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Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a
large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including
neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral
infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that
enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells.
However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In
this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection
in ROS/RNS-mediated Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS).

1. Introduction

Neurodegenerative diseases are chronic degenerative pathol-
ogies of the Central Nervous System (CNS) characterized by
progressive loss of specific neurons that lead to a decline in
brain functions [1–3]. Despite these pathologies having differ-
ent clinical features, they possess some common hallmarks,
such as the formation and deposition of aberrant protein
conformers, synaptic dysfunctions, deficient autophagic pro-
cesses, oxidative/nitrosative stress, and inflammation [4].The
neurodegenerative diseases present an increase of reactive
oxygen species (ROS) production by mitochondria and
NADPH oxidase (NOX), which seems to be responsible for
tissue injury, inflammation, and neurodegeneration [5, 6].

Substantial evidence indicates that also reactive nitrogen
species (RNS) play a key role in most common neurode-
generative diseases although the mechanism of nitric oxide-
(NO-)mediated neurodegeneration remains uncertain [7–9].
However,many studies demonstrated thatNO is able tomod-
ify protein function by nitrosylation and nitrotyrosination,
contribute to glutamate excitotoxicity, inhibit mitochondrial
respiratory complexes, participate in organelle fragmenta-
tion, and mobilize zinc from internal stores in brain cells,

contributing to neurodegeneration [10–13]. In response to
increased oxidative and nitrosative stress the brain cells (i.e.,
microglia, astrocytes) activate redox-sensitive transcription
factors, including nuclear factor-k𝛽 (NF-k𝛽) and activator
protein-1 (AP-1) [14, 15]. Next to this, it was also observed that
the free radical increase, observed during neurodegeneration,
may be also due to alteration of endogenous antioxidants.
In particular, some antioxidant enzymes, such as super-
oxide dismutases (SODs), catalase, glutathione peroxidase,
and glutathione reductase, have reduced activity in certain
brain regions of AD patients [16]. Moreover, a reduction
in amount of glutathione (GSH) level has been found in
postmortem brain tissue from the substantia nigra of PD
patients [17, 18]. Similarly, catalase and glutathione reductase
activity, as well as GSH levels, were found to be significantly
reduced in ALS patients [19]. Many of these antioxidant
systems are regulated by nuclear factor (erythroid-derived
2)-like 2, also known as NFE2L2 transcription factor. In
normal conditions, NFE2L2 is associated with Kelch-like
ECH associating protein 1 (Keap1) in the cytoplasm. This
bond prevents the nuclear translocation of NFE2L2 and
promotes its degradation via Ubiquitin Proteasome System
(UPS). On the contrary, the presence of oxidative stress can
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induce the detachment between Keap1 and NFE2L2, due to
the modification of the reactive cysteine in Keap1 [20]. These
conformational changes determine a release of NFE2L2 and
its nuclear translocation, where it binds the ARE consensus
sequences and coordinates the transcription of antioxidant
and phase II detoxification genes [21]. Alterations ofNFE2L2-
pathway have been observed in postmortem brain of patients
with neurodegenerative disorders [20]. In particular, many
studies have showed an increase of NFE2L2 nuclear translo-
cation in dopaminergic neurons of PD patients, but this
induction is not sufficient to counteract the oxidative stress
[22]. On the contrary, a decrease of NFE2L2 expression has
been observed in hippocampus neurons in AD cases [22].
Moreover, a reduction ofmRNAandprotein levels ofNFE2L2
was also found in the motor cortex and spinal cord in ALS
patients [23]. Thus, the activation of NFE2L2-ARE pathway
constitutes a valuable therapeutic tool to combat oxidative
stress that occurs during neurodegenerative disease.

Recently, it has been demonstrated that infection agents
can reach theCNS crossing the blood-brain barrier, by infected
migratory macrophage or by intraneuronal transfer from
peripheral nerves [24, 25]. In particular, these infections can
affect the immune system resulting in a variety of systemic
signs and symptoms [26]. The virus replication into the CNS
produces molecular hallmarks of neurodegeneration, such as
protein misfolding, deposition of misfolded protein aggre-
gates, alterations of autophagic pathways, oxidative stress,
neuronal functional alterations, and apoptotic cell death
[26–28]. These effects associated with genetic alteration and
other environmental factors contribute to the pathogenesis of
neurodegenerative diseases.

In this review, we will highlight the role of oxidative
stress and viral infection in the pathogenesis of Parkinson’s
disease (PD), Alzheimer’s disease (AD), and amyotrophic
lateral sclerosis (ALS).

2. Role of Oxidative Stress in
Neurodegeneration: General Aspects

Oxidative stress occurs due to an imbalance in the prooxidant
and antioxidant levels. ROS and RNS are highly reactive
with biomolecules, including proteins, lipids, carbohydrate,
DNA, and RNA [29]. ROS that are particularly abundant
during an imbalance of redox state are superoxide anion
(O
2

∙−), hydrogen peroxide (H
2
O
2
), and hydroxyl radical

(∙OH), whereas among RNS the most abundant are NO and
peroxynitrite (ONOO−). During mitochondrial activity O

2

∙−

is produced in the electron transport chain (ETC), which is
immediately converted to H

2
O
2
by superoxide dismutase 2

(SOD2) located in the mitochondrial matrix or SOD1 located
in the cytosol [30]. H

2
O
2
is rapidly converted to water by

mitochondrial glutathione (mtGSH) with the participation
of GSH reductase and peroxiredoxins [31]. Other sources
of free radical are the NOXs, enzymes located in the cell
membrane. Several NOXs are expressed in the cells of CNS,
such as neurons, astrocytes, and microglia [32, 33]. During
infections, activation of NOXs is strongly improved and the
resulting ROS increase is particularly important as a host
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Figure 1: Main characteristics that occur in neurodegenerative
diseases.

defense mechanism [34]. However, excessive NOXs activa-
tion has also been implicated in oxidative stress-mediated
neurodegeneration [35].

The brain is particularly prone to oxidative stress-induced
damage because of its high oxygen demand, the abundance
of redox-active metals (iron and copper), the high levels of
oxidizable polyunsaturated fatty acids, and the low amounts
of antioxidant enzymes (Figure 1). Another issue is that
the neurons are postmitotic cells with relatively restricted
replenishment by progenitor cells during the lifespan of
an organism [11, 36]. Thus, the brain may be particularly
vulnerable to viral infections during neurodegeneration due
to different reasons: (i) the blood-barrier is compromised
during neurodegeneration; (ii) many viruses can reach the
CNSbyperipheral nerves; (iii) themitochondria becomedys-
functional during neurodegeneration, preventing neurons
from depending on aerobic metabolism and making it very
susceptible to oxidative stress [17]. Primarily, in this review,
the role of redox imbalance and redox-mediated inflam-
mation in the onset and pathogenesis of neurodegenerative
diseases will be discussed.

2.1. Redox Imbalance in AD. AD is a neurodegenerative
disorder characterized by progressive decline in cognitive
functions leading to memory loss and dementia. It involves
degeneration of limbic and cortical brain structures, espe-
cially in the temporal lobe. One characteristic of AD is
the appearance of senile plaques, which are produced from
proteolytic cleavage of the transmembrane amyloid precursor
protein (APP) to form 𝛽-amyloid peptide (A𝛽). Another
characteristic of AD is neurofibrillary tangles (NFTs) [37] and
aggregates of medium and high molecular weight neurofil-
aments (NFM and NFH, resp.), as well as the microtubule-
stabilizing protein tau, a multifunctional protein involved in
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microtubule assembly and stabilization [38, 39]. These hall-
marks are altered in ways characteristic of oxidative damage,
such as advanced glycation end product- (AGE-) modifica-
tions, protein cross-linking, and carbonyl-modifications [40–
42]. All these alterations in neurons susceptible to AD play a
key role in the irreversible cellular dysfunction that ultimately
leads to neuronal death.

Brain autopsy from AD patients has shown oxidative
damagemarkers, such as lipid peroxidation, protein oxidative
damage, and glycoxidation in brain tissues [43]. Next to this,
a drastic decrease in the intraneuronal content of GSH has
been observed in the hippocampus and cortex of AD patients
[43, 44]. Thus, the loss of ROS balance produces a chronic
oxidative state, which induces a reduction of antioxidants
expression and activity, accelerating the neurodegenerative
processes. In fact, the alteration of redox homeostasis stim-
ulates the formation of products of advanced glycosylation,
an overload of peroxidation of fatty acids, oxidation of
cholesterol, insulin resistance, and proteins unfolding [41, 45–
49]. Moreover, an increase of Heme Oxygenase-1 (HO-1)
and 8-hydroxyguanosine (8-OHG) was found in AD brain as
compared with controls [50].

Despite the cause of redox imbalance still being unclear
in AD pathogenesis, many studies suggest that the alteration
in redox transition metals balance (i.e., iron, copper) is the
major cause of neurodegeneration [51–53]. In fact, iron and
copper have been found in high concentrations in AD brain.
In particular, Zn, Cu, and Fe in senile plaques rims and cores
have been found significantly elevated in AD [51]. It has
also been demonstrated that the activity of many proteins,
such as ferritin and ceruloplasmin, which are important to
regulation of metal homeostasis, shows altered expression in
AD [54]. Other studies have revealed dramatic drops in the
levels of some biometals in the AD brain, which may aid
development of senile plaques [55]. In particular, reduced
levels of intracellular Cu have been reported in cortical
neurons derived from AD transgenic mice and in the most-
affected brain region of AD patients [56]. This alteration
appears to contribute in part to AD pathogenesis. The
dysregulation of biometal homeostasis in AD is a complex
pathway, which has contributed to the development of new
therapeutic approaches to restore the neuronal functions.

The combination of all these factors could explain how the
oxidative stress is linked to the formation of amyloid plaques
and NFTs in AD.

2.2. Redox Imbalance in PD. PD is progressive neurodegen-
erative disease characterized by extrapyramidal movement
disorders that manifest as rigidity, resting tremor, and pos-
tural instability [57]. PD is also characterized by a progres-
sive loss of dopaminergic neurons in the substantia nigra,
accompanied by the accumulation of 𝛼-synuclein aggregates
in Lewy bodies [58]. Lewy bodies are composed not only of
𝛼-synuclein, but also of other proteins, such as ubiquitin and
neurofilament proteins [59].

Many evidences demonstrate that oxidative stress plays
an important role in PD pathogenesis. The substantiae nigrae
of PD subjects show increased levels of oxidized protein
lipid [60], DNA [61], and decreased level of GSH [62]. In

particular, oxidized proteins may not be adequately ubiqui-
tinated and recognized by proteasome and thus accumulate
within the neurons [63]. Moreover, DNA damage could
determine an alteration of many important genes essential
for neurons activity and functionality [64]. Increased levels
of 4-hydroxynonenal (HNE) were found in the rime of Lewy
bodies of PD [65]. HNE, activating caspase-8, caspase-9,
and caspase-3 and inducing DNA fragmentation, is able
to ultimately provoke apoptosis of dopaminergic cells [66].
HNE inhibits NF-k𝛽 pathway [67], induces PARP cleavage
[68], decrease GSH content, and inhibits complexes I and II
of the ETC, contributing to the disease progression [69–71].

Mice treated with PD toxins (i.e., 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), paraquat, and rotenone)
support the link between oxidative stress and dopaminer-
gic neuronal degeneration. In particular, MPTP causes a
depletion of dopamine (DA) levels [72] and reduction of
tyrosine hydroxylase (TH) [73]. The monoamine oxidase
B (MO B) converts MPTP in 1-methyl-4-phenylpyridinium
(MPP+), which blocks mitochondrial complex I and causes
ATP depletion and ROS increase. This is thought to be the
main cause ofMPTP-induced terminal degeneration [74–77].
Consequently, MPTP-treatedmice show an induction of glial
response and increased levels of inflammatory cytokines and
microglial activation, suggesting that the neurodegenerative
process is evolving [78].

In the last years, the discovery of genes implicated to
familial forms of PD (i.e., 𝛼-synuclein, Parkin, and DJ-1)
has allowed the identification of new mechanisms, which
highlight the importance of oxidative stress in PD patho-
genesis. For example, 𝛼-synuclein gene mutations are linked
with inherited PD and increase the tendency of the protein
to aggregate [79]. It is a natively unfolded protein that can
associate with vesicular and membranous structures and
plays a role in synaptic vesicle recycling storage. Fibrils of 𝛼-
synuclein in conjunction with DA were found in substantia
nigra, which lead to an accumulation of cytotoxic soluble
protofibrils and an increase of oxidative/nitrosative stress
[80, 81].

2.3. Redox Imbalance in ALS. ALS is a relentlessly pro-
gressive neurodegenerative disorder, in which increasing
muscle weakness leads to respiratory failure and death, which
typically develops during the sixth or seventh decade of life
[82].

Different studies show an increase of oxidative damage
to proteins in ALS postmortem tissues compared to control.
In particular, high levels of protein carbonyls have been
identified in both spinal cord [83] andmotor cortex [84] from
ALS cases. Increased 3-nitrotyrosine levels were observed in
both sporadic and SOD1 familial ALS patients [85]. Oxidative
damage to DNA, measured by levels of 8-OHG, has also
been found to be increased in cervical spinal cord from ALS
patients [86]. Immunoreactivity to the brain and endothelial
forms of nitric oxide synthase (eNOS) was also elevated
in ALS motor neurons relative to controls, suggesting that
nitration of protein-tyrosine residue is upregulated in motor
neurons of the spinal cord of ALS [87].
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Transgenic mouse models and cell culture models of ALS
based on mutant SOD1 recapitulate the oxidative damage to
protein, lipid, and DNA observed in the human disease [88].
Moreover, many studies have suggested that SOD1 mutations
could have toxic effects for three different reasons: (i) loss
of function leading to increased levels of O

2

∙−, which can
react with NO to produce ONOO− [85]; (ii) a dominant-
negative mechanism whereby the mutant SOD1 protein not
only is inactive, but also inhibits the function of normal SOD1
expressed by the normal allele [89]; or (iii) increased SOD1
activity leading to increased H

2
O
2
levels and ∙OH [89].

A new pathological feature identified in postmortem
tissue of ALS patients consists in neuronal protein deposition
of TDP-43 or TAR DNA binding protein with a molecular
mass of 43 kDa [90]. In particular, TDP-43 aggregates were
found in 97% of ALS cases whether sporadic or familial
[91, 92]. TDP-43 is a ubiquitously expressed DNA/RNA-
binding protein, which is expressed in cytoplasm and in
the nucleus where it regulates RNA splicing and microRNA
biogenesis [93–95]. It has been observed that in conditions
of oxidative stress TDP-43 is able to translocate in cytoplasm
and assemble into stress granules (SGs), which are evident
in ALS [96, 97]. SGs are large messenger ribonucleoprotein
aggregates that are implicated in the stress-mediated inhibi-
tion of mRNA and protein synthesis [98]. An altered control
of mRNA translation in stressful conditions may trigger
motor neuron degeneration at early stages of the disease.
Thus, the presence of TDP-43 in SGs leads to a loss of protein
functionality defining an altered control ofmRNA translation
in stressful conditions triggering neuron degeneration.

3. Redox-Mediated Inflammation in
Neurodegenerative Diseases

Recent studies have highlighted the correlation between
oxidative damage and neuroinflammation in neurodegener-
ative processes, with the term neuroinflammation meaning
the chronic inflammation of the CNS. It is characterized
by inflammatory molecules expression, endothelial cell acti-
vation, platelet deposition, and tissue edema. Neuroinflam-
mation plays an important role in many common neurode-
generative diseases [99]. Its accompanied by an increase of
NO and/or O

2

∙− with H
2
O
2
production [100]. Generally,

the inflammation is a protective process that protects the
cells from detrimental agents, promoting tissue repair. In
uncontrolled conditions the inflammatory process induces
inordinate cell damage as it occurs in neurodegenerative
disease. In particular, during neuroinflammation, microglia
and astrocytes produce many inflammatory genes, including
cytokines, chemokines, adhesion molecules, and proinflam-
matory transcription factors [101]. An increase of some tran-
scription factors involved in inflammation was also found,
such as NF-k𝛽, peroxisome proliferator-activated receptor
gamma (PPAR𝛾), and Sp1 in microglia cultures and AD
brain [102–104]. Thus, the inflammatory mediators secreted
by microglial and astrocytic cells contribute to neuronal
dystrophy [105]. In these conditions microglia can produce
ROS, NO, and proteolytic enzyme, enhancing the senile

plaques and NFTs formation [106]. Furthermore, as a vicious
cycle, the senile plaques induce the expression of proin-
flammatory cytokines and enzymes such as inducible NOS
(iNOS) and cyclooxygenase enzyme (COX-2) in microglia
cells, suggesting that all these factors can contribute to
neurodegeneration [107].

In the case of AD many authors speculate that senile
plaques andNFTs constitute the site of activation of a chronic
inflammatory response. In fact, an interaction between A𝛽
peptide and CR3/Mac-1 (CD11b/CD18) on microglia has
been observed. This interaction determines the activation of
phosphatidylinositol 3-kinase (PI3K), which in turn phos-
phorylates p47phox, inducing the PHOX translocation and
activation onmicroglia membrane increasing the production
of O
2

∙− and causing neuroinflammation [108, 109]. Thus the
abnormal activation of microglia disrupts nerve terminals
activity causing an alteration and a loss of synapses, which
correlates withmemory decline, leading to progression of AD
[110]. Next to this, some studies have revealed an associa-
tion between AD and mutations in different genes opening
new strategies for comprehension of pathology [111, 112].
For example, genome exome and Sanger sequencing have
revealed that heterozygous rare variants in triggering receptor
expressed on myeloid cells 2 (TREM2) are associated with a
significant increase in the risk of AD [113]. Also genome-wide
investigations have revealed many polymorphisms in the
human genome of ADpatients. In particular, polymorphisms
on clusterin (ApoJ, a potent regulator of complement induc-
tion) and CR1 (complement receptor) genes are genetically
associated with sporadic AD [114, 115]. Moreover, the single
nucleotide polymorphisms for cytokines and chemokines
genes have been associated with AD risk [116].

In PD the activation of microglia has been amply demon-
strated, suggesting an important role of neuroinflammation
in the pathophysiology of PD. Activated microglia pro-
duce O

2

∙− and NO, which in turn contribute to oxidative
and nitrosative stress in the brain [117]. Notably, activated
microglia and T lymphocytes, together with an increase of
proinflammatory mediators, have been detected in the brain
and cerebrospinal fluids of PD patients [118]. An increase of
iNOS has been also revealed in activated microglia of PD
subjects [118]. Moreover, the role of DA as being responsible
for the ROS-mediated inflammation reaction in neurons was
shown [119]. In fact, DA is stable in synaptic vesicles inside the
cell; however once DA exists it is easily metabolized by MO.
Alternatively, DA can undergo autooxidation determining
the ROS production. As a result the microglia became active
and produce proinflammatory cytokine, such as interleukin-
1 (IL-1), tumor necrosis factor alpha (TNF-𝛼) [120], and
O
2

∙− and NO [121], leading the generation of vicious cycle
that further increases dopaminergic toxicity in the substantia
nigra.

As for the other neurodegenerative diseases a character-
istic of ALS pathology is the occurrence of a neuroinflam-
mation, which activates microglia, astrocytes, and T-cells. In
particular, the autopsy studies have demonstrated amicroglia
activation and an induction of activator transcription-3
(STAT3) in ALS spinal cord microglia [122]. Moreover,
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Figure 2: Different genetic and/or environmental factors lead to ROS increase during neurodegeneration. This accumulation triggered the
activation of glia cells and the release of proinflammatory markers, stimulating thus a neuroinflammatory response. These events contribute
to neuronal damage (DNA damage, lipid peroxidation, and protein oxidation) and axon degeneration, which ultimately caused neuronal
death. In addition, virus infection can strengthen the ROS-mediated neurodegenerative signs in neurons and glia cells, producing functional
and molecular hallmarks of neurodegeneration.

an upregulation of lipopolysaccharide/Toll Like Receptor 4
(LPS/TLR4) signaling associated genes has been observed
in peripheral blood mononuclear cell (PMBCs) from ALS
patients, suggesting chronic monocytes and macrophage
activations [123]. Studies made on serum and cerebrospinal
fluid (CSF) of 20 ALS patients show an increase of MCP1
and IL-8 levels, indicating a stimulation of proinflamma-
tory cytokine cascade after microglia activation [124]. Also
increased levels of IL-17, IL-6, and LPS are found in the serum
of subjects with ALS [125]. ELISA assays have also demon-
strated an increase of IL-15 and IL-12 in serum and CSF of
21 patients with ALS, suggesting that these molecules could
be used as potential markers of immune activation in ALS
[126]. Moreover, 2D gel electrophoresis analysis highlighted
an increased activity of components of complement C3 in
serum of ALS patients with respect to controls [127]. All these
studies demonstrate the presence of an inflammatory and
immune response in subjects with ALS.

4. Viral Infections and Neurodegeneration

Asmentioned above, a common feature of neurodegenerative
disease is the chronic neuroinflammation and activation of
microglia in the brains of patients with PD, AD, and ALS.
In the last years, many studies show an association between
virus infection and neurodegenerative as another important
common feature of these disorders (Figure 2). In the second
part of this review we will provide a detailed picture of how
some virus infections can guide us to underpin mechanisms
in neurodegeneration and amplify the damage mediated by
oxidative stress.

Neuronal degeneration can be either directly or indi-
rectly affected by viral infection. Viruses can injure neurons

by direct killing, by cell lysis, and by inducing apoptosis.
Different pathogens and/or their products may directly
induce long-term degenerative effects, such as the deposit
of misfolded protein aggregates, increased levels of oxidative
stress, deficient autophagic processes, synaptopathies, and
neuronal death. Viruses, bacteria, protozoa, and unconven-
tional pathogens such as prion proteins have the ability to
invade the CNS as described by De Chiara et al. (2012) [128].
There are different routes of entry of infectious agents into
the CNS and they cause acute infections, which in some
cases may be fatal or which may progress to become chronic
illnesses [129, 130]. When the viruses enter into the nervous
system, that is, they are neurotropic, it leads to activation of
both innate and adaptive immune responses. Viral antigens
preferentially activate the TLRs 3, 7, and 8 driving innate and
adaptive immune responses and leading to neuronal damage,
which occurs through direct damage, killing, release of free
radicals, cellular activation, and inflammation, and induce
a number of encephalopathies [58]. In particular, one of
the secondary consequences of these encephalopathies can
be the Parkinsonism that is both transient and permanent
condition.

According to reviewed literature, and as discussed in
depth below, a large number of studies demonstrate that the
viruses are one of the main causes of degenerative diseases.
In particular, as emerging from the review below, a growing
interest is devoted to investigating the effects of H1N1 in PD
(Section 4.1), of HSV1 inAD (Section 4.2), and of retroviruses
in ALS (Section 4.3).

4.1. H1N1 in PD. In the last years, it has emerged that
influenza virus has been implicated as a direct and an indirect
cause of PD, although it was recently found that influenza
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can be considered as PD-like symptoms such as tremor,
particularly in the month after an infection, but not with an
increased risk of developing idiopathic PD [131].

Influenza virus is a respiratory pathogen contagious to
humans, belonging to Orthomyxoviridae family, which are
negative sense, single-stranded, segmented RNA viruses.
In particular, a viral etiology for PD is based largely on
epidemiological studies indicating a possible coincidence of
PD with influenza flu pandemics, most notably the 1918-
1919 “Spanish” influenza outbreak [132, 133]. In recent studies,
Rohn and Catlin have shown the presence of influenza A
virus within the substantia nigra pars compacta (SNpc) from
postmortem PD brain sections [134]. They also identified
colocalized influenza A and immune cells with caspase-
cleaved Beclin-1 within the SNpc, which clearly indicated
the role of neuroinflammation with influenza A virus’s
involvement in PD pathogenesis. Influenza A virus labelling
was identified within neuromelanin granules as well as
on tissue macrophages in the SNpc [134]. As mentioned
above, the PD hallmark Lewy bodies are also composed
mainly of aggregated 𝛼-synuclein. The formation of Lewy
bodies is due to accumulation of normally produced Ser-
129 phosphorylated 𝛼-synuclein [135]. It is demonstrated that
H5N1 influenza virus progresses from the peripheral nervous
system into the CNS and increases the phosphorylation and
aggregation of 𝛼-synuclein [136]. Reviewed data suggest that
influenza virus could have a role in the PD.

4.2. HSV1 in AD. Growing epidemiological and experimen-
tal evidence suggests that recurrent herpes simplex virus
type-1 (HSV-1) infection is a risk factor for AD. It belongs to
the family Herpesviridae, which is a large family of double-
stranded DNA viruses. HSV-1 is a virus that primarily infects
epithelial cells of oral and nasal mucosa [137]. The concept
of a viral role in AD, specifically of HSV-1, was first pro-
posed several decades ago [138, 139]. Several epidemiological
studies have reported the presence of the HSV-1 genome in
postmortem brain specimens from numerous AD patients,
particularly those who carry the type 4 allele of the gene that
encodes apolipoprotein E (APOE4), another potential risk
factor for AD [140, 141]. Moreover, Wozniak et al. [142] have
found the HSV-1 DNA in amyloid plaques of AD brains.

Several studies suggest that HSV-1 could be a possible
major cause of amyloid plaques and hence possible aetiologi-
cal factor in AD. Besides, genes related to HSV-1 reactivation
have been detected in the brain of patients with familial AD,
associatedwith𝛽-amyloid deposits [143].HSV-1 infection has
also been shown to promote neurotoxic A𝛽 accumulation
[144–146], tau phosphorylation [147], and cleavage [142] in
vitro. Several studies have sought anti-HSV-1 IgM as well as
IgG in serum fromADpatients, showing that the risk of AD is
increased in elderly subjects with positive titers of anti-HSV-1
IgM antibodies [148]. Genetic studies too have linked various
pathways in AD with those occurring in HSV-1 infection
[149].

The presented evidences suggest that HSV1 may have a
critical role in AD pathogenesis.

4.3. Retroviruses in ALS. Retroviruses play an important role
in the pathogenesis of ALS. In fact, several studies have

reported retroviruses to be involved in ALS [150–154]. As
found by [155], the reverse transcriptase (RT) enzyme of the
retroviruses can convert RNA into complementaryDNA.The
first demonstration of retroviral involvement in ALS dates
back to 1975 when Viola et al. [156] found RT activity in
cytoplasmic particulate fraction from two Guamanian ALS
but not in brains from two control individuals. At that time,
a growing interest was in finding the retroviral.

Other studies showed that the RT is present more fre-
quently in ALS patients’ sera compared to that of control and
the levels of the activity in ALS patients were comparable to
that in HIV-infected patients [157, 158].

ALS-like syndromes are developed in a small percentage
of persons infectedwith the human immunodeficiency virus-
1 (HIV-1) or human T-cell leukemia virus-1 (HTLV-1). HIV-
infected patients may develop neurological manifestations
that resemble classical ALS although it occurs at a younger
age and theymay showadramatic improvement following the
initiation of antiretroviral therapy. On the other hand,HTLV-
1 associated ALS-like syndrome has several features that may
distinguish it from classical ALS. However, most patients
with probable or definite ALS show no evidence of HIV-
1 or HTLV-1 infection [159]. Moreover, studies have shown
increasedHERV-K expression in both serum and brain tissue
in ALS patients [160]. Furthermore, in a recent study it has
been shown that HERV-K is activated in a subpopulation of
patients with ALS and that its envelope protein may con-
tribute to neurodegeneration [161]. These evidences suggest
that retroviruses are involved in the pathophysiology of ALS.

5. Viral Infections and Oxidative Stress in
Neurodegenerative Disease

Frequently viral infections cause changes in the redox state
in host cells [162–166]. Many viral infections can cause an
increased generation of ROS and RNS, which can be caused
by both direct effects of virus on cells and inflammatory
responses of the chronic viral host. In the presence of surplus
ROS, the pathogen-mediated proteins can induce pathologic
changes in neural tissue and lead to chronic inflammation of
the brain, as seen in classical neurodegenerative diseases.

5.1. HSV1. HSV1-1 when infecting neurons and glia cells
induce the production of proinflammatory cytokines pro-
duced by microglia and infiltrating macrophages, as well
as the production of chemokines and antiviral cytokines
[167, 168]. Several studies have shown that during HSV-1
infection into the cell a depletion of GSH, the production
of ROS, the induction of mitochondrial DNA damage, and
endoplasmatic reticulum stress with consequent alteration of
the intracellular redox state towards a prooxidant state occur
[166, 169–171].

More data indicate that virus infection induced oxidative
damage in the brain. In particular, Schachtele et al. (2010)
[172] have shown that HSV-1 induced neural cell oxidative
tissue damage and cytotoxicity, which are mediated by
microglial cell through a TLR2-dependent mechanism. In
other studies increases in ROS levels, lipid peroxidation, and
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protein nitrosylation were reported when there is HSV-1
infection [167, 173, 174]. Furthermore, in the recent study San-
tana et al. (2013) have shown that oxidative stress enhances
the accumulation of intracellular A𝛽 and the inhibition of A𝛽
secretion induced by HSV-1 infection [175]. Several studies
suggest that HSV-1 induced oxidative stress in neuronal cells
may trigger 𝛽- and 𝛾-secretase activation and, consequently,
APP processing and A𝛽 formation. These findings demon-
strate that HSV-1 infection of neuronal cells can generate
multiple APP fragments with well-documented neurotoxic
potentials [147].

5.2. Influenza Virus. Influenza virus uses host cell structures
and metabolic pathways for its life-cycle. In particular,
intracellular redox state changes, for example, GSH deple-
tion or ROS or RNS increase, have been detected during
influenza virus infection [165]. On the other hand, it has been
recently demonstrated that NOX4 enzyme, the main source
of ROS production during influenza virus infection, regulates
specific steps of virus life-cycle [34]. Virus-induced GSH
decrease is pivotal for viral replication by allowing the folding
and maturation of viral hemagglutinin [176] and activating
cellular kinases involved in nucleocytoplasmic traffic of viral
proteins [177].

On the basis of these evidences it can be assumed that the
infection of influenza virus amplifies the effects of oxidative
stress, which contribute to neuronal damage.

5.3. Retroviruses. Garaci et al. [178] demonstrated that in
vitroHIV infection significantly decreases theGSHcontent of
humanmacrophages. In addition, recentwork has shown that
HIV-1 induces ROS production in astrocytes and microglia
[179, 180]. Dasuri et al. [180] have shown that oxidative stress
is involved in the pathology of HIV-associated neurocogni-
tive disorders. HIV-infected monocytes and T-cell, to enter
in the cell, use the glycoprotein gp120. The viral protein
gp120 can directly induce apoptosis in neurons and increase
oxidative stress through GSH and lipid peroxidation [179].

The increases of ROS plays a role in viral pathogenesis
probably because the increase of oxidative stress, generated
when viruses infect the aged neuronal cells, may contribute
to increasing the production of misfolded proteins and hence
to the pathogenesis of neurodegenerative diseases.

Data discussed in this review suggest that viruses can
be causative agents or, at least, cofactors of some neu-
rodegenerative diseases. Therefore, much attention should
be paid to infectious and, especially, viral agents among
the environmental factors contributing to neurodegenerative
diseases.

6. Conclusions

Although numerous studies have been made to understand
the genetic/molecular mechanisms that underly the different
neurodegenerative diseases, the comprehension of how redox
imbalance is implicated in viral infection during neuronal
damage is still unclear. In particular, understanding whether
the redox imbalance is the cause or the effect of an increased

propensity of brain cells to infection would be of great
importance to develop new therapeutic strategies to target
redox/inflammatory markers in brain inflammation and
neurodegenerative disorders.
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