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Background: Non-alcoholic fatty liver disease (NAFLD) is the global most common chronic liver disease. 
Non-alcoholic steatohepatitis (NASH), an inflammatory subtype of NAFLD, has been shown to significantly 
increase the risk of colorectal adenoma (CRA). Therefore, from the perspective of bioinformatics analysis, 
the potential mechanisms of NASH/NAFLD-CRA can be explored.
Methods: In this study, we screened the differentially expressed genes (DEGs) and core effect pathways 
between NASH and CRA by analyzing the single-cell data of CRA patients and the high-throughput 
sequencing data (GSE37364 and GSE89632) in the online database. We screened therapeutic targets 
and biomarkers through gene function classification, pathway enrichment analysis, and protein-protein 
interaction network analysis. In terms of single cell data, we screened the core effect pathway and specific 
signal pathway of cell communication through cell annotation and cell communication analyses. The purpose 
of the study was to find potential biomarkers, therapeutic targets, and related effect pathways of NASH-
CRA.
Results: NASH-CRA comorbidities were concentrated in inflammatory regulation-related pathways, and 
the core genes of disease progression included IL1B, FOSL1, EGR1, MYC, PTGS2, and FOS. The results 
suggested the key pathway of NASH-CRA might be the WNT pathway. The main cell signal communication 
pathways included WNT2B − (FZD6 + LRP5) and WNT2B − (FZD6 + LRP6). The send-receive process 
occurred in embryonic stem cells.
Conclusions: The core genes of NASH-CRA (FOS, EGR1, MYC, PTGS2, FOSL1, and IL1B) may 
participate in inflammation and immune responses through up-regulation in the process of disease 
occurrence, interfering with the pathophysiological process of CRA and NASH. NASH-CRA produces cell 
signal communication in the WNT pathway sent by WNT2B and received by FZD6, LRP5, and LRP6 in 
embryonic stem cells. These findings may help formulate early diagnosis and treatment strategies for CRA in 
NAFLD/NASH patients, and further explore corresponding prognostic markers and potential approaches. 
The significance of scRNA-seq in exploring tumor heterogeneity lies in promoting our understanding of the 
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Introduction

Globally, colorectal cancer mortality is the second highest 
cause of cancer death (9.4%), after lung cancer (1). 
Colorectal adenoma (CRA) is considered a precancerous 
lesion of colorectal cancer (CRC) that progresses to 
malignancy through alterations in DNA repair defects, 
chromosomal instability, microsatellite instability, serrated 
pathways, and DNA methylation (2,3), and its high 
incidence and potential risk of malignancy has become an 
important reason for widespread health screening.

Non-alcoholic fatty liver disease (NAFLD) is the most 
common chronic liver disease worldwide. The estimated 
total prevalence of NAFLD in Asia has reached 27.4% 
and is expected to increase with obesity rates and an aging 
population (4). Non-alcoholic steatohepatitis (NASH), an 
inflammatory subtype of NAFLD, carries a much higher 
mortality rate than the general population or patients with 

other inflammatory subtypes of NAFLD (5,6). Hwang et al. 
first found that NAFLD was associated with an increased 
risk of colorectal adenomatous polyps (7). Previous research 
results suggested that patients with advanced CRC had 
higher levels of steatosis and liver fibrosis staging compared 
to those with normal or low-grade adenomatous polyps (8).  
NASH after NAFLD progression is an independent 
risk factor for colorectal polyps (OR, 2.08; P=0.020) and 
advanced colorectal tumors (OR, 2.81; P=0.049). Previous 
studies have shown that NAFLD/NASH may promote 
the occurrence and development of CRA/CRC through 
the insulin resistance pathway or the induction of chronic 
inflammation pathway (9,10). In terms of insulin resistance 
(IR), NAFLD/NASH aggravates IR and further promotes 
CRC progress by regulating Insulin-like growth factor 
(IGF). In addition, there is a chronic inflammatory response 
in NAFLD, which produces numerous inflammatory 
mediators such as interleukin-1 (IL-1). For example, IL-1 
binds to its receptor and upregulates anti-apoptotic genes 
by activating nuclear transcription factors to promote 
the occurrence and development of colorectal cancer. 
NAFLD patients have an increased risk of developing 
CRA or CRC due to their chronic inflammation leading 
to an increase in related inflammatory factors. Although 
the relationship between NASH and CRA has attracted 
widespread attention, the biological mechanisms involved 
are still unclear, and further studies on CRA in the context 
of NASH and potential therapeutic targets are necessary.

Bioinformatics is a subject that uses computers to collect, 
sort out, and analyze biological information such as DNA 
and proteins. To a certain extent, it reveals the potential 
Mode of action and mechanism of disease at the molecular 
level. Because the occurrence of a disease may be related 
to tens of thousands of genes and proteins, we cannot 
individually determine whether they are related to the target 
disease. Under the influence of the era of Big data, many 
patient data will be stored in the database. We can further 
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explore on the basis of previous research to find more 
relevant potential genes and effect pathways. Bioinformatics 
analysis is widely used in screening core genes and pathways 
of diseases (11). 

In this study, we combined high-throughput sequencing 
data in the Gene Expression Omnibus (GEO) database 
and single-cell data of CRA patients. For high-throughput 
sequencing data, we screened core targets through gene 
function classification [Gene Ontology (GO)], pathway 
enrichment analysis [Kyoto Encyclopedia of Genes and 
Genomes (KEGG)], and protein-protein interaction 
(PPI) network analysis, and for single-cell data, used cell 
annotation analysis and screening of core effect pathways 
and specific signal pathways of cell communication. The 
purpose of the study was to find potential biomarkers, 
therapeutic targets, and related effect pathways of CRA-
NASH. Based on previous research, we preliminarily 
antic ipate that  NAFLD/NASH may promote the 
progression of CRA by regulating inflammatory responses, 
but the specific genes and effector pathways need to be 
analyzed. We present this article in accordance with the 
STREGA reporting checklist (available at https://jgo.
amegroups.com/article/view/10.21037/jgo-23-502/rc).

Methods

Gene expression profiling data collection

Based on the GPL570 and GPL14951 platforms, two 
matrix datasets (GSE37364, GSE89632) CRA samples, 
NASH, and controls were collected from the GEO 
database. The GSE37364 dataset included gene expression 
profiles of 38 CRA patients and 29 normal controls, while 
the GSE89632 dataset included gene expression profiles 
of 19 patients with NASH and 24 normal controls. The 
single-cell RNA sequencing data of 10 patients with CRA 
was also obtained from the GEO database (scRNA-seq, 
data number GSE201348). The data in the single cell 
dataset came from normal tissue, CRA tissue, or CRC 
tissue collected from patients. Based on these data, the 
changes in cell composition and cell state that occurred 
during the conversion of healthy colon from CRA to CRC 
were plotted. The overall design of the data collection 
process was to separate the nucleus from the sample using 
the impregnation method. After the nucleus separation, 
10× scRNA-seq and scATAC-seq measurements were 
performed. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Statistical analysis

Differentially expressed gene (DEG) selection
DEGs were screened using the “GEOquery”, “limma”, 
“complexheatmap”, “ggplot2”, and “umap” packages in R 
software (version 3.6.3). Samples of the CRA group, NASH 
group, and their respective controls were first downloaded 
from the GEO database with the aid of the GEOquery 
package, and the difference analysis of the two groups 
was performed using the limma package. The difference 
gene screening threshold was set at |log2 FC| ≥1 and adj. 
P<0.05, where the adjusted P value was used to reduce the 
false positive rate. The respective DEGs obtained from 
the two datasets were used to generate heat maps and 
volcano maps respectively using the “complexheatmap” and 
“ggplot2” packages in R software. In addition, overlapping 
DEGs between CRA and NASH were generated using 
“ggplot2” in R software to generate Venn diagrams, and 
these overlapping DEGs were retained for subsequent 
analysis.

Functional classification (GO) analysis
The overlapping DEGs between the above groups were 
collected and collated, and GO enrichment analysis 
was performed using the “clusterProfiler” package in R 
software. The adjusted P value <0.05 for GO enrichment 
was selected as the output results.

PPI network establishment
The study further explored the interactions between 
common genes. The intersecting genes obtained above 
were imported into the Protein Interaction Analysis 
Platform (http://string-db.org/) for network construction 
of PPIs, and a minimum interaction score higher than 0.4 
was considered significant and processed for PPI network 
visualization.

Core gene and key molecule screening
Based on the Maximal Clique Centrality (MCC) algorithm, 
we screened core genes with high connectivity in the PPI 
network by the cytoHubba plugin (https://apps.cytoscape.
org/apps/cytohubba). The MCODE analysis plug-in 
(MCODE, http://apps.cytoscape.org/apps/mcode) in 
Cytoscape software was then used to screen out key protein 
expression molecules. 

Cell annotation of CRA scRNA-seq data
The scurat package of R software was used to analyze the 

https://jgo.amegroups.com/article/view/10.21037/jgo-23-502/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-23-502/rc
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scRNA-seq data, and samples with mitochondrial gene 
percentage greater than five were excluded. Normalized 
data function was used to standardize data and extract genes 
with high coefficient of variation between cells. Principal 
component analysis (PCA) was then conducted and the 
P value of each principal component was calculated. The 
principal components with P value <0.05 were selected for 
subsequent t-distributed stochastic neighbor embedding 
(t-SNE) analysis, and the cells were divided into different 
clusters. SingleR R package was used to annotate the cell 
types of the obtained cell clusters.

Cell distribution analysis of NASH-CRA core gene
We loaded the core gene obtained in “Core gene and key 
molecule screening”, combined with the cell annotation 
results of single cells, and used the celldex package, SingleR 
package, and Monocle package to draw a bubble chart, 
violin chart, and scatter chart to show the distribution and 
intensity of the core gene of NASH-CRA in different types 
of cells.

Analysis of cellular communication
The CellChat package of R software was used for cell-cell 
interaction analysis. CellChat packet cell communication 
analysis was used to acquire gene expression data from 
single cells as input files and simulate the communication 
between cells by combining gene expression with elements 
of the interaction between signal ligands, receptors, and 
their cofactors. Relevant elements were then loaded into the 
Secreted Signaling and Cell-Cell Contact human databases. 
We combined the communication between cells with the 
core genes of NASH-CRA to screen the key pathways and 
factors in the process of cell communication.

Results

Data downloading arrangement and DEG screening

We downloaded two matrix  datasets  (GSE37364, 
GSE89632) for CRA and NASH from the GEO database, 
and after screening with adjusted thresholds of P value 
<0.05 and |log2 FC| >1.0, the corresponding volcano and 
heat maps were plotted for visualizing the DEGs of the 
two datasets, as shown in Figure 1A-1D. In addition, Venn 
diagram analysis was performed to evaluate the common 
DEGs between GSE37364 and GSE89632. As shown in 
Figure 1E, 63 overlapping DEGs were identified.

GO analysis of DEGs

Using the clusterProfiler package in R software, we 
performed GO enrichment analysis to better understand 
the function of DEGs, and after adjusting the threshold 
screening of P<0.05, selected the top 10 significantly 
enriched GO terms. The results are shown in Figure 2.

PPI network construction and core gene screening

PPI network analysis and visualization were first performed 
based on the STRING database (Figure 3) to identify the 
interactions between overlapping DEGs. The obtained 
results were then imported into Cytoscape software for 
cytoHubba analysis to identify core genes. Based on the 
MCC algorithm, the top 10 genes identified as potential 
central genes were FOS, EGR1, MYC, PTGS2, FOSL1, 
IL1B, NR4A2, IER3, ETS2, and TEAD4 (Figure 4A, Table 1).  
The MCODE plugin was used to identify important 
gene cluster modules and obtain cluster scores (filtering 
criteria: degree cutoff =2; node score cutoff =0.2; k-core 
=2; maximum depth =100), and finally one core gene 
cluster module was obtained, as shown in Figure 4B. These 
modules contained six potential core genes: IL1B, FOSL1, 
EGR1, MYC, PTGS2, and FOS, and the specific cluster 
scores are shown in Table 2. 

Cell annotation of scRNA-seq data

The scRNA-seq data used in this study were from 90,000 
cells (9,000 cells per sample) from 10 patients with CRA. 
Seurat R package was used to analyze the scRNA-seq 
colorectal cancer cells, and the first 1,500 genes with the 
largest coefficient of variation of PCA were extracted. The 
first 20 principal components identified were included 
in t-SNE analysis, and 90,000 cells were divided into 19 
clusters (clusters 0–18). Subsequently, the DEGs in each 
cluster were identified (P<0.05) and defined as marker genes 
of corresponding clustering, and the clustering results and 
corresponding expression amount of DEGs were displayed 
by thermography. To study the characteristics of cells in 
each cluster, we used SingleR package to obtain cell type 
annotations in different clusters. The results showed 19 
clusters, including seven cell types. Among them, clusters 
0–10th, 12th, and 14th were epithelial cells. Cluster 11 
was tissue stem cells, cluster 13 was T cells, cluster 15 
was macrophages, cluster 16 was B cells, cluster 17 was 
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embryonic stem cells, and cluster 18 was endothelial cells, 
as shown in Figures 5-7. 

Cell distribution of NASH-CRA core genes

The core genes of NASH-CRA were loaded and the cell 
annotation results of single cells were combined. The 
celldex package, SingleR package, and monocle package 
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Figure 4 Visualization of core genes. (A) Visualization of CytoHubba analysis results. (B) Visualization of MCODE analysis results; 
MCODE, Molecular Complex Detection.

Table 1 Results of CytoHubba analysis (top 10 genes in the 
network ranked by the MCC method)

Rank Name Score

1 FOS 77

2 EGR1 66

3 MYC 62

4 PTGS2 58

5 FOSL1 37

6 IL1B 31

7 NR4A2 8

8 IER3 7

9 ETS2 6

9 TEAD4 6

MCC, Maximal Clique Centrality.

Table 2 Results of MCODE analysis (six genes in the network 
analyzed by MCODE) 

Name MCODE score

IL1B 4.00

FOSL1 4.00

EGR1 3.73

MYC 3.73

PTGS2 3.73

FOS 3.73

MCODE, Molecular Complex Detection.

0.3 

0.2 

0.1 

0.0

0.000 0.025 0.050 0.075 0.100

Th
eo

re
tic

al
 [r

un
if(

10
00

)]

PC: P-value

Empirical

PC 1: 0
PC 2: 0
PC 3: 0
PC 4: 0
PC 5: 0
PC 6: 0
PC 7: 6.23e−256
PC 8: 2.16e−170
PC 9: 2.39e−274
PC 10: 2.46e−116
PC 11: 1.38e−252
PC 12: 1.47e−97
PC 13: 5.58e−183
PC 14: 1.77e−210
PC 15: 6.55e−104
PC 16: 4.66e−189
PC 17: 1.31e−132
PC 18: 4.84e−113
PC 19: 1.94e−135
PC 20: 7.76e−87

Figure 5 Principal component analysis of all cells and P value of 
each principal component. PC, principal component. 
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were then used to analyze the distribution and intensity of 
the core genes in different types of cells and create a visual 
display, as shown in Figures 8-10. Based on the visualization 
results of the three graphs, it could be seen that the 
distribution and expression of FOS and ETS2 were the 
most obvious in cells.

Cell communication analysis

We used the “clusterProfiler” package in R software to 
conduct KEGG signal pathway enrichment analysis on 
NASH-CRA core genes and selected the adjusted P value 
<0.05 as the output result (Figure 11).

The CellChat package of R software was used to analyze 
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the cell communication of CRA cell samples and identify the 
cell signal network related to NASH-CRA. Figure 12 shows 
the overall communication conditions of all cell clusters, 
Figure 12A shows the number of communication genes in 
the cell cluster, and Figure 12B shows the communication 
strength of the cell cluster genes. In addition, from the cell 
communication network, we identified the signal pathway 
related to CRA (Figure 13) and intersected the KEGG 
pathway enrichment results of NASH-CRA core genes 
before determining the key cell communication pathway 
of NASH-CRA as the WNT pathway. The visualization 
of the results in the signal path is shown in Figures 14,15. 
As shown in Figure 14, the expression of Embryonic stem 
cells was the most active in the WNT pathway, with the 
main signal docking channels including WNT2B − (FZD6 
+ LRP5) and WNT2B − (FZD6 + LRP6). The “transmitter” 
in Figure 15 referred to the signal source, and the “receiver” 
referred to the signal target. Embryonic stem cells were 
both “transmitters” and “receivers” in the WNT pathway. 
WNT2B existed as a “transmitter” in Embryonic stem cells, 
sending signals to FZD6, LRP5, and LRP6 of Embryonic 
stem cells for reception.

Discussion

Increasingly, studies are confirming the correlation between 

CRA and NAFLD/NASH. A previous cross-sectional study 
showed the prevalence of CRA was 40.7% in patients with 
NAFLD, significantly higher than the 28.1% in patients 
without NAFLD, and after adjusting for confounding 
factors of hyperlipidemia, diabetes, and obesity, NAFLD 
remained independently associated with a higher incidence 
of adenomas (12). Further, several meta-analyses have 
shown the severity of NAFLD is one of the independent 
risk factors for patients with CRA, with a 1.61-fold increase 
in the incidence of CRAs and a 2.34-fold increase in the 
incidence of advanced colorectal neoplasms in patients 
with severe NAFLD (8,9). In addition, the incidence of 
both NAFLD and colorectal neoplasms was increased in 
patients with risk factors for the metabolic syndrome (12,13). 
NASH, the progressive stage of NAFLD, is a critical 
stage for the development of cirrhosis and hepatocellular 
carcinoma, and patients with NASH have a higher 
prevalence of CRA and advanced colorectal tumors (14).  
In a previous study, it was shown that advance fibrosis 
was significantly associated with CRA in patients with  
NAFLD (15). We suggest this may be because the 
development of advanced fibrotic NAFLD is associated 
with severe insulin resistance and pro-inflammatory 
factors (16,17), which in turn cause hyperinsulinemia due 
to insulin resistance, leading to colorectal tumor growth 
and resistance to apoptosis (14,18). However, to date, the 
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mechanism of the association between CRA and NAFLD/
NASH has not been fully clarified. Exploration of the 
molecular mechanisms between CRA and NASH can help 
in early identification and intervention of the disease, which 
is undoubtedly of great clinical significance. 

In this study, a series of raw signal analyses were 
performed on two independent matrix datasets of CRA 
and NASH, and 63 overlapping DEGs between CRA and 
NASH were obtained based on the GEO database. The 
results of GO enrichment analysis showed that DEGs were 
mainly enriched in positive regulation of inflammatory 
response and external stimuli, and contraction of smooth 
muscle. This result suggests DEGs between CRA and 
NASH are associated with inflammation and immune 
function, and is consistent with previous studies (19,20). 
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Subsequently, we took the results of Cytoscape’s 
cytoHubba plugin and MCODE plugin analysis and 
obtained six core genes in the PPI network, including FOS, 
EGR1, MYC, PTGS2, FOSL1, and IL1B. These six genes 
were most significantly differentially expressed in CRA 

patients and NASH patients and may be closely related to 
the pathogenesis of CRA and NAFLD/NASH.

Separately, FOS and FOSL1 belong to the same FOS 
family proteins. These proteins are transiently and rapidly 
expressed in response to external stimuli (21) and form 
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Figure 12 Overall communication condition of all cell clusters. (A) Circle sizes are proportional to the number of cells in each cell group.  
(B) Edge width represents the communication probability.
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structurally stable heterodimers with JUN family proteins, 
resulting in AP-1, a transcription factor complex. AP-1 
regulates cell proliferation, differentiation, senescence, 
and apoptosis, and is involved in cell migration, immunity, 

inflammation, and many other aspects (22,23). Studies 
show FOS/FOSL1 is overexpressed in colorectal tumors 
and is an important driver of colorectal cancer metastasis 
(24-26), and Jones et al. (27) showed the expression of FOS 
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was associated with the development of insulin resistance. 
In addition, oxidative stress and insulin resistance are 
major factors in the progression from steatosis to NASH 
in NAFLD, a process facilitated by DNA binding of AP-1 
and NF-κB (28). EGR1 is a member of the zinc-finger 
transcription factor family and has important regulatory 
roles in cell growth, proliferation, differentiation, and 
apoptosis (29,30). Current studies suggest EGR1 can be 
both a tumor suppressor and a tumor promoter, depending 
on the cell type and external stimuli (31,32). In colorectal 
cancer tissues, EGR1 expression is significantly upregulated 
compared to normal mucosa, probably because EGR1 
affects the progression of colorectal cancer by promoting 
the proliferation of tumor cells (32). Interestingly, in 
patients with NAFLD, EGR1 is positively correlated with 
the expression of the FOS gene family and negatively 
correlated with the degree of steatosis, and is lowly 
expressed in patients with insulin resistance. These may 
be important factors contributing to the development and 
progression of NAFLD (33). MYC is a proto-oncogene, 
and activation of a series of transcription factors encoded 
by it is frequently seen in many human tumors (34). These 
transcription factors can form heterodimers with the 
bHLH-LZ protein MAX and promote or enhance the 
transcription of specific target genes through the binding of 
this complex to the enhancer cassette (E cassette) consensus 
sequence (35). MYC modulates the host immune system 
through a mechanism of immune checkpoints, specific 
receptors, and secreted cytokines that contribute to the 
development and continued progression of cancer (34). In 

patients with colorectal tumors, MYC is a major effector of 
Wnt-β-linked protein pathway activity and a central node 
linking downstream misexpression to dysregulation of Wnt-
β-linked proteins and other signaling pathways (36), which 
may play an important role in CRA/CRC pathogenesis 
(37,38). Aberrant MYC is involved in the development 
of NAFLD by regulating m6A, which is associated 
with lipid deposition, inflammation, and the immune 
microenvironment in NAFLD (39). In contrast, activation 
of the Wnt-β-linked protein signaling pathway strongly 
accelerates MYC-driven oncogenesis in the liver (40).  
PTGS2 is expressed as COX-2, a key enzyme for the 
conversion of arachidonic acid to prostaglandins, is induced 
by cytokines and growth factors, and is upregulated 
during inflammation. PTGS2 acts on cell proliferation, 
angiogenesis, apoptosis receptor, invasion, and the immune 
response by activating a PGE2 response, among others 
(41,42). Studies have shown low doses of aspirin reduce the 
incidence of colorectal cancer and adenoma recurrence, 
which is associated with high COX-2 expression, and 
COX-2 inhibitors are now widely used in colorectal cancer 
chemoprevention (43-45). In contrast, high expression 
of PTGS2 also interferes with the metabolism of normal 
substances in the liver, leading to the accumulation of 
triglycerides in hepatocytes, insulin resistance, and release 
of inflammatory factors, which affect the development 
and progression of liver disease (46-49). Of interest is that 
intestinal flora suppresses tumor immunity by driving the 
PTGS2 pathway, which in turn promotes NAFLD/NASH 
progression, while intestinal flora is altered in CRA/
colorectal cancer patients by modulating local immune 
responses and producing genotoxins, which in turn affects 
tumorigenesis and progression (48,50-52). The mechanism 
of action of intestinal flora on CRA and NAFLD remains 
to be further investigated. In contrast, IL1B belongs to the 
interleukin 1 cytokine family, and its expressed IL-1β is an 
important pro-inflammatory cytokine involved in a variety 
of autoimmune inflammatory responses and multiple 
cellular activities leading to insulin resistance by inhibiting 
insulin receptor signaling and inducing inflammatory 
gene transcription (48,53). A study by Proença et al. (54)  
showed that  immune regulat ion of  inf lammatory 
responses to bacterial invasion increased the expression 
of pro-inflammatory IL1B and other factors and miRNA 
expression, which may drive the progression of CRA to 
colorectal cancer. In addition, common variants located in 
the IL1B gene rs1143634 were shown to be independently 
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associated with advanced histological features of NASH, 
increasing the risk of liver parenchymal injury in the form 
of ballooning and increased Mallory vesicles, as well as 
severe steatosis or cirrhosis (55).

We conducted cell annotation and cell communication 
analysis of the single-cell data set of patients with CRA, and 
combined with the matrix data of CRA-NASH, the results 
showed the key pathway of CRA-NASH may be the WNT 
pathway, and the main cell signal communication pathways 
include WNT2B − (FZD6 + LRP5) and WNT2B − (FZD6 
+ LRP6). Combined with the KEGG pathway enrichment 
results of CRA-NASH, MYC and FOSL1 were also genes 
playing a key regulatory role in the WNT pathway. MYC 
transcription-translated proteins were the main effectors of 
activity of the Wnt-β connexin pathway, and regulated the 
production of Wnt-α connexin, which was closely related 
to the process of CRA progression to colorectal cancer. At 
the same time, some studies suggest activation of the Wnt-β 
connexin signal pathway regulated by MYC accelerates the 
occurrence of liver tumors, which requires close attention 
in clinical practice (36-40). As an important driving factor 
of colorectal cancer metastasis, FOSL1 participates in 
the process of NAFLD developing into NASH through 
oxidative stress and insulin resistance. It could be seen that 
the prognosis of CRA and colorectal cancer was closely 
related to the development of NAFLD/NASH.

Based on the available studies, we hypothesize that these 
six core genes have an important impact on the development 
of CRA and NASH, and could be potential diagnostic, 
therapeutic, or preventive targets in the future. The key 
pathway of CRA-NASH may be the WNT pathway, and the 
main cell signal communication pathways include WNT2B 
− (FZD6 + LRP5) and WNT2B − (FZD6 + LRP6). This 
send-receive process occurs in embryonic stem cells. 

Conclusions

Our study found the core genes of CRA-NASH, including 
FOS, EGR1, MYC, PTGS2, FOSL1, and IL1B, were up-
regulated during the development of CRA and NASH, 
and might interfere with the pathophysiological processes 
of CRA and NASH by participating in inflammation and 
immune responses. In addition, the key pathway of CRA-
NASH might be the WNT pathway. The main cell signal 
communication pathways included WNT2B − (FZD6 + 
LRP5) and WNT2B − (FZD6 + LRP6). The send-receive 
process occurred in embryonic stem cells. These findings 

might help to formulate early diagnosis and treatment 
strategies for CRA in NASH patients, and further explore 
corresponding prognostic markers and potential pathways. 
In summary, the significance of scRNA-seq in exploring 
tumor heterogeneity lies in promoting our understanding 
of the expression program of tumor related genes in tumor 
development patterns. However, it must be acknowledged 
that the biggest challenge it currently faces is that this 
analysis may miss out on some biologically significant 
gene expression programs, such as those that only involve 
a few genes or exist in rare cells, which requires further 
exploration by other research methods. Our next research 
plan is to develop an appropriate basic research protocol to 
validate the results of this study.
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