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Background: The management of ground glass nodules (GGNs) remains a distinctive

challenge. This study is aimed at comparing the predictive growth trends of radiomic

features against current clinical features for the evaluation of GGNs.

Methods: A total of 110 GGNs in 85 patients were included in this retrospective study,

in which follow up occurred over a span ≥2 years. A total of 396 radiomic features were

manually segmented by radiologists and quantitatively analyzed using an Analysis Kit

software. After feature selection, three models were developed to predict the growth

of GGNs. The performance of all three models was evaluated by a receiver operating

characteristic (ROC) curve. The best performing model was also assessed by calibration

and clinical utility.

Results: After using a stepwise multivariate logistic regression analysis and

dimensionality reduction, the diameter and five specific radiomic features were included

in the clinical model and the radiomic model. The rad-score [odds ratio (OR)= 5.130; P<

0.01] and diameter (OR= 1.087; P< 0.05) were both considered as predictive indicators

for the growth of GGNs. Meanwhile, the area under the ROC curve of the combined

model reached 0.801. The high degree of fitting and favorable clinical utility was detected

using the calibration curve with the Hosmer-Lemeshow test and the decision curve

analysis was utilized for the nomogram.

Conclusions: A combined model using the current clinical features alongside the

radiomic features can serve as a powerful tool to assist clinicians in guiding the

management of GGNs.

Keywords: machine learning, growth, solitary pulmonary nodule, tomography, X-ray computed, nomograms

INTRODUCTION

The detection rate of pulmonary nodules has been significantly increased since the introduction
of low dose CT screening, especially for the ground glass nodule (GGN) (1, 2). The GGN, which
includes pure and part-solid GGN, is defined as a hazy region of increased opacity on lung windows
without obscurity to bronchial and vascular structures (3). The pathophysiology of GGN is based
on the accumulation of fluid, cells or amorphous material in the alveoli itself, or thickening of
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the alveolar walls and septal interstitium (4). The GGN is
observed in many lesions, such as malignant tumors and benign
lesions which include inflammatory lesions, interstitial lung
disease, and so on (5–7). In 2017, the Fleischner society released
new guidelines for GGN management, with more aggressive
guidelines toward follow up (8). Although radiologists were
able to observe changes of GGN in follow-up CT examinations,
most GGNs progress at a slow rate, particularly persistent GGN
(9). Therefore, long windows of follow-up are often required.
This is a source of great anxiety for patients and their families.
Furthermore, the increased duration of follow up often increases
the rate of no-shows. Therefore, several studies have sought
to provide a greater diagnostic indicator for the growth of
GGNs through the analysis of traditional imaging features,
such as diameter and CT attenuation (10–13). For example,
Matsuguma et al. showed there were significant differences in
diameter between rapidly growing and non-growing pure GGNs
(12). However, distinguishing the growing GGNs from static
GGNs using traditional quantitative CT imaging remains a
distinctive challenge.

With the advancements in imaging technology, many
radiologists attach importance to these parameters, such as the
Gray-Level Co-occurrence Matrix (GLCM) and the Gray Level
Run-length Matrix (RLM) (14). While there have been many
radiomic pulmonary studies in recent years, there have been no
studies comparing and contrasting radiomic features with clinical
features to predict the growth of GGNs (15, 16).

Therefore, the purpose of the current study is to compare
the performance of clinical signatures and radiomic features in
predicting the growth of GGNs and to build a clinical-radiomic
nomogram to accurately predict the growth of GGNs.

MATERIALS AND METHODS

Patients
This retrospective study was approved by our institutional review
board and informed consent requirement was waived.

Between September 2012 and December 2018, a total of 85
patients with 110 GGNs were involved in this study which
included 68 patients with a single GGN, 11 patients with two
GGNs, 5 patients with three GGNs, and 1 patient with five GGNs.
The inclusion criteria were as follows: (1) detected pulmonary
nodules showed GGNs on non-enhanced CT thin-sectioned
images; (2) the GGN diameter between 5 and 30mm in the initial
CT image; (3) there were more than two follow-up, thin-section
CT examinations and the follow-up interval was longer than
2 years.

Abbreviations: AIC, akaike information criterion; AK, Analysis Kit; AUC, area

under the curve; CI, confidence interval; CT, computed tomography; DCA,

decision curve analysis; GGNs, ground glass nodules; GLCM, gray-level co-

occurrence matrix; H-L, Hosmer-Lemeshow; LASSO, least absolute shrinkage and

selection operator; LLL, left lower lobe; LUL, left upper lobe; MRMR, minimum

redundancy maximum relevance; NA, not available; NPV, negative-predictive

value; OR, odds ratio; PPV, positive-predictive value; RLL, right lower lobe; RLM,

gray level run-length matrix; RML, right middle lobe; ROC, receiver operating

characteristic; ROI, regions of interest; RUL, right upper lobe.

The exclusion criteria were as follows: (1) biopsy,
radiotherapy, chemotherapy or surgical resection during
any follow-up; (2) severe respiratory artifacts on CT images; (3)
a history of lung surgery; (4) the first or final CT examinations
were low dose CT examinations.

The patients were randomly divided into a training cohort and
a validation cohort. A flow chart of patients who were selected is
presented in Figure 1.

CT Examination Acquisition
All images were obtained with a Siemens Somatom sensation, 64
slice, CT scanner (Siemens Healthcare). The imaging parameters
were as follows: tube voltage, 120 kVp; automatic tube current
modulation; collimation, 0.6 mm∗64; matrix, 512∗512; rotation
time, 0.37 s, reconstruction slice thickness, 0.75mm with a
0.5mm interval, reconstruction kernel, B31f.

Nodule Selection and Growth Definition
The GGNs were assessed by two radiologists (one with 11 years of
experience and another with 4 years of experience in pulmonary
radiology) based on thin-section unenhanced CT images. All
GGNs were confirmed by two radiologists with consensus
agreement. If the two radiologists cannot reach a consensus, the
GGNs were assessed by a third-party professor with 28 years of
experience in pulmonary radiology. The diameter of GGN was
defined as the maximum length of on the transverse lung window
in thin-section CT images. The solid diameter was defined as the
maximum size of the solid portion of GGNs on the transverse
lung window in thin-section CT images. All measurements in
the initial and final CT images were constructed from transverse
sections by two radiologists to reach a consensus. To eliminate
measuring error, growth was defined as an increase in diameter
or the size of the solid portion ≥2mm, or an emerging solid
portion (17).

Region of Interest Segmentation and
Feature Extraction
All regions of interest (ROI) were manually segmentation by a
radiologist with 4 years of experience in pulmonary radiology on
initial thin-section CT images by using ITK-SNAP 3.6.0 (www.
itksnap.org), and further verified by another radiologist with 11
years of experience in pulmonary radiology. For situations of
a discrepancy between the two radiologists, the segmentation
patterns were evaluated by a professor of radiology with 28
years of experience in pulmonary radiology. Normal structures
within or around the GGNs, such as vessels and pleura, were
not included in ROIs. A total of 396 radiomic features were
quantitatively extracted using Analysis Kit software (AK, GE
Healthcare). These features included single-order (histograms
and morphologic features) alongside higher-order parameters
(Supplementary Descriptions). The higher-order parameters
were described as “texture” features, such as GLCM and RLM.
Texture features described statistical interrelationships between
voxels with similar (or dissimilar) contrast values. The values
of each feature for all GGNs were normalized with Z-scores
((x – µ)/σ) for the purpose of removing the unit limits of
each feature before being applied to a machine learning model
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FIGURE 1 | Flow diagram of GGN selection.

for classification. For the model parameters, x represents the
value of the feature, µ indicates the average feature values in
all GGNs within the cohort, and σ represents the corresponding
standard deviation.

Radiomic Feature Selection and
Construction of Rad-Score
The minimum Redundancy Maximum Relevance (mRMR) and
the least absolute shrinkage and selection operator (LASSO)
algorithm were used to select radiomic features (18). Initially,
mRMR was performed to eliminate redundant and irrelevant
features. The top 20 features were selected, and the optimized
subset of features was chosen by LASSO to construct the final
model. After the number of features was determined, the most
predictive feature subset was chosen and the corresponding
coefficients were calculated. Rad-score was composed by
summing the chosen features, weighted by their coefficients, and
comparing it between the training group and test group. The
performance of the model was then evaluated by ROC analysis.

Establishment of the Clinical and
Combined Model
In the establishment of the clinical model, a univariate logistic
regression was used to evaluate the clinicopathological factors.
Factors with a P-value <0.05 were considered in the stepwise
multivariate logistic regression analysis. Meanwhile, the Akaike
information criterion (AIC) was used to determine a stopping
rule. A combination of the clinical signatures from the clinical
model and rad-score were used to develop the combined model

TABLE 1 | Characteristics of the GGNs in the training and validation group.

Variable Sample Training

cohort

Validation cohort P-value

Gender, No. (%) 1.000

Male 32 23 (29.5%) 9 (28.1%)

Female 78 55 (70.5%) 23 (71.9%)

Location, No. (%) 0.163

RUL 56 34 (43.6%) 22 (68.8%)

RML 7 6 (7.7%) 1 (3.1%)

RLL 13 10 (12.8%) 3 (9.4%)

LUL 23 18 (23.1%) 5 (15.6%)

LLL 11 10 (12.8%) 1 (3.1%)

Type, No. (%) 0.863

Pure GGN 83 58 (74.4%) 25 (78.1%)

Part-solid GGN 27 20 (25.6%) 7 (21.9%)

Age 110 56.8 ± 11.9 59.2 ± 16.2 0.403

Diameter 110 8.1 ± 3.8 8.5 ± 2.9 0.580

Soliddiameter 110 0.9 ± 1.9 1.0 ± 2.7 0.846

MeanCT 110 −700.2 ±

84.7

−706.2 ± 91.2 0.739

StdCT 110 103.5 ± 35.0 96.5 ± 39.9 0.366

Volume 110 418.0 ±

539.1

431.1 ± 335.3 0.898

P-value is derived from statistical analyses between each of variables and two cohort.

Continuous variables are expressed as the mean ± standard deviation and categorical

variables are expressed as the number. A chi-square test or Fisher’s exact test was

used for the categorical variable. A student’s t-test, Mann-Whitney U-test or Kruskal-

Wallis H-test was used for the continuous variable. All statistical analyses for the present

study were performed with R (version 3.5.1). A two-tailed p-value <0.05 indicated

statistical significance.

GGN, ground glass nodule; LLL, left lower lobe; LUL, left upper lobe; RLL, right lower

lobe; RML, right middle lobe; RUL, right upper lobe.
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with multivariate logistic regression. Afterward a test process
was implemented.

Model Comparison and Nomogram
Establishment
The predictive accuracy of the three models was assessed by the
area under the curve (AUC) in both the training and validation
group. The AIC of the clinical model was applied to identify
the most appropriate clinical model. The probability of growth
for each GGN was analyzed by logistic regression, and GGNs
were grouped into growth and non-growth cohorts based on the
highest Youden index. According to the actual growth results, the
accuracy, specificity, sensitivity, negative-predictive value (NPV)
and positive-predictive value (PPV) for the three models were
calculated in the training and test group. Then, the nomogram
of the most appropriate model was established. According to the
reference of Iasonos et al. and Stephenson et al., the usefulness
of a nomogram is that it maps the predicted probabilities into
points on a scale from 0 to 100 in a picture and the total points
accumulated by the various factors correspond to the predicted
probability for a patient (19, 20). Meanwhile, the calibration
curves measured the consistency between the actual growth
probability and the predicted growth probability to evaluate the
running characteristic of the nomogram. The degree of fit of the

prediction models was also evaluated by the Hosmer-Lemeshow
(H-L) test.

Development of Decision Curve Analysis
(DCA)
To assess the added value of radiomic features to clinical in the
prediction of the growth of GGNs, three DCA was performed
based on clinical diagnosis, radiomics, and the combined model.
The clinical application of said model could be verified by
quantifying the net benefits for a range of threshold probabilities.

Statistical Analysis
R statistical software (version 3.5.1) was used for all statistical
tests. A chi-square test or Fisher’s exact test was used for the
categorical variable. A student’s t-test, Mann-Whitney U-test or
Kruskal-Wallis H-test was used for the continuous variable. The
“mRMRe” package was used to perform the mRMR model, and
the “glmnet” package was used to conduct the LASSO model.
The “pROC” package was used to plot the ROC curves and
the “rms” package was used to build nomogram and perform
calibration curves. The ROC curve analysis was performed using
the “ROC.TEST” packages. Meanwhiles, the “generalhoslem”
package and the “dca.R.” package were used to conduct the H-L
test and DCA, respectively. A two-sided P < 0.05 was considered
statistically significant.

TABLE 2 | Characteristics of the non-growth and growth cohorts.

Characteristics Training set (n = 78) Validation set (n = 32)

Non-growth (n = 52) Growth (n = 26) P Non-growth (n = 22) Growth (n = 10) P

Gender

Male 14 (26.9%) 9 (34.6%) 0.661 6 (27.3%) 3 (30.0%) 1.000

Female 38 (73.1%) 17 (65.4%) 16 (72.7%) 7 (70.0%)

Age (years) 56.8 ± 11.2 57.0 ± 13.3 0.947 55.5 ± 17.3 67.3 ± 10.0 0.044

Location 0.151 0.565

RUL 27 (51.9%) 7 (26.9%) 15 (68.2%) 7 (70.0%)

RML 2 (3.8%) 4 (15.4%) 1 (4.5%) 0 (0.0%)

RLL 7 (13.5%) 3 (11.5%) 2 (9.1%) 1 (10.0%)

LUL 10 (19.2%) 8 (30.8%) 4 (18.2%) 1 (10.0%)

LLL 6 (11.5%) 4 (15.4%) 0 (0.00%) 1 (10.0%)

Nodule type 0.035 0.033

Pure GGN 43 (82.7%) 15 (57.7%) 20 (90.9%) 5 (50.0%)

Part-solid GGN 9 (17.3%) 11 (42.3%) 2 (9.1%) 5 (50.0%)

Diameter 6.8 ± 1.7 10.7 ± 5.3 <0.001 7.9 ± 2.1 9.9 ± 3.9 0.063

Solid diameter 0.5 ± 1.1 1.8 ± 2.7 0.002 0.3 ± 0.9 2.6 ± 4.4 0.015

Mean CT −710.3 ± 82.1 −680.0 ± 88.0 0.133 −710.5 ± 93.1 −696.9 ± 90.9 0.701

StdCT 98.0 ± 30.8 114.4 ± 40.7 0.046 89.0 ± 32.3 113.1 ± 50.9 0.103

Volume 248.3 ± 252.2 757.3 ± 765.3 <0.001 337.5 ± 284.7 637.1 ± 360.1 0.011

P-value is derived from statistical analyses between each of variables and two cohort.

Continuous variables are expressed as the mean ± standard deviation and categorical variables are expressed as the number. A chi-square test or Fisher’s exact test was used for the

categorical variable. A student’s t-test, Mann-Whitney U-test or Kruskal-Wallis H-test was used for the continuous variable. All statistical analyses for the present study were performed

with R (version 3.5.1). A two-tailed p-value <0.05 indicated statistical significance.

GGN, ground glass nodule; LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe.
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RESULTS

Clinical Characteristics and Development
of the Clinical Model
The baseline of GGNs is shown in Tables 1, 2. There were
no significant differences between the training and validation
cohorts (Table 1). The difference in clinical characteristics
between non-growth group and growth group was shown in
Table 2. The univariate logistic regression analysis demonstrated
the type, diameter, solid-diameter, and volume as risk signatures
for the growth of GGNs. However, only the diameter was still
considered as a viable predictive indicator in the clinical model
after using the stepwise multivariate logistic regression analysis
as shown in Table 3.

Features Selection and Construction of
Model
By using the mRMR method, 20 features were retained.
Then, five features after regression by the LASSO model.
These features were presented in the rad-score and were
calculated by using the following formula: rad-score =

0.088∗RunLengthNonuniformity_AllDirection_offset7_SD-
0.367∗SurfaceVolumeRatio-0.214∗LongRunLowGreyLevel
Emphasis_angle0_offset1+0.03∗ShortRunEmphasis_All
Direction_offset1_SD+0.227∗VolumeCC-0.753. As seen in
Figure 2, rad-score was significantly different between the
growth and non-growth groups in both the primary and test
cohort (P < 0.01) when using the Wilcoxon rank-sum test. The
rad-score [odds ratio (OR) = 5.130; 95%CI: 0.948–37.835; P <

0.01] and diameter (OR = 1.087; 95%CI: 0.785–1.564; P < 0.05)
were both considered as predictive indicators for the growth of
GGNs by using the multivariate logistic regression analysis as
seen in Table 4. In the combined model, the rad-score was the
key predictive indicator of the growth of GGNs.

Model Comparison and Construction of
the Nomogram
For the training group, the AUC of the combined model, the
radiomic model, and the clinical model were 0.801, 0.803, and
0.741, respectively. For the validation cohort, the AUC of the
combined model, the radiomic model, and the clinical model
were 0.782, 0.791, and 0.686, respectively. There were significant
differences between the ROC of the combined model and clinical
model (Z = 1.987, P = 0.047). No significant differences were
found between the ROC of the combined model and radiomics
model (Z = −0.490, P = 0.624). Meanwhile, the combined
model also showed the greatest accuracy (accuracy: 80.8%;
sensitivity: 86.7%; specificity: 79.4%; PPV: 50.0%; NPV: 96.2%)
in the prediction of the growth of GGNs (Table 5). Therefore,
the nomogram was generated based on the combined model
(Figure 3). Compared to the diameter, the rad-score made up a
high proportion of the nomogram.

As the calibration plots illustrates, there is a high degree
of consistency between actual observation and the combined
model in both the training and the validation cohort (Figure 3).
Meanwhile, the results of the H-L test were non-significant

TABLE 3 | Stepwise multivariate logistic regression analysis.

Variable AIC

Type + Diameter + Solid diameter + StdCT + Volume 91.078

Type + Diameter + Solid diameter + StdCT 89.103

Diameter + Solid diameter + StdCT 87.122

Diameter + StdCT 85.131

Diameter 83.696

AIC, Akaike information criterion.

FIGURE 2 | Feature selection and the performance of rad-score and three

models. (A) The least absolute shrinkage and selection operator (LASSO)

regression was used to choose the features to construct the final model. (B,C)

The rad-score from non-growth (class 0) and growth (class 1) on the training

group (B) and test group (C) were compared, respectively. (D,E) Receiver

operating characteristic (ROC) curve for predicting the growth of GGNs in the

training group (D) and test group (E).
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TABLE 4 | Risk factors for the growth of GGNs.

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) P-value OR (95% CI) P-value

Gender 0.696 (0.253–1.957) 0.483 NA NA

Age 1.001 (0.962–1.043) 0.946 NA NA

Location 1.279 (0.940–1.758) 0.121 NA NA

Type 3.504 (1.225–10.377) 0.020 NA NA

Diameter 1.427 (1.189–1.832) 0.001 1.087 (0.785–1.564) 0.047

Solid diameter 1.505 (1.137–2.107) 0.009 NA NA

Mean CT 1.004 (0.999–1.010) 0.141 NA NA

StdCT 1.014 (1.000–1.029) 0.055 NA NA

Volume 1.003 (1.001–1.005) 0.006 NA NA

Rad-score 7.438 (2.866–26.466) <0.001 5.130 (0.948–37.835) 0.001

CI, confidence interval; GGN, ground glass nodule; NA, not available; OR, odds ratio.

TABLE 5 | Accuracy and predictive value between three models.

AUC 95% CI Sensitivity Specificity Accuracy PPV NPV

TRAINING COHORT

Clinical model 0.741 0.617–0.866 0.857 0.781 0.795 0.462 0.962

Radiomics model 0.803 0.700–0.905 0.808 0.654 0.756 0.824 0.630

Combined model 0.801 0.698–0.904 0.867 0.794 0.808 0.500 0.962

VALIDATION COHORT

Clinical model 0.686 0.475–0.897 0.500 0.750 0.688 0.400 0.818

Radiomics model 0.791 0.635–0.947 0.636 0.900 0.719 0.933 0.529

Combined model 0.782 0.620–0.944 0.533 0.882 0.719 0.800 0.682

AUC, area under the curve; CI, confidence interval; NPV, negative-predictive value; PPV, positive-predictive value.

statistics in the training group (P = 0.6305) and test group (P
= 0.6698), which represented a good fitting model.

Clinical Use of DCA
The DCA based on three models was shown in Figure 3.
However, the DCA based on the radiomic model showed a
greater benefit in the prediction of GGN growth in the 10–
60% threshold probabilities as opposed to the clinical model. In
essence, the diagnostic utility of the rad-score surpassed that of
the clinical model within this threshold range. Combining the
clinical features and rad-score allowed for a DCA similar to that
of the radiomic model.

DISCUSSION

In this study, the predictive value of radiomic features was
analyzed to determine their utility in predicting the growth of
GGNs. For the combined model, an improvement in diagnostic
utility was also evident through the rad-score for predicting the
growth of GGNs. The combined model showed the performance
with an AUC of 0.801. Then, the results of DCA showed that the
combined model and the radiomic model demonstrated greater

performance over the clinical model in predicting the growth of
GGNs (Figure 3).

Before this study, the majority of investigations used
conventional CT features to predict the growth of GGNs.
Parameters, such as the diameter, CT attenuation, volume, and
shape were commonly used (21, 22). For example, Masaya
Tamura et al. retrospectively analyzed the potential value of
conventional CT features including diameter, and mean CT
attenuation in the prediction of the growth of GGNs (22).
Their result showed the mean CT attenuation (OR = 7.572;
P = 0.0023) was the best predictor of the growth of GGNs
by using multivariate analysis. However, in our study, the
diameter of GGNs was found to be significant indicator of
GGN growth in the clinical model after using a stepwise
multivariate logistic regression analysis. A potential explanation
is that conventional CT features require visual inspection and
measurement on a macro scale. In essence, features less than
the resolution of the equipment are missed. CT radiomic
features offer the advantage of extracting high-throughput
data from CT images (23). Therefore, many studies using
radiomic methods to analyze GGNs have been reported (24–
26). A retrospective study by Li Fan et al. analyzed the
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FIGURE 3 | The evaluation of the degree of fitting for the combined model and comparison of clinical utility of three models. (A) The combined nomogram based on

clinical factors and rad-score for predicting the growth of GGNs. (B,C) Calibration curves for prediction of the growth of GGNs based on the combined model in two

cohorts. The X-axis represents the predicted probability of GGN growth based on the combined model and the Y-axis is the actual probability for the growth of GGNs.

(D) The X-axis represents high-risk threshold and the Y-axis represents net benefit. The green line represents the clinical model. The blue and red line, respectively

represent the radiomic model and the combined model. The black line represents a hypothetical GGN growth. The yellow line a non-growing GGN.

value of radiomic features as a potential biomarker for the
distinction between pre-invasive lesions and invasive lung
adenocarcinoma appearing as GGNs (25). A separate study by
Q. Sun et al. sought to investigate the relationship between
CT texture features and the growth trends of GGNs (27).

Features quantitatively extracted from 89 GGNs including the
mean value, uniformity, entropy, and energy, were used in
their analysis. Their results showed that there was a significant
relationship between uniformity and volume doubling time for
pure GGNs (P = 0.022). In our study, the radiomic model were
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compared alongside the clinical and combined model for the
evaluation of GGNs. The SurfaceVolumeRatio and VolumeCC
were considered key parameters for the accuracy of the proposed
model according to its corresponding coefficients. Specifically,
the SurfaceVolumeRatio was defined as the surface area of lesions
in square millimeters divided by the volume of lesions in cubic
centimeters using AK. The SurfaceVolumeRatio was inversely
related to the rad-score using corresponding coefficients,
which suggested that the value of SurfaceVolumeRatio may
be large in non-growth GGNs. According to the general
pathophysiology, the SurfaceVolumeRatio is relatively small in
irregular GGNwhichmay indicate heterogeneity andmalignancy
(28). Therefore, the SurfaceVolumeRatio is inversely related
to the degree of malignancy, further confirming the findings
made herein. According to definitions of these radiomic features
(Supplementary Descriptions), the RunLengthNonuniformity,
LongRunLowGreyLevelEmphasis, and ShortRunEmphasis also
reflect the heterogeneity of lesions. The definition of VolumeCC
was set as the volume of GGNs in cubic centimeters using
AK. Based on the corresponding coefficients, the value of
VolumeCC was positively correlated with the rad-score in our
study, suggesting that the value of VolumeCC may be larger in
the growth group. Results by Jacob Scharcanski et al. indicated
that the growth pattern of pulmonary nodules is exponential (29).
Therefore, GGNs with large volumes will have a faster growth
rate over smaller nodules. These findings are in line with those
obtained herein. Additionally, the mRMR method was used to
select radiomic features, which can then evaluate the correlation
between the radiomic features and results and the correlation
between different radiomic features (30). The aim was to select
the features most relevant to the results and remove redundant
features. In the current study, the top 20 features selected from
396 total features were used in the mRMR model. By doing so,
the accuracy of feature selection was greatly increased. Once the
nomogram was developed, a calibration curve and H-L test were
performed to evaluate the predictive model (31). The results of
both studies suggested that the combined model showed a good
correlation with the actual data.

Despite the findings presented herein, several limitations are
of note. Firstly, the design of the retrospective study meant that
sample sizes were small as a result of the strict inclusion criteria.
There was also a lack of external validation as data was gathered
from a single institution. Secondly, the growth of GGNs was
only measured in two dimensions. Yet, a volume change may
better reflect the growth of GGNs as their growth can often be
in asymmetric axis (32). Several studies have also investigated
the use of volume double time and mass double time to reflect
the growth rate of GGNs (33, 34). Yet, current controversy
exists as to the best method to measure the natural history of
GGNs. The use of manual segmentation in the current study
also predisposes results to observer bias. Furthermore, clinical
confounding variables, such as patients’ social and family history
were not included in this analysis, as information regarding
such variables is insufficient in the current long-term study.
Specifically, the smoking history of patients was not elicited,
despite smoking history is a potential confounding factor in the
growth of GGNs (35–37). Finally, pathological data from GGNs

were not obtained, meaning that one cannot infer as to the
relationship between the results presented and the types of GGNs
with their respective growth trends.

In conclusion, this study has developed and compared three
models for predicting the growth of GGNs; the current clinical
model, the radiomic model and a combination of the two. The
results suggested that the radiomic model and the combined
model showed increased utility in predicting the growth of
GGNs as opposed to the clinical model. The nomogram studies
conducted herein suggested the combined model as offering
the greatest diagnostic value. Therefore, this study indicates the
utility and versatility of the combined model in guiding the
management of GGNs.
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