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Abstract: In order to reduce the cost of manufacturing and service for the Cloud 3D printing
(C3DP) manufacturing grid, to solve the problem of resources optimization deployment for no-need
preference under circumstance of cloud manufacturing, consider the interests of enterprises which
need Cloud 3D printing resources and cloud platform operators, together with QoS and flexibility of
both sides in the process of Cloud 3D printing resources configuration service, a task-service network
node matching method based on Multi-Objective optimization model in dynamic hyper-network
environment is built for resource allocation. This model represents interests of the above-mentioned
two parties. In addition, the model examples are solved by modifying Mathematical algorithm of
Node Matching and Evolutionary Solutions. Results prove that the model and the algorithm are
feasible, effective and stable.

Keywords: cloud manufacturing (CMfg); Cloud 3D printing (C3DP) device resources; complex
network; manufacturing resource services; Service-oriented manufacturing (SOM); task-service

1. Introduction

In the socialization process of Advanced manufacturing systems (AMSs), the appli-
cations of the Internet of Things (IoT), big data and cloud technologies in manufacturing
play increasingly important roles [1]. With regard to these concepts and techniques, pro-
posed Service-oriented manufacturing (SOM) systems (e.g., Cloud manufacturing (CMfg)
and cloud-based design and manufacturing) have attracted increasing attention from re-
searchers [2]. In recent years, with the development of 3D printing (3DP) technologies, a
variety of types of 3D printers have been developed and applied in practical production,
research activities, and in bio-medicine.

In relation to manufacturing capability services, essential differences exist between
Cloud 3D printing services (C3DPSs) and traditional resource services that require the
participation of people [3]. Potential ways through which to allocate optimal services for
random arriving tasks requires further study, especially so considering the dynamic events
and uncertainty of the CMfg environment [4]. The dynamic task scheduling problems in
different manufacturing systems have been studied for years [5]. Typical methods include
the agent-based approach [6,7], heuristic-based approach [8], real-time process information
method [9], work flow-based method and pheromone based approach [10]. The manu-
facturing capability service of C3DPS has similar characteristics to human behavior [11].
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There are various logical relationships among their manufacturing capability services.
Therefore, these relationships are not unique but rather coexistence as various types of
relationships [12]. Social networks mainly refer to networks that are composed of complex
connections between social individuals and individuals. According to the related theory of
a social network, the manufacturing capability service in a C3DPS service platform is built
into an online social network that relies on these complex relationships [13].

C3DPS involve many industries, knowledge and data scales, although they experience
problems related to understanding ambiguity and non-standard terminology in the natural
language description [14]. At present, the format of the exchange between information
from those services and the order task information with Cloud 3D printing (C3DP) is not
uniform, which is of detriment to the efficient processing of order task and service matching
in the C3DPS platform [15]. To resolve the ambiguity between those services’ and order
tasks’ information, complex and heterogeneous resources are required along with unified
description and modeling.

Therefore, based on the cloud manufacturing paradigm, this study focuses on the task-
service network node matching method based on the Multi-Objective optimization model
in a dynamic hyper-network environment. According to the matching constraints (The
similarity of adjacency matrix) and the objective variables (The proximity and criticality of
nodes), a Multi-Objective optimization problem of network node matching is proposed,
and solved using node matching by the evolutionary algorithm. Based on this constraint,
it is proposed that, via a mathematical model of node matching and evolutionary solutions,
the genetic algorithm can solve its multiple-objective optimization problem. Thus, the
problem of C3DPS node matching in a task-service network transforms a multiple-objective
optimization problem into a single optimization problem.

2. Related Work

As a new innovation, the Cloud 3D printing service (C3DPS),a new method based
on Ubiquitous Network, Data-driven, Shared services, Cross-border integration and Mass
innovation, can support the people-centered management of distributed Cloud 3D printing
manufacturing resources and on-demand services based on Interconnected Personalized
resources and a Flexible service. Cloud 3D printing service (C3DPS) search and matching
aims to match and schedule the manufacturing tasks and service resources through the
C3DPS platform with various service matching algorithms according to the user’s demand
description of the target service. In the process of cloud service search and matching,
service supply and demand matching should fully consider the various constraints of
user demand diversity and the potential users’ preferences (including product category,
processing technology, product material, layer thickness accuracy and delivery period, etc.).

At present, search and matching algorithms are mainly divided into three categories:
topological matching, semantic matching and geometric matching [16]. The topological
matching algorithm is a measurement of the topological relationships of entities with the
same name. The semantic matching algorithm measures the semantic similarity between
the reference target and the source target. The geometric matching algorithm detects the
geometric similarity between the reference target and the source target [17].

Under the cloud manufacturing environment, an extensive number of 3D printing
resources already exist (such as Hard/Soft resources such as 3D printing equipment re-
sources, computing resources, software and data) as is the case for the dynamic information
of order task (such as status information, quality information). However, the traditional
search and matching method does not meet the user’s requirements in terms of efficiency
and accuracy [18]. The supply-demand matching method of C3DPS, based on the task-
service network, is a new method that combines the advantages of a complex network
model, semantic similarity, and topological matching methods [19,20]. This method can
realize the Multi-level matching in the matching algorithm library according to the service
demand [21]. Its algorithm supports the dynamic changes of the state, quality, function
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and the task process of services, and also supports the matching of order tasks between
network nodes.

To summarize, we propose a framework of C3DPS supply-demand matching, based on
task-service network according to the operation characteristics and their resource matching
requirements, which matches the nodes of Cloud 3D printing service network. Combining
the theories of semantic matching and topological matching, the matching method and its
implementation algorithm are performed.

3. The Supply-Demand Matching Framework for C3DPS Based on
Task-Service Network

In the process of Supply-demand matching and scheduling, customer needs constantly
change. Specifically, for the dynamic “supply”, C3DPS are dynamic published, and the
QoS between services also presents a dynamic evolution during the execution process. For
the dynamic “demands”, the decomposition and execution of order tasks are dynamic,
and the relationship between functional requirements and atomic tasks also dynamically
evolves [22]. Therefore, a C3DPS supply-demand matching model based on the task-service
network can effectively reflect the above dynamic changes in a cloud environment, achieve
supply-demand matching, and optimize scheduling.

3.1. The Characteristics of Supply-Demand Matching of C3DPS

C3DPS Supply-demand matching refers to a virtual resource process retrieval of search
and matching tools and of algorithms in the C3DPS platform, according to personalized
service needs, so as to obtain the optimal solution of C3DPS resources and capabilities
and meet the requirements of order tasks [23]. Compared with the service matching of the
semantic web, the C3DPS search and matching tools have the following characteristics:

1. A wide-area distribution of C3DPS

Compared with the traditional distributed network manufacturing model, the C3DPS
model has better integration, involving both soft resources and hard resources. The soft
resources include software resources, data resources, computing resources, knowledge
resources, human resources (such as designers, operators, experts, etc.), users’ information
resources, service resources (such as consulting services, maintenance services, training
services, etc.), logistics resources (such as warehouses), reverse engineering capability re-
sources, 3D modeling capability resources, process design capability resources, simulation
analysis capability resources and other resources [24]. Hard resources refer to material
resources, such as transportation tools, computer tools, and other such resources.

However, the traditional semantic Web service matching method is a retrieval tool for
manufacturing resources, and cannot meet the intelligent matching needs of the wide-area
distribution of C3DPS. In such services, the way in which to quickly and accurately search
for the services that users need is one of the key problems.

2. The dynamics of massive information

In order to ensure the optimized operation of supply–demand matching, C3DPS plat-
form must obtain the status data information of 3D printing device resources in real-time,
including the status data, the executed status data, and so on. In the cloud environment, 3D
printing equipment has the characteristics of a large volume, wide area and geographical
dispersion, and its attribute characteristics (load status, processing status, service quality),
these 3D printing devices can dynamically changing. Therefore, there is a great amount
of information in this state which has the characteristics of stochastic and dynamism [24].
The way in which to solve the efficiency problem in the supply–demand matching of mass
C3DPSs, is one of the focuses of this paper.

3. The accuracy of Supply-demand matching of C3DPS

This platform has 3D printing equipment resources or cloud services for heterogeneous
and massive data sets, and some resources have characteristics such as fuzzy semantic
information and similar functions [25]. The supplier and the demander can perform
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semantic matching and transactions for various types of C3D resources or services via
online search in the operating mode of the C3DPS platform. Therefore, methods by which
to improve the matching accuracy presents one of the key problems that needs to be solved
quickly and accurately through a search of C3D resources or services.

4. The accuracy of Multi-level matching integration

In order to enhance the accuracy of C3DPS supply–demand matching results, it is
necessary to integrate multiple-levels of matching accuracy. Through the description of
task service network modeling, a three-level matching process can be completed, via a
dynamic description of a logical inference engine.

In conclusion, the number of services will increase commensurately to the develop-
ment of C3DPS applications. In the face of wide-area heterogeneous services, methods by
which to efficiently and accurately search and match presents one of the new problems
that need to be solved urgently [26]. The diversity, fuzzy semantic information and similar
functions of C3DPSs aim to resolve the problems of low matching efficiency and low
matching accuracy. Combined with the complex network model, semantic similarity and
topology matching methods, a framework diagram of C3DPS supply–demand matching is
proposed, based on the task service network.

3.2. The Framework of Task-Service Network Node Matching Model Based on
Multi-Objective Optimization

As shown in Figure 1, C3DPS supply–demand matching is based on task-service
network matching, which is the first step in supply–demand matching. As a second
step of supply–demand matching, the result of network node matching acts as the input
condition for the hierarchical matching of C3DPSs [27]. The specific idea is as follows: after
being requested to the search engine, these network nodes are ranked by the similarity
MathS−T(G1, G2) according to the network node matching algorithm. Once its candidate
C3DPS are set, that is, WS1 =

{
WS1

1, WS2
1, . . . , WSn

1
}

; If MathS−T(G1, G2) ≥ ηBaseIn f o, the
conditions will be performed to task-service network matching.

Figure 1. The framework of C3DPS Supply-demand matching is based on task-service
network matching.

1. The task-service network is a topological structure of a large-scale virtual network that
is composed of task service nodes and various related edge task nodes; the ontology
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library refers to a C3DP order task domain ontology, which mainly provides semantic
support for the needs/services of a DD workshop and the maker’s transactions;

2. The ontology library refers to a domain ontology of the C3DP order task, which
mainly provides semantic support for the related description and the registration
release of the C3DPS demand and the service provider;

3. The algorithm knowledge database refers to a database that provides different types
of Supply–demand matching algorithm knowledge, such as the topology matching
algorithm, semantic similarity algorithm and geometric matching algorithm;

4. The information parser is responsible for classifying and extracting the demand
information in the C3DP order task network and service node information, and
parsing and obtaining the basic information, I/O information (including processing
accuracy, mechanical and physical properties, surface roughness, etc.) and QoS infor-
mation (including time, cost, quality, fault tolerance, reliability, and comprehensive
satisfaction). Here, it is provided by the requirements analysis documents and the
analysis documents.

5. The resource matcher is a function that matches C3DPS via all kinds of matching
algorithms in the algorithm knowledge base [28]. This matching algorithms includes
task service network node matching, based on the Multi-Objective optimization
model and C3DPS hierarchical matching based on the task service network.

4. Mathematical Model of C3DPS Order Task Execution Evaluation Based on the
AHP-TOPSIS Evaluation Model
4.1. The Task-Service Network Node Matching Model Based on a Multi-Objective Optimization

According to the matching constraints (The similarity of adjacency matrix) and ob-
jective variables (The proximity and criticality of nodes) of S_Net and T_Net, a Multi-
Objective optimization problem of network node matching is proposed, and solved in
node matching by the evolutionary algorithm [29]., A flowchart of task-service network
node matching, based on a Multi-Objective optimization model, is shown in Figure 2.

Figure 2. A flowchart of task-service network node matching, based on a Multi-Objective optimiza-
tion model.

In C3DPS node matching, the network node matching method is a method that
calculates the similarity of network nodes, which then converts the inter-network node
matching problem, into the optimal matching problem of a weighted bipartite graph
optimal matching problem, which can be solved using the genetic algorithm (GA) [30].
More specifically, the solution includes two sub-problems, namely, the calculation of
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task-service network node similarity and the extraction of matching nodes, as shown in
Figure 3.

Figure 3. The schematic diagram of C3DPS node matching based on task-service network. (a) The
matching_Net include S_Net and T_Net. (b) The mapping of C3DPSs node. (c) The mapping of
C3DP order tasks node.

Where, s(v1
i , v2

j ) represents the similarity between nodes and in the service network. Its
similarity result can be calculated by the local topology information between nodes and the
relationship between “matched” nodes [31]. A diagram of C3DPS node matching based on
task service network is shown in Figure 3. Figure 3a shows the corresponding relationship
of S_Net and T_Net (the dotted line represents the association relationship), that is, of
matched node pairs; Figure 3b,c shows that the mapping relationship is established between
each service node in the task-service network.

4.2. The Calculation of Initial Node Similarity

Considering the local topology of v1
i and v2

j of the network G1 and G2, it is often not
possible to obtain a good initial node similarity calculation, so the information of “matched”
node pair is required [32].

Here, a node matching method complex network-based and calculated a node of
similarity with the network G1 and G2, and its expression is:

s(v1
i , v2

j ) =
nM(v1

i , v2
j )

K1×
∣∣∣Γ(v1

i )
∣∣∣+K2×

∣∣∣Γ(v2
j )
∣∣∣−nM(v1

i , v2
j )

(1)

where, nM(v1
i , v2

j ) is the number of “matched node pairs” that have connections with nodes

v1
i and v2

j ; Γ(v(k)i )(k = 1, 2) is the set of nodes that have connections with nodes v(k)i in the
network Gk, K1 and K2 are the weighted value of Gk.

When the density of two networks is equal, K1 = K2 = 1.
When the density of two networks is not equal, then:

K1 =
2× < k1 >

< k1 > + < k2 >
, K2 =

2× < k2 >

< k1 > + < k2 >
, (2)

where, < ki > (i = 1, 2) is the average value of the task-service network Gk; k1 is the
average value of S_Net; k2 is the average value of T_Net.

If the value of connection density between two networks are significantly different,
the number of node pairs that have a higher connection density relationship with the nodes
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v1
i can be considered and the connection information with lower connection density can be

ignored [33]. The similarity s(v1
i , v2

j ) between the node v1
i and v2

j is:

s(v1
i , v2

j ) ≈
nM(v1

i , v2
j )∣∣Γ(v1

i )
∣∣ , (3)

where, nM(v1
i , v2

j ) is the number of “matched node pairs” that have connections with nodes

v1
i and v2

j ; Γ(v(k)i )(k = 1, 2) is the set of nodes that have connections with nodes v(k)i in the
network Gk.

A schematic diagram of node similarity calculation between networks is shown in
Figure 4. Two target nodes v1

i and v2
j are projected to vij, and the node similarity is

calculated for this node pair.

Figure 4. The schematic diagram of node similarity calculation between networks.

4.3. Mathematical Model of Node Matching and Evolutionary Solutions

The optimal problem with two or two numerical objectives in a given region is
called the Multiple-Objective Optimization Problem (MOP). At present, the solution of
MOP is the conversion of multiple objectives into a single objective according to a utility
function [34]. Therefore, an objective variable is constructed based on the node proximity
and node criticality of the task-service network when the adjacency matrix similarity acts
as a constraint. Based on this constraint, a mathematical model of node matching and
evolutionary solutions is proposed, that the genetic algorithm can solve as a multiple-
objective optimization problem. Thus, the problem of C3DPS node matching in task-
service network is transformed via the multiple-objective optimization problem into a
single optimization problem.

The two objective functions of task-service network node matching are: the maximum
node proximity and the minimum node criticality [35].

(1) Selecting design variables

Therefore, for obtaining the maximization of the node matching accuracy, the max-
imum node proximity K(M) and the criticality C(M) of the minimum node in the task-
service network act as key values. Given that there is a focus on the objective variables of
K(M) and C(M), the optimization variables are as follows:

f (X) = f (x1, x2) = f (C(M), K(M)), (4)

where, f (C(M)) is the objective function of the node proximity in the matched nodes;
f (K(M)) is the objective function of the node criticality in the matched nodes.

(2) The establishment of objective function
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In order to ensure the maximization of node proximity, the objective functions of the
degree of any two nodes Ki, the number of connections Kin

i and the length d(vi, vj) of the
shortest path in the matched node are selected [36]; to ensure the minimization of the node
criticality, the shortest path number S(vi) between any pair that passes through the nodes
vi and the shortest path number S′ (vi) between any pairs that do not pass through the
nodes vi in the matched node are selected.

(1) The maximization of node proximity

Definition 1 (Node Proximity). refers to the proximity of matched nodes vi to the local network
area. d(vi, vj) indicates that the shortest path length between any two nodes of vi and vj in the
matched node when the matched node vi is a starting point, then the proximity C(vi) of the node
vi is:

C(vi) =
Kin

i

Ki
n
∑

i∈N(C),j∈C
d(vi, vj)

, i 6= j, (5)

where i ∈ N(C); Ki indicates the degree of proximity of the node vi, Kin
i is the number of the

internal nodes’ connections between node vi and network C; d(vi, vj) represents the shortest path
between any two nodes of vi and vj. The higher the value of C(vi), the closer the relationship
between node vi and network C.

In order to reduce the calculation error, it is necessary to carry out a quantitative processing of
C(i), after which the quantized results of C(i) are:

C(M) =

√
n

∑
i=1

(C(vi)− C(v′i))
2, (6)

where C(vi) is the none quantified node proximity, and C(vi) ⊂ [0, 1); C(v′i) is the quantified
node proximity; C(M) is the node proximity of M =

{
(ν1

1 , ν2
r1
), (ν1

2 , ν2
r2
), . . . , (ν1

n, ν2
rn)
}

the nodes
between S_Net and T_Net.

The objective function of C(M) is:

f1(M) =
1

C(M)
=

1√
n
∑

i=1
(C(vi)− C(v′i))

2
, (7)

where f1(M) is an objective function of C(M).
The smaller the node proximity C(vi) and the larger the objective function f (C(vi)), the more

similar the structure of the two networks of V(S_N) and V(T_N), and the higher the matching
value [37].

(2) The minimization of node criticality

Definition 2 (Node Neighborhood). The neighborhood of a node vi is:

δij =
{

vj
∣∣vj ∈ V, aij = 1, j = 1, 2, . . . , n

}
, (8)

then k = |δij| = ∑
vj∈δij

aij represents a criticality of the node;

Definition 3 (Node Criticality). If k > 1in the node vi neighborhood δij when a degree is k,
S(vi) is the shortest path number that passes through the node vi between any node pairs, and the
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shortest path number without passing through the node vi is S′(vi), then the Node Criticality K(vi)
of node vi is:

K(vi) =
S(vi)

S(vi) + S′(vi)
, (9)

If k = 1, then K(vi) = 0 is the criticality of node vi. The S(vi) and S′(vi) is calculated
as follows:

Assuming that the key domain of the node is T_Net, the shortest path length between any two
nodes of T_Net and vj in the degree k of matched node vi is:

P(vs, vj) =
{{

vs, vj
}

,
{

vs, vi, vj
}

,
{

vs, v′i, vj
}∣∣v′i ∈ Fi, v 6= v′i

}
, (10)

If there are wsj shortest paths between nodes of vi and vj, then:

S(vi) = ∑
Fi

s(vi), (11)

where s(vi) =

{
1

wsj
, vi ∈ P(vs, vj)

0, vi /∈ P(vs, vj)
.

Assume that the shortest path length between any two nodes of vi and vj in the degree k that
do not pass through nodes vi is:

S′(vi) = ∑
Fi

s′(vi), (12)

where s′(vi) =

{
0, vi ∈ P(vs, vj)
1, vi /∈ P(vs, vj)

.

Here, if the process of the node criticality K(vi) of vi is quantized to [0,1), then the
quantized node proximity is:

K(M) =
1

2n

n

∑
i=1

∣∣K(vi)− K(v′i)
∣∣ (13)

K(M) =
1

2n

n

∑
i=1

∣∣K(vi)− K(v′i)
∣∣ (14)

where K(vi) is the node vi criticality before quantization; K(v′i) is the node vi criticality
before quantization; K(M) is the node matching criticality of the S and B networks; vi is the
node criticality before quantization [38]; v′i is the node criticality before node quantization;
M =

{
(ν1

1 , ν2
r1
), (ν1

2 , ν2
r2
), . . . , (ν1

n, ν2
rn)
}

is the node matching criticality of S_Net and T_Net;
The more similar the two networks are (V(S_N) =

{
νS1 , νS2 , . . . , νSm

}
and V(T_N) ={

νT1 , νT2 , . . . , νTn

}
), the smaller the K(M) and the larger the f2(M).

(3) The constraint condition

When a task-service network node matching model is established, its constraint is the pos-
sibility to completely match S_Net and T_Net, that is, the matching rate ϕ(S_Net, T_Net) =
s(v1

i , v2
j ) of S_Net and T_Net [39]. If there is an exactly matching of S_Net and T_Net, then

ϕ(S_Net, T_Net) = 100%.

(4) The mathematical model of Multi-Objective optimization

Assuming that it is possible to match sets Ω in S_Net and T_Net, the expression of
the Multi-Objective optimal network node matching model is:

min{ f1(C(M)), f2(K(M))}, (15)

s.t
{

ϕ(M) = 100%
M ∈ Ω.

, (16)
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where f1(C(M)) and f2(K(M) are optimized objective functions; C(M) and K(M) are an
optimized variables; ϕ(M) = 1 is the linear equality constraint for the variable M; M ∈ Ω
is the linear inequality constraint for the variable M.

The two quantized objective functions of f1(C(M)) and f2(K(M)) are calculated to a
single objective function, which is recorded as:

F(M) = w1 f1(C(M)) + w2 f2(K(M)), (17)

where w1 is the relevant weight value of f1(C(M)); w2 is the relevant weight value
of f2(K(M)).

According to formula (12), the individual’s fitness value is:

f itness(M) = w1 f1(C(M)) + w2 f2(K(M)), (18)

(5) The mathematical description of a genetic algorithm

A GA algorithm is a computational model that simulates the natural evolutionary
process. It has high parallelism, good universality, and global optimization capabilities.
To solve the problem of the digital-analog evolution of node matching, it is necessary to
design a genetic algorithm based on the actual problem, and transforms multiple objective
functions and constraints into fitness functions [40]. The flowchart of task-service network
node matching based on the Multi-Objective optimization model is illustrated in Figure 5.

Figure 5. The flowchart of task-service network node matching based on the Multi-Objective opti-
mization model.

(1) The mode of Individual coding

For M =
{
(ν1

1 , ν2
r1
), (ν1

2 , ν2
r2
), . . . , (ν1

n, ν2
rn)
}

, the sequence of service node in G1 is
ν1

1 , ν1
2 , . . . , ν1

n, and the sequence of the service node in G2 is ν2
1 , ν2

2 , . . . , ν2
n, then the matching

M is determined by the sequence of r1, r2, . . . , rn, that is, M = r1, r2, . . . , rn [41]. Therefore,
the individual matching M is path coding by Gre f enstette code.

The rule of Gre f enstette cods are as follows:
(A) If the code C = (1, 2, . . . , n) is the path between service nodes, the corresponding

number M = r1, r2, . . . , rn is, respectively;
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(B) Take the sequence number g2 of the first code r2 in C as the starting point, it deletes
r1 from C, then C(2) = C(1)/{r2};

(C) By analogy, according to the above rules, a string such as g1, g2, . . . , gn can be
obtained, that is, of an encoded individual;

(D) Repeat the above steps until the empty set.
As can be seen from Figure 6, C1

x can be corresponded to the optional service resources
of C1. When r11 is selected, the chromosome number is 10, 000 · · · and the length of this
string is C1

x [42]. C2, contains an optional service resource of C2
x, and the corresponding

optional service set is
{

r21, r22, . . . , r2K2
x

}
. For example, M = r1, r2, . . . , rn = 45687123

is Gre f enstette code of C = (1, 2, . . . , 8). If r1 = 4 and g1 = 4, whereby it deletes r1
in the C, and C1 = (1, 2, 3, 5, 6, 7, 8); If r2 = 5 and g2 = 4, it deletes r2 in the C, and
C2 = (1, 2, 3, 6, 7, 8); and so on, for which it can be obtained for up to, 44454111, that is, the
Gre f enstette code of M2 = 12345678.

Figure 6. The Structure diagram of chromosome coding.

(2) The selection and the genetic operator

(a) The selection operator

The purpose of selection is to inherit the properties of the optimized individuals (or
solutions) directly from the current generation population to the next generation population.
In the genetic algorithm, the fitness values of individuals is calculated and ranked by the
fitness ratio method [43]. The larger the fitness value of an individual, the greater the
probability of being selected. Here, the probability of selection pi is:

pi =
fi

m
∑

i=1
fi

, (19)

where, m is the population size and fi is the fitness function for the i-th individual.

(b) The Crossover operation

The crossover operation is a two-point crossover from two matching individuals.
In this way, a new individual is generated with a crossover operation, its probabil-
ity pc. Therefore, the Gre f enstette code is used to avoid repeated serial numbers af-
ter individual crossover operations, and to prevent the occurrence of individuals with
unreasonable sequences.

Pc =

{
pch − iter × pch−pcl

itmax
fa < fr

pch fr ≤ fa
, (20)

where pch is the maximum probability of the crossover operation; pci is the minimum
probability of crossover operation; itmax is the maximum number of iterations; iter is the
current number of iterations; fa is the average fitness value of the population; fr is the
greater fitness value during the process of crossover operation.

(3) The Mutation operation

The Mutation operation is a process of re-arrangement, through which each coded
individual M = g1, g2, . . . , gn can be mutated with a certain probability by means of
sequence shuffling. The specific process is as follows: firstly, the random path is selected
for a mutation position, and set as i; Then, gi can be randomly changed into one element
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of {1, 2, . . . , n} − {g i
}

which changed in accordance with the order between the bits.
Therefore, the mutation operation is adopted in different stages and calculated as the
mutation probability Pm.

Pm =

{
pml + iter × pmh−pml

itmax
fa < fw

pml fw ≤ fa
, (21)

where pml is the maximum mutation probability, pml is the minimum mutation probability,
and fw is the greatest fitness value in the mutation operation process.

To take the three sub-tasks of portrait 3D printing as examples, it corresponds to 4, 5,
and 3 optional Cloud 3D printing services for cross mutation operations [44]. For example,
the chromosome v1 and v2 are the random intersections at the 5-th position, then:

v1 = (11110000),

v2 = (00001111),
(22)

The two generations after crossing are

v′1 = (11110111),

v′2 = (00001000),
(23)

For example, to assume that the 5-th gene of the chromosome v = (10001111) is
mutated, because the 5-th gene of the chromosome is 1, it will turn to 0. Therefore, the
chromosome v1 will turn to v′ = (10000111).

(4) The steps of Evolutionary algorithm

Here, the genetic algorithm is adopted as the evolutionary mechanism, and the specific
steps of the Multi-Objective optimization mathematical model are as follows:

Step 1: Initialize the algorithm parameters. This optimization algorithm of Gre f enstette
coding individuals is set to the parameters of the Multi-Objective optimization mathemati-
cal model. Since the classical range of the cross rate is 0.4 ∼ 0.9, the number of network
nodes is N1 = N2 = N = 100, the maximum cross probability is pch = 0.6, the minimum
cross probability is pci = 0.4, the cross probability is pc = 0.5, the mutation probability is
pm = 0.1, and the number of termination iterations is set to T = 200.

Step 2: In order to calculate the similarity of the initial node all the data of “the
matched node pairs” need to be obtained. Here, the similarity of the initial node will be
calculated to obtain nM(v1

i , v2
j ) and Γ(v(k)i ) and K1 and K2 of the network weights [45].

Step 3: Each initial node is sorted from high to low according to the similarity, and
then the first few initial nodes with high similarity are removed. The specific threshold
can be determined according to the specific situation. According to the characteristics of
cultural and creative products, the network node threshold ϕBase = 0.8 is as follows:

SN =
{

nM(v1
i , v2

j )
∣∣∣s(v1

i , v2
j )
}

, (24)

Step 4: The genetic algorithm is optimized for all the matching sets in the network, and
a Multi-Objective optimization model of the network node matching problem is proposed.

Step 5: Selection and genetic manipulation. The current iteration is iter = 100; The
crossover probability is pc = 0.5; The minimum mutation probability is pml = 0.1.

Step 6: Calculate the fitness value. In a genetic algorithm, the fitness function is
usually positive. For all the individuals of the current population and the new individuals,
the individual adaptive value is calculated using formula (17).

Step 7: Determine the termination condition of the algorithm. This can be determined
by whether the termination condition reaches the maximum number of evolutionary
generations. If is reached, the evolution will be terminated and the optimal solution is
output individually; otherwise, return to step 5.
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Step 8: The algorithm is terminated. their becomes the sequence set
WS1 =

{
WS1

1, WS2
1, . . . , WSn

1
}

of C3DPS. The similarity set is SD1.

5. Case Study
5.1. The Portrait 3D Printing Product in the Field of Cultural Creativity as an Example

Taking the portrait 3D printing product in the field of cultural creativity as an example,
a process of design and manufacturing can be divided into five steps, such as portrait
scanning, image design and modeling, portrait 3D printing, surface treatment and coloring,
which are respectively 5, 6, 5, 4 and 6 optional services [46]. Among them, the basic
information of the optional C3DPS is shown in Table 1, and the location number and time
and cost information of resource transportation between cities are shown in Tables 2 and 3.

Table 1. The basic information of the optional C3DPS.

S1 S2

f11 f12 f13 f14 f15 f21 f22 f23 f24

Y 50 41 50 44 35 31 34 53 48
T 15 17 15 10 13 9 6 11 6
W 7 4 4 6 7 2 4 6 7

S2 S3 S4

f25 f26 f31 f32 f33 f34 f41 f42 f43

Y 43 36 42 47 53 61 64 67 72
T 4 7 12 13 11 7 7 11 28
W 9 13 10 6 3 6 4 1 5

S4 S5

f44 f45 f51 f52 f53 f54 f55 f56

Y 74 33 25 29 27 25 30 46
T 7 6 13 17 19 23 20 15
W 3 8 9 12 6 8 5 4

Table 2. The basic information of the corresponding city.

Location 1 2 3 4
Address Wuhan Changsha Chongqing Zhengzhou
Location 5 6 7 8
Address Guangzhou Shanghai Beijing Nanchang

Table 3. The table of logistics costs and time consumption among various C3DPSs.

1 2 3 4 5 6 7 8

1 0/0 32/3 31/3 34/4 35/3 36/4 41/3 31/2
2 32/3 0/0 42/2 35/2 36/3 28/3 36/7 42/5
3 40/3 42/3 0/0 31/2 39/4 41/7 39/5 46/6

Where n = 1, 2, . . . , 5 represents the n− th resource; fij represents the j− th available
resource of the i− th resource, each resource has j optional candidate service resources
(j > 1); Y represents the cost (unit: yuan) of each available resource; T is the completion
cycle of each resource (unit: hour); W is the geographic location code where the service
resource is located, which corresponds to the corresponding city in Table 2. Because the
geographical location of each resource is different, the cost and time of logistics must be
considered. Therefore, Table 3 is a table of logistics costs and time consumption among
various C3DPSs.
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5.2. The Case Study of Node Matching in the Task-Service Network

Network node matching refers to the matching between the information required
by users and the candidate service set in the C3DPS resource pool, encapsulated in the
task-service network [47].

Experimental environment: the number of network nodes N1 = N2 = N = 100, the
degree η1 = η2 = 0.5 of interaction between S_Net and T_Net.

The parameters of the genetic algorithm are: the population size of M = 100; the
crossover probability of pc = 0.5; the mutation probability of pm = 0.05; T = 200 of
termination iterations; the sampling ratio of r = pr/N = pr/100; r respectively 0.1 ∼ 0.9,
(note that the random sampling method has been matched pairs).

It is set the number m0 = 10 of nodes in the initial network, and add these connected
nodes m = 10, the range of its matching accuracy is φ = 0.18 ∼ 0.78.

Therefore, the topological structure of the network is matched by the similarity be-
tween the adjacency matrices with matching nodes. As shown in Figure 7, the task-service
network G1 and G2 are the random network.

Figure 7. The Structure diagram of task-service network G1 and G2.

The nodes in these networks are, respectively, vi and vj, the value range i is 1 ∼ 10,
the probability of inter-connection with the G1 and G2 is 0.2 and pc = 0.5. Assuming
that five pairs of nodes (v1

1, v2
1), (v

1
3, v2

3), (v
1
7, v2

7), (v
1
9, v2

9) and (v1
10, v2

10) are matched, the
similarity between node 5 in G1 and node 5 in G2 is:

S(v1
5, v2

5) =
nM(v1

5,v2
5)

|Γ(v1
5)|+|Γ(v2

5)|−nM(v1
5,v2

5)

= 1
5+4−1 = 1

8

(25)

where, nM(v1
5, v2

5) is the number of “matched node pairs (v1
5, v2

5)” that have connections
with the 5-th node v1

5 and 5-th node v2
5 in the G1 and G2; and Γ(v1

5) are node sets that have
connections with v1

5 and all nodes in the G1.
Similarly, the similarity matrix, corresponding to the five node pairs between the G1

and G2, is calculated as:

A =


0 0 0 0 0.5
0 0 0 0 0
0 0 0.125 0.2 0
0 0 0 0 0
0 0.2 0.142 0 0

, (26)

After this process, the matching results are (v1
2, v2

2), (v
1
4, v2

4), (v
1
5, v2

5), (v
1
6, v2

8) and
(v1

8, v2
6), where the correctly matching results are nodes 2, 4 and 5. The three candidate 3D

printing resources corresponding to nodes 2, 4 and 5 are S2, S4 and S5., A list of candidate
3D printing resource attributes is shown in Table 4.
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Table 4. The list of candidate 3D printing resource attributes.

Service Name Basic Information I/O Information QoS Information

S2

Resource Name:
Color 3D printer

Processing material:
Gypsum

Service content: 3D
printing

Input: 3D model of Brahma
gypsum relief decoration,

quantity;
Output: print finished

product
Service scope: Wuhan

Jiang’an District;
Pass rate: 100%

Time: 11D
Price: 2387.00

Reliability: 0.94
Environmental

protection value: 93
Credibility: 4.63

S4

Resource Name:
Color 3D printer

Processing material:
Gypsum

Service content: 3D
printing

Input: 3D model of Brahma
gypsum relief decoration,

quantity;
Output: print finished

product
Service scope: Wuhan

Hongshan District;
Pass rate: 100%

Time: 8D
Price: 1986.50

Reliability: 0.92
Environmental

protection value: 92
Credibility: 4.82

S5

Resource Name:
Color 3D printer

Processing material:
Gypsum

Service content: 3D
printing

Input: 3D model of Brahma
gypsum relief decoration,

quantity;
Output: print finished

product
Service scope: Wuhan

Hongshan District;
Pass rate: 100%

Time: 14D
Price: 1875.30

Reliability: 0.88
Environmental

protection value: 93
Credibility: 4.78

According to the description of resource attributes, the basic concepts of C3DPS are
extracted, such as {“Color 3D printer”, “3D model of Brahma gypsum relief decoration”,
etc.}; The basic concepts of candidate C3DPS are extracted, such as the basic concepts of S1
is {“3DP series 580 color 3D printer”, “100 mesh gypsum powder”, “3D printing”}; The
specific parameters are as follows:

To set an initial threshold of network node matching ηBaseIn f o = 0.8 and a concept
type weight w = (0.48, 0.4, 0.12).

According to the definition, it is calculated to match the services S2,S4, S5 and S8
between node information and service requirements.

So, the result of node matching is: Match(N, S) = (0.892, 0.913, 0.955, 0.763, 0.653).
If Match(N, S6) < ηBaseIn f o and Match(N, S8) < ηBaseIn f o, then S6 and S8 are

not selected.
Finally, the matching service resource set is as follows: WS1 = (S2, S4, S5). As shown

in Figure 8, the topology of the C3DPS network is composed of 33 nodes and 46 edges.
When two nodes’ colors are the same, it indicates the C3DPSs are similar. The thickness of
the edges represents the similarity between the two C3DPSs, that is, the service capability
has a different relationship.

5.3. Results and Comparison

To illustrate the availability and efficiency of the proposed a task-service network
node matching method, based on the multi-objective optimization model in a dynamic
hyper-network environment, it is compared with other traditional methods, including
exact matching, contains matching, implicit matching and mismatching. On the basis of
a detailed analysis of each matching index, the matching index’s data sets are simulated
with the traditional CMfg service modeling method and four types of similarity algorithms,
based on a complex network. All the algorithms’ codes are written on the MATLAB
experimental platform in a Windows 7 operating system with an Intel i3-2120 (3.30 GHz)
CPU with 4G memory. In the experiments, 90% of the five data sets were selected as
training sets, 10% were selected as test sets, and the number of independent experiments
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performed was 1000. The resulting accuracy (AUC) values of the traditional MFG service
modeling method and four kinds of similarity algorithms based on complex networks are
shown in Table 5:

Figure 8. The topology of the C3DPS network.

Table 5. The resulting AUC values (%) of the traditional method and 4 kinds of similarity algorithm based on a complex network.

Types
The Traditional Method Four Kinds of Similarity Algorithms Based on a

Complex Network

Exact
Matching

Contains
Matching

Implicit
Matching

Mis-
Matching NS Grid Yeast PB

Indexes

HPI 3.561 2.654 1.201 0.051 0.967 9.534 2.425 0.870
CN 2.995 1.325 1.235 0.062 0.267 2.481 0.701 0.375
PA 3.056 1.254 1.204 0.031 0.735 7.992 1.684 0.523
AA 1.854 1.025 1.054 0.048 0.450 5.161 1.186 0.469
RA 2.056 2.985 1.069 0.028 0.365 3.114 0.891 0.443
CI 1.952 1.985 1.211 0.034 0.384 3.150 0.931 0.590

Here, HPI indicates the hub promoted index; CN indicates common neighbors; PA
indicates Priority link indicator; AA indicates Adamic-Adar; RA indicates Resource Alloca-
tion; CI indicates Combined index.

Upon comparison and analysis, the experimental results in Table 5 show that, accord-
ing to the CI, the developed algorithm is more accurate than the traditional method and the
existing four algorithms in five different domain networks; this algorithm further improves
the accuracy of link prediction and has better prediction results for complex networks; that
is, its universal applicability is better. The visualization of the NS network is shown in
Figure 9.

Excluding PA, the other five indicators have the highest AUC values, which may be
related to the large module degree, caused by the comparison of the traditional method
and four kinds of similarity algorithms based on complex networks. Here, the running
times of the algorithms are also tested. As shown in Table 6, the actual elapsed time for CI
is relatively short, which shows that the efficiency of the algorithm is relatively high.
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Figure 9. The visualization of the NS network.

Table 6. The operating time (s) of the traditional method and 4 kinds of similarity algorithms based
on a complex network.

Types
The Traditional Method Four Kinds of Similarity Algorithm

Exact Contains Implicit Mis NS Grid Yeast PB

Indexes

HPI 5.6540 4.5681 3.9854 7.4501 0.5019 0.1542 0.1812 0.4106
CN 4.8956 4.2658 3.6857 7.2822 1.8441 0.0519 0.5931 1.1370
PA 5.6985 5.3654 4.9887 13.281 0.3361 0.0142 0.1586 0.8125
AA 2.6542 2.3658 1.5874 8.5460 1.0824 0.0245 0.3540 0.9125
RA 3.6521 3.0554 2.3652 16.642 1.3254 0.4089 0.4752 0.9524
CI 6.8755 4.5697 3.6858 13.542 1.2843 0.0451 0.4525 0.7158

Additionally, we analyzed the efficiency index (AEI) of the algorithms under specific
experimental conditions, as shown in Table 7.

Table 7. The efficiency (%) of the traditional method and 4 kinds of similarity algorithms based on a
complex network.

Types
The Traditional Method Four Kinds of Similarity Algorithm

Exact Contains Implicit Mis NS Grid Yeast PB

Indexes

HPI 96.00 48.95 18.65 88.00 99.23 62.71 91.94 85.50
CN 82.56 42.36 23.51 95.15 99.24 62.87 92.02 92.02
PA 85.00 36.87 20.36 91.19 74.08 58.01 58.01 86.10
AA 78.58 55.96 11.56 96.34 99.26 62.87 62.87 92.01
RA 70.61 61.50 23.68 96.70 99.20 62.74 62.74 99.31
CI 80.00 50.00 20.00 97.00 99.31 62.97 62.74 62.97

Finally, the matching results of the traditional method and 4 kinds of similarity
algorithms based on a complex network are given in Table 8.

Table 8. The matching of the traditional method and 4 kinds of similarity algorithm based on a
complex network.

Types
The Traditional Method Four Kinds of Similarity Algorithm

Exact Contains Implicit Mis NS Grid Yeast PB

Indexes

HPI 1.000 0.700 0.400 0.000 0.923 0.838 0.919 0.855
CN 1.000 0.700 0.400 0.000 0.924 0.728 0.920 0.927
PA 1.000 0.700 0.400 0.000 0.756 0.881 0.880 0.861
AA 1.000 0.700 0.400 0.000 0.993 0.887 0.873 0.920
RA 0.800 0.500 0.200 0.000 0.992 0.774 0.874 0.993
CI 0.800 0.500 0.200 0.000 0.993 0.897 0.861 0.630
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6. Conclusions

This study focused on the task-service network node matching method based on the
Multi-Objective optimization model in a dynamic hyper-network environment. In the
process of C3DPS node matching, the network node matching method acts as a method that
calculates the similarity of network nodes, after which the inter-network node matching
problem is converted into the optimal matching problem of a weighted bipartite graph
optimal matching problem, which can be solved using a genetic algorithm (GA). More
specifically, the solution includes two sub-problems, namely, the calculation of task-service
network node similarity and the extraction of matching nodes. According to the matching
constraints (the similarity of adjacency matrix) and objective variables (the proximity and
criticality of nodes) a Multi-Objective optimization problem of network node matching
is proposed, and solved using node matching by the evolutionary algorithm. Finally, the
model examples are solved by modifying the Mathematical algorithm of Node Matching
and Evolutionary Solutions. Our results prove that the model and the algorithm are feasible,
effective and stable.
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SOM Service-oriented manufacturing
AMSs Advanced manufacturing systems
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C3DPSs Cloud 3D printing services
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C3DPS Cloud 3D printing service
GA genetic algorithm
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