that PRE1 linked to the GWAS SNP could 
function as a distal regulatory element controlling CTSW 
expression selectively in NK and T cells.

Among the prioritized SNPs residing in the three PREs, we 
identified rs11227311 in PRE1 as a putative functional SNP (r2 
= 0.89 with rs3903072, 1000 Genomes Phase 3, EUR). More 
precisely, it not only overlapped a DHS in NK cells, B cells, and type 
2 T helper cells (ENCODE accession number: ENCFF933OXV, 
ENCFF772OPR, ENCFF001WTS, and ENCFF001WTQ) but also 

FIGURE 3 | Potential regulatory mechanisms for CTSW. (A) The genomic region ranging from the GWAS SNP rs3903072 to CTSW is shown, including the gene 
track, the GWAS LD SNPs, epigenetics information, and 3D chromatin interaction. The chromatin accessibility data are shown for breast-related cells and blood 
cells from ENCODE and Roadmap Epigenomics Project. The H3K4me1 modification track and the SMC1 ChIA-PET significant interactions in the Jurkat cell line are 
from GSE119439 and GSE68978. The bottom Manhattan plot shows the SNPs associated with breast cancer with p < 10–5. Three SNPs are marked: the GWAS 
SNP rs3903072 and the GWAS-linked putative enhancer SNP in blue and the CTSW promoter SNP in magenta. (B, C) Zoomed-in views of the two potential 
regulatory SNPs. For the GWAS-linked putative enhancer SNP, TCF3 ChIP-seq data in Kasumi1 and TBX21 ChIP-seq data in GM12878 are shown. Two candidate 
TF motifs predicted to be affected by the SNP are also shown, where the protective allele is marked blue and the risk allele red. For the CTSW promoter SNP, KLF1 
ChIP-seq profile in erythroid cells is plotted, along with a KLF family motif (rc, reverse complement).

fgene.2019.00000.indd           8                  Manila Typesetting Company                  06/10/2019  07:57PM

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Cancer variants and tumor microenvironmentZhang et al.

9 August 2019 | Volume 10 | Article 754Frontiers in Genetics | www.frontiersin.org

H3K4me1 modification and the ChIA-PET region interacting with 
CTSW 3’ end in Jurkat (Figure 3A; Supplementary Figure 9).  
Furthermore, the Roadmap Epigenomics Project annotates the 
PRE1 region as TSS and weak enhancer in multiple types of primary 
blood cells (Supplementary Figure 11). To identify candidate TFs 
in PRE1 potentially affected by rs11227311, we scanned the short 

sequences around the SNP for TF motifs, using the program FIMO 
(version 4.12.0) and position weight matrices (PWM) collected 
from multiple motif databases (Materials and Methods). Using our 
previously described method for measuring the significance of 
motif disruption by a SNP, based on simulating null mutations on 
the PWMs (Zhang et al., 2018b), we identified a list of candidate TF 

FIGURE 4 | An illustration of our hypothesis. The putative molecular gene-regulation process is shown in the top boxed panels, and the tumor initiation process is 
illustrated in the two rows below. The left panel shows the process of cancer immune surveillance in people carrying the protective alleles at the GWAS SNP and 
the predicted functional enhancer SNP. In the top left box, the chromosome carrying the protective alleles produces an abundant CTSW mRNA level; as shown 
here, CTSW transcription could be elevated through a transcription activator binding the PRE1 SNP. Note that another scenario, not shown in the illustration, is also 
possible, where the protective allele could disrupt the binding motif of a transcription repressor. Going back to the cell view, the high level of CTSW expression in 
NK cells or T cells may enhance their cytotoxicity and facilitate their ability to detect and eliminate abnormal cells, such as cancerous mammary epithelial cells that 
just acquired some oncogenic mutations. This high efficiency of immune surveillance would thus reduce the risk of developing breast cancer. By contrast, the right 
panel shows the NK/T cells with suppressed CTSW expression associated with the risk alleles, resulting in reduced cytotoxic activities and suppressed immune 
surveillance efficiency, thereby increasing the risk of developing breast cancer.
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motifs disrupted by rs11227311, including the TEAD family, TCF 
family, NR3C1, POU2F1, and ETV5 (Figure 3B; Supplementary 
Figure 9; p-values from neutral mutation simulation: p = 0.0074, p = 
0.0086, p = 0.002, p = 0.013, p = 0.045, respectively; Methods). GREAT 
(McLean et al., 2010) analysis of available ChIP-seq data suggested 
that some of our candidate TFs might regulate genes closely related 
to the immune system. For example, gene ontology terms related 
to interferon-gamma, an important immunoregulatory molecule, 
and pathways related to T-cell signaling were enriched for TEAD2 
(K562 cell line; Supplementary Methods; Supplementary Table 6). 
It is also known that TCF1, one of the four TCF family members, 
plays an important role in normal development of natural killer cells 
(Jeevan-Raj et al., 2017). Although it was difficult to validate which 
TF can directly bind the PRE1 SNP due to insufficient ChIP-seq 
data in T/NK cells, we found the PRE1 candidate SNP rs11227311 
to be located within a weak TCF3 ChIP-seq peak in Kasumi1 acute 
myeloid leukemia cell line [GEO GSE43834 (Sun et al., 2013)] 
(Figure 3B; Materials and Methods). Examination of other ChIP-
seq data in ENCODE for TFs in lymphocytes also showed that 
the SNP rs11227311 is at the center of a strong TBX21 ChIP-seq 
peak in GM12878 (ENCSR739IHN; Figure 3B). TBX21 is a T-box 
transcription factor controlling important genes in NK cells and type 
1 T helper cells (O’Leary et al., 2016), and its binding supports the 
potential involvement of PRE1 in gene regulation in lymphocytes. 
In addition, we performed a motif analysis for the CTSW promoter 
SNP and found that it might disrupt the binding site of the KLF 
family TFs (p = 0.0086; Materials and Methods), the actual binding 
of which in this region was supported by a KLF1 ChIP-seq dataset in 
erythroid cells [GSE43625 (Su et al., 2013); Figure 3C].

DISCUSSION

In this paper, we performed functional characterization of 
breast cancer-associated GWAS variants and proposed the 
idea that a noncoding cancer GWAS SNP may regulate gene 
expression in immune cells within the tumor microenvironment. 
Figure 4 summarizes our hypothesis that the GWAS-linked SNP 
rs11227311 may directly affect TF binding affinity at the distal 
enhancer and regulate CTSW expression in cytotoxic lymphocytes, 
thereby affecting their ability to eliminate abnormal cells. As a 
member in the cathepsin family, CTSW is specifically expressed 
in NK and T cells with a potential role in their cytotoxicity; it can 
also be strongly induced in NK cells by interleukin-2 (IL-2) (Wex 
et al., 2001), which is a cytokine controlling T cell growth and NK 
cell cytotoxicity. Although the function of cathepsin W and its 
precise relation to lymphocyte cytotoxicity remain under debate 
(Dalton et al., 2013), the described association between CTSW 
and breast cancer susceptibility renews the interest in this gene 
as a component of immune surveillance against cancer. Recent 
studies have demonstrated that tumor impurity is an important 
factor to consider in eQTL analysis (Geeleher et al., 2018; Lim 
et al., 2018). Along this line, our work further highlights the need 
to examine the effect of GWAS SNPs on gene regulation not only 
in the cell type of disease but also in surrounding cells that may 
modulate the progression of pathology.

CONCLUSION

In summary, we have examined effects of cancer-associated 
risk alleles on tumor-infiltrating lymphocytes in the tumor 
microenvironment, which is usually neglected in recent 
functional interpretation studies. We presented evidence that 
a breast-cancer-associated variant may regulate the expression 
level of an NK/T cell-specific gene, not in breast cancer cells 
but in immune cells infiltrating the tumor microenvironment. 
Our study emphasizes the need to consider effects of cancer-
associated germline variants in context of the tumor immune 
microenvironment, as well as the need to further study the role 
of CTSW in the interaction between tumor and the immune 
system.
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