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In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an
unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated
protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized
MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK,
and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during
heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of
preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR
injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and
reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases,
but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment
before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate
combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new
storage solutions, and gentle reperfusion.

1. Introduction

Heart transplantation is the final therapeutic option for heart
failure [1]. Over the past two decades, advances in immuno-
suppression and antimicrobial agents have improved out-
comes after heart transplantation. An analysis of the UNOS
database in 14,401 first-time orthotopic heart transplant
recipients between the years 1999 and 2006 showed that the
survival rate at 30 days, 1 year, and 5 years was 94%, 87%,
and 75%, respectively, for the young group (<60 years of
age) and 93%, 84%, and 69% for the older group [2]. Graft
vasculopathy, a unique form of accelerated coronary artery
disease, is a major cause of late graft failure [3]. The disease
is characterized by intimal thickening mainly due to smooth
muscle cell proliferation and fibrosis. Occlusive narrowing of
the coronary vessels can develop within a few months and is
not prevented by current treatments.

The pathogenesis of graft vasculopathy is complex and
has been reviewed elsewhere [4–6]. The observation that,
while graft coronary arteries develop lesions, the host’s native
arteries are spared suggests a major pathogenic role for
immune rejection. Consistent with this, while hearts trans-
planted into a genetically different recipient are affected,
those placed back in the original donor strain are spared [7].
Clinical data support a major role for chronic rejection in the
development of graft vasculopathy and graft failure. Indeed,
the degree of donor-recipient human leukocyte antigen
(HLA) matching correlates significantly with graft survival
[8–10]. Moreover, acute cellular rejection has been associated
with an increased risk of developing graft vasculopathy
[11–14].

Both the innate [15] and the adaptive immune system
including B cells and antibody formation against graft
antigens [16] play central roles in the development of graft
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vasculopathy. Nonimmunological factors such as dyslipi-
demia, hypertension, drug toxicity, and infections also play
contributory roles. Accordingly, the current paradigm is
that graft vasculopathy results from repeated immune and
nonimmune-mediated insults to graft coronary endothelium
leading to endothelial inflammation and dysfunction, vascu-
lar cell proliferation, fibrosis, and intimal thickening.

Extended cold ischemic times during heart transplanta-
tion have been associated with increased risk of developing
graft vasculopathy and failure both in animal models [17, 18]
and in humans [19]. Moreover, prolonged times between
donor brain death and organ retrieval have been associ-
ated with increased mortality in cardiac transplant recip-
ients [20]. Graft coronary microvascular dysfunction after
ischemia and reperfusion can culminate in primary graft
failure or untreatable chronic rejection [21].

Cold ischemia stimulates the expression of inflammatory
mediators acting as “danger signals” and amplifying tissue
injury and graft rejection. Toll-like receptors (TLRs) play a
central role in this regard [22]. Consistent with this, systemic
administration of anti-TLR-2 antibody reduces neutrophil,
macrophage, and T-lymphocyte infiltration in mouse hearts
after ischemia and reperfusion [23]. Multiple strategies
applied at the time of organ transplantation have a potential
for limiting cold ischemic organ damage, reperfusion injury,
and graft immunogenicity [24, 25].

2. Myocardial Ischemia/Reperfusion (IR) Injury

Early observations in animal models of myocardial infarction
indicated that ischemic cell death progresses as a “wavefront”
phenomenon correlated to the duration of ischemia [26],
and that early reperfusion can salvage reversibly injured
ischemic myocardium [27]. Subsequently, morphological
changes appearing during reperfusion, including cardiomy-
ocyte swelling and loss of sarcomeric organization, were
recognized [28]. Moreover, interventions applied at the onset
of reperfusion were still able to limit infarct size, suggesting a
contributory role for reperfusion in lethal cell injury.

A comprehensive discussion of the molecular mecha-
nisms of myocardial IR injury is beyond the scope of the
present paper. These mechanisms have been reviewed else-
where [29, 30]. It is possible here to briefly mention the
role of mitochondria as both a source and a target of IR
injury [31, 32]. Under normoxic conditions, mitochondria
use oxygen to synthesize adenosine triphosphate (ATP).
Sustained hypoxia leads to ATP depletion, acidosis, intracel-
lular calcium accumulation, mitochondrial swelling, and cell
death [30]. Cold ischemia exacerbates swelling via inhibition
of the Na+/K+ ATPase. At reperfusion, calcium is taken up
into the sarcoplasmic reticulum (SR) by the SR calcium
ATPase. Calcium overload then leads to calcium release into
the cytosol, cardiomyocyte hypercontracture, membrane
disruption, and cell death [30].

During ischemia, mitochondria produce reactive oxygen
species (ROS). An extra burst of ROS generation takes
place at reperfusion. ROS mediates opening of the mito-
chondrial permeability transition pore (MPTP) leading

to increased inner mitochondrial membrane permeability,
mitochondrial depolarization, ATP depletion, mitochondrial
matrix swelling, outer mitochondrial membrane rupture,
cytochrome c release, and apoptosis [30, 32]. In addition,
ROS activates multiple molecular cascades of inflammation
[33]. Proinflammatory cytokines, such as IL-1 and TNFα,
and chemokines are produced within hours of reperfusion
in allogeneic and syngeneic grafts alike. Chemokines mediate
early migration of neutrophils and macrophages into the
graft [34, 35]. Early T-cell reaction precedes alloantigen
priming and induces graft necrosis [36, 37]. Inflammatory
activation of graft endothelium [38], platelets, the coag-
ulation cascade, and the complement system [39] plays
important roles in early graft injury and subsequent graft
vasculopathy.

A multitude of intracellular signal transduction pathways
are activated during myocardial IR injury [29, 30]. Among
them, mitogen-activated protein kinases (MAPKs) are key
regulators of cell function and survival [40, 41]. The present
paper aims to discuss the role of MAPK activation in
myocardial IR injury and its potential implications for heart
transplantation.

3. MAPK Subfamilies

The MAPK family includes four major serine/threonine
protein kinase subfamilies. Each MAPK subfamily comprises
successively acting kinases including an upstream MAPK
kinase kinase, a MAPK kinase, and a MAPK (Figure 1) [40].
Distinct isoforms of a MAPK bind molecules with different
affinities and can activate distinct signaling pathways. In
response to a variety of stress stimuli, MAPKs convey
extracellular signals to their intracellular targets, thereby
regulating cell survival, function, growth, and differentiation
[41]. The best characterized MAPK subfamilies are c-Jun
NH2-terminal kinases (JNKs), extracellular signal-regulated
kinase-1/2 (ERK1/2, also known as p42/p44 MAPK), p38
MAPKs, and the big MAPK-1 (BMK1/ERK5). The role of
each MAPK subfamily in myocardial IR injury is discussed
in the next sections.

3.1. ERK1/2 Activation during Myocardial IR Injury. ERK1/2
was discovered as the first member of the MAPK family in
1990 [42]. This serine/threonine protein kinase is tyrosine-
phosphorylated in response to various extracellular signals.
We observed a ≈2-fold increase in ERK1/2-specific in vitro
kinase activity in isolated-perfused adult rat hearts subjected
to 20 min of ischemia followed by 15 min of reperfusion [43].
Several studies support a protective role for the MEK1-ERK2
signaling pathway against IR injury [44–47]. Accordingly,
this pathway has been identified as a central component of
the so-called “Reperfusion Injury Salvage Kinase” (RISK)
pathway [48].

3.2. JNK Activation during Myocardial IR Injury. JNK was
discovered as the second member of the MAPK family in
1991 [49]. It is primarily activated by various cellular stresses
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Figure 1: Schematic depicting the activation cascades of the four major MAPK subfamilies and corresponding effects on mitochondrial
chromosome c release and apoptosis. ERK1/2 and ERK5/BMK1 have been associated with cell survival, whereas JNK and p38 MAPK have
been predominantly associated with apoptosis.

such as heat, UV light, and cytokines. We observed a ≈6-
fold increase in JNK-specific in vitro kinase activity and a
≈2-fold increase in phosphorylated c-Jun protein in nuclear
extracts from isolated-perfused rat hearts subjected to 20 min
of ischemia and 15 min of reperfusion [43]. JNK activation
was increased during ischemia as well as reperfusion, in line
with a limited number of previous studies [44, 50, 51]. In
contrast, a larger number of studies reported JNK activation
predominantly at reperfusion [52–56].

Dichotomous effects of JNK activation during IR injury
including both cardioprotection [56–59] and myocardial
damage [55, 60–64] have been reported. A potential mech-
anism of JNK-mediated protection is reactivation of Akt and
enhanced cardiomyocyte survival after hypoxic injury [56].
Data in genetically modified mice show that JNK1/2 knock-
out mice and, paradoxically, transgenic mice overexpressing
MKK7, the MAPK kinase upstream of JNK1/2, are each
significantly protected from IR injury [65]. These findings
illustrate the complexity of the biological effects of JNK
activation.

A word of caution is warranted regarding the reliance on
curcumin as a specific JNK inhibitor in early studies [66].
We therefore used a cell-penetrating peptide inhibitor of
JNK, D-JNKI-1, as a more selective agent. In the isolated-
perfused adult rat heart, D-JNKI-1 administered before
the ischemic period selectively prevented JNK activation
and improved post-ischemic cardiac function, cytochrome
c release, caspase-3 activation, and apoptosis [43]. D-JNKI-
1 administered at reperfusion failed to improve cardiac
function but still prevented apoptosis. In vivo, D-JNKI-1
reduced myocardial infarct size by half after coronary artery

occlusion and reperfusion in rats [43]. D-JNKI-1 similarly
reduced cerebral infarct size after common carotid artery
occlusion and reperfusion in adult rats [67].

Inconsistent findings from previous studies regarding the
role of JNK activation during IR injury likely reflect differen-
ces in the experimental models and JNK inhibitors used, as
well as JNK isoform-specific effects. It has been shown that
inhibition of JNK1 isoform, but not of JNK2 isoform, pre-
vents apoptosis induced by IR injury in rat cardiomyocytes
[61].

3.3. p38 MAPK Activation during Myocardial IR Injury. The
p38 MAPK subfamily comprises 4 main isoforms, p38α,
p38β, p38γ, and p38δ, of which p38α and p38γ are most
abundantly expressed within the myocardium. The role
of p38 MAPK activation during myocardial IR remains
controversial [68–70]. We observed a≈2-fold increase in p38
MAPK-specific in vitro kinase activity in isolated-perfused
rat hearts subjected to 20 min of ischemia and 15 min of
reperfusion [43]. These results are in agreement with pre-
vious data [71]. p38 MAPK activation contributes to tissue
injury induced by TNFα in response to hydrogen peroxide
generated during reperfusion [33]. Moreover, p38 MAPK
activation counteracts adenosine- or insulin-induced cardio-
protection against IR injury [72, 73]. p38 MAPK inhibition
limits infarct size and polymorphonuclear accumulation in
mouse hearts subjected to IR injury [74]. Transgenic mice
expressing a dominant-negative p38αmutant or a dominant-
negative mutant of MKK6, a MAPK kinase upstream of p38
MAPK, are each significantly protected from IR injury [75].
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These data suggest a potential role for p38α isoform as a
mediator of myocardial IR injury.

Much of our current knowledge regarding cardiopro-
tection comes from studies of preconditioning (PC) and
postconditioning (PostC). Although a majority of these
studies relate to nontransplanted hearts, they are relevant to
heart transplantation.

4. Ischemic Preconditioning (IPC)

IPC was originally described as an experimental phe-
nomenon whereby repeated episodes of brief, sublethal
ischemia induced tolerance to a successive, prolonged period
of lethal ischemia [30, 76, 77]. In the anesthetized dog,
four 5 min periods of occlusion of the left coronary artery,
interspersed with 5 min periods of rapid reflow, markedly
attenuated infarct size after occlusion of the same artery for
40 min. Two distinct “windows” of IPC-mediated protection
have been described [78, 79]. The first window of protection
is induced within minutes, lasts for 1-2 h, is dependent on
activation of MAPKs as well as of other signaling pathways,
and attenuates infarct size but not contractile dysfunction
nor myocardial stunning. The second window of protection
takes place between 24 and 72 h after the triggering phase
of IPC, requires synthesis of protective proteins within the
heart, and limits cell death as well as contractile dysfunction
[80]. IPC involves changes in energy metabolism, ionic ho-
meostasis, and gene regulation as well as a decrease in
ROS generation, neutrophil activation, and apoptosis [81].
Pharmacological agents such as opioids [82], inhalational
anesthetics [83], adenosine, isoproterenol, and nitric oxide
(NO) donors, [84] along with stress stimuli such as rapid car-
diac pacing and thermal stress can precondition myocardial
tissue to subsequent ischemia [30].

A comprehensive discussion of the molecular mecha-
nisms of IPC is beyond the scope of the present paper.
The interested reader is referred to recent reviews published
elsewhere [30, 77, 85, 86]. It is possible here to merely
mention a few molecular mechanisms. While the triggering
phase of IPC requires NO and superoxide synthesis, IPC
mitigates NO, superoxide, and peroxynitrite overproduction
during subsequent IR [87]. Beside MAPKs, protein kinases
activated by IPC include protein kinase C (PKC) isoforms
[88, 89], phosphatidylinositol 3-kinase (PI3K) and its sub-
strate kinase Akt [90, 91], receptor tyrosine kinases of the Src
family [92, 93], the JAK/STAT pathway [94, 95], and glycogen
synthase-3β (GSK-3β) [96]. The latter is a downstream
kinase phosphorylated by other kinases such as ERK1/2 and
Akt which has been implicated in cardioprotection including
inhibition of MPTP opening at reperfusion. However, recent
data suggest that decreased oxidative stress, rather than
mitochondrial protein phosphorylation, is responsible for
inhibition of MPTP opening in the context of IPC [97].

A number of studies have demonstrated MAPK activa-
tion during the triggering phase of IPC, at reperfusion, or
both. In some cases, IPC has been associated with decreased
MAPK activation during subsequent ischemia, suggesting a
detrimental role for MAPK activation in this context. The

activation of the different MAPK subfamilies in precondi-
tioned hearts is discussed in the next sections.

4.1. ERK1/2 Activation during IPC. Both in vitro and in
vivo studies have demonstrated ERK1/2 activation and
cardioprotection after IPC [98–101], which was abolished by
an ERK1/2 inhibitor in a pig model of IR injury [99]. In addi-
tion, hypoxic PC [102, 103] as well as delayed hypoxic PC
[104, 105], adenosine-induced PC [106] as well as adenosine-
induced delayed PC [107], isoflurane/desflurane-induced PC
[83, 108], metabolic PC [109], and opioid-induced delayed
PC are associated with increased ERK1/2 activation [110].
Moreover, mitochondrial KATP channel openers activate
ERK1/2 by an oxidant-dependent mechanism [111].

Several studies reported biphasic ERK1/2 activation
during IPC [82, 83]. The first phase of activation takes
place immediately after the PC stimulus, and the second
phase of activation occurs at reperfusion. Blocking the first
phase of activation prevents the second one [83]. In response
to IPC, PKCε induces the activation of ERK1/2 in the
cytosol and its translocation to the nucleus, with increased
activation of NF-kB and AP-1 transcription factors and
protection against cardiomyocyte apoptosis [101]. Another
mechanism by which ERK1/2 can impart protection to
hypoxic myocardium involves phosphorylation of hypoxia-
inducible factor (HIF)-1 [104].

A small number of studies either reported ERK1/2
activation during IPC [90] or metabolic preconditioning
[112] without a contribution of it to the observed protection,
or failed to detect ERK1/2 activation during IPC [113, 114].

4.2. JNK Activation during IPC. Several studies documented
increased JNK activation during the triggering phase of IPC
[55, 98, 100, 101, 113, 115–117] or, less frequently, during
the sustained ischemic period after the IPC stimulus [113]
or during reperfusion [55, 117]. Some studies suggested
a potential role for JNK as a mediator of IPC-induced
protection [100, 116], but this was not confirmed by other
reports [117, 118]. Decreased JNK activation was observed in
preconditioned brains, kidneys, and hepatocytes [119–121],
suggesting that JNK activation may contribute to IR injury in
these tissues.

4.3. p38 MAPK Activation during IPC. Several studies
reported increased p38 MAPK activation during the trig-
gering phase of IPC and reperfusion [83, 113, 116, 117,
122–132]. A limited number of studies showed p38 MAPK
activation during the sustained ischemic period after the
IPC stimulus [133–135]. p38 MAPK activation has also been
observed in hypoxic PC [136, 137] and delayed hypoxic
PC [138] as well as in NO, [139], angiotensin II [140], or
adenosine-induced PC [115, 141–143].

The role of p38 MAPK as a potential mediator of pro-
tection in the preconditioned heart remains controversial. A
majority of studies showed p38 MAPK activation during the
triggering phase of PC [85, 110, 116, 122, 123, 125, 127–129,
131–138, 140, 141, 143–145]. IPC appears to require p38α
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but not p38β isoform activation [145]. Potential p38 MAPK-
mediated protective mechanisms include phosphorylation of
small heat shock protein (Hsp) 27, which stabilizes the actin
cytoskeleton [146–148], and αβ crystalline [124].

A distinct group of studies failed to support a contrib-
utory role for p38 MAPK activation in IPC [50, 110, 149–
152], hypoxic PC [140, 153], NO-induced PC [154], delayed
metabolic PC [109, 112], and opioid-induced delayed PC
[110]. A third group of studies showed reduced p38 MAPK
activation during the sustained ischemic period after the PC
stimulus [140, 150, 152–154], suggesting a detrimental role
for p38 MAPK activation in this setting. Consistent with this,
numerous studies demonstrated that a p38 MAPK inhibitor
applied during the sustained ischemic period can protect the
myocardium against IR injury [44, 116, 125, 126, 140, 147,
149–153, 155, 156].

These inconsistent findings from different studies are
difficult to reconcile; however, it should be considered that
the mechanism of p38 MAPK activation can differ by
circumstance [70], and that distinct p38 MAPK isoforms
activate different signaling pathways. Increased p38α isoform
activation during sustained ischemia [50, 153] has been
associated with cardiomyocyte apoptosis [157, 158], contrac-
tile dysfunction [158], and increased infarct size [159]. p38
MAPK has been shown to negatively regulate myocardial
contractility [160–162].

4.4. IPC and BMK1/ERK5 Activation. The big MAP kinase
1 (BMK1/ERK5) pathway [163] is activated in the heart in
response to IPC [164] and has been implicated as a potential
mediator of cardioprotection [165]. BMK1/ERK5-induced
phosphorylation of the mitochondrial protein BAD has
been shown to attenuate endothelial cell and cardiomyocyte
apoptosis [166–168]. Similarly, BMK1/ERK5 activation dur-
ing cerebral IPC prevents apoptosis in the ischemic rat
hippocampal CA1 region [169].

5. Remote Preconditioning (RPC)

RPC is a biological mechanism of interorgan protection
against IR injury [170, 171]. Brief cycles of IR applied to
a tissue remote from the heart, such as the small intestine
[172] or the upper or lower limb [173], before the onset
of myocardial ischemia limit myocardial infarct size. A
comparison of RPC and IPC induced by occlusion of the
superior mesenteric artery and the left coronary artery,
respectively, in a rat model of myocardial IR injury showed
a greater effect of IPC compared with RPC in terms of
infarct size reduction [174]. In this study, IPC was associated
with increased ERK1/2 and JNK1 activation but reduced p38
MAPK activation in the heart. In contrast, RPC triggered
by occlusion of the superior mesenteric artery induced
ERK1/2 and JNK1 activation in the small intestine without
participation of MAPKs in the heart. Each of the applied
ERK1/2, JNK, and p38 MAPK inhibitors abrogated RPC-
mediated protection. An underlying mechanism may be
PKCε isoform activation in the heart via remote ischemia-
induced transmitter release [175]. A distinct study showed

equivalent degrees of cardioprotection induced by IPC and
RPC, while suggesting a role for bradykinin as a mediator of
cardiac PC at a distance [176].

6. Postconditioning (PostC)

Ischemic PostC can be elicited by repetitive cycles of rapid
reflow/reocclusion in the initial 2 min after release of a
protracted coronary occlusion [29, 30, 177–181]. Because
tissue injury is initiated within minutes of reperfusion, PostC
must be applied at the onset of reperfusion [181]. PostC has
limited infarct size in all species tested so far [177, 178, 182–
184], including humans [185, 186]. The degree of PostC-
mediated cardioprotection is comparable to that induced
by IPC [177, 178, 186], or slightly lower than it [187].
PostC activates adenosine receptors and the NO/cGMP
pathway [188, 189], mitochondrial KATP channels, PKC
and protein kinase G (PKG) [190], and the RISK pathway
including ERK1/2 [188] and PI3K/Akt [184, 189, 191]. In the
rabbit model of myocardial IR injury, an ERK1/2 inhibitor
abolished protection by brief episodes of coronary occlusion
applied at reperfusion [188]. PostC has also been shown to
reduce oxidative stress in a senescent mouse model [192]
and to attenuate cardiomyocyte apoptosis after simulated
ischemia via JNK and p38 MAPK inhibition [193]. Moreover,
PostC has been shown to inhibit MPTP opening in the early
minutes of reperfusion [194].

The RISK pathway is not the only cardioprotective
pathway [195]. In mouse and rabbit hearts, protection after
ischemic PostC was associated with increased activation
of ERK, but not Akt [183, 196]. In pigs, ischemic PostC
enhanced ERK and Akt activation during reperfusion with-
out a decrease in infarct size [197]. A distinct study in
anesthetized pigs demonstrated myocardial protection after
PostC without an increase in Akt, ERK, and GSK-3β phos-
phorylation and with no effect of PI3K or ERK1/2 blockade
[198]. Gentle reperfusion likewise reduced infarct size in pigs
without activation of the RISK pathway [199]. The so-called
“Survivor Activating Factor Enhancement” (SAFE) pathway
[200] which includes the JAK-STAT signaling pathway [94,
95], may be responsible for cardioprotection in the absence
of activation of the RISK pathway.

Pharmacological stimuli including inhalational anes-
thetics can replace the ischemic PostC stimulus applied
at the onset of reperfusion [201–203]. While myocardial
protection after ischemic PostC is not enhanced by IPC
[187], pharmacological PostC and IPC or pharmacological
PC may have additive effects.

7. IPC, RPC, and PostC for Protection against
Myocardial IR Injury in Humans

Recently, IPC, RPC, and PostC strategies for attenuating
myocardial IR injury have been tested in clinical trials
in nontransplanted patients [77]. Both IPC and phar-
macological PC reduced myocardial IR injury in patients
undergoing coronary artery bypass graft surgery [204–
207]. In a randomized controlled trial, RPC triggered by a
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simple noninvasive technique of four 5 min cycles of lower
limb ischemia and reperfusion induced cardioprotection in
children undergoing cardiac surgery for congenital heart
disease [208]. In a distinct randomized controlled trial, RPC
triggered by transient upper limb ischemia induced car-
dioprotection in adult patients undergoing coronary artery
bypass graft surgery [209]. In the prospective randomized
controlled cardiac remote ischemic preconditioning in coro-
nary stenting (CRISP Stent) trial, RPC alleviated ischemic
chest discomfort and myocardial injury during coronary
stenting, while also reducing subsequent cardiovascular
events [210]. In a randomised trial in patients with acute
myocardial infarction undergoing angioplasty, ischemic RPC
before hospital admission proved to be safe and appeared to
salvage ischemic myocardium [211].

Ischemic PostC has been evaluated in patients with ST
elevation myocardial infarction (STEMI) undergoing angio-
plasty [185]. Within the first minute after stent implantation,
patients in the PostC group underwent four cycles of 1 min
inflation and 1 min deflation of the coronary angioplasty
balloon. Creatine kinase release, measured as a surrogate for
infarct size, was significantly reduced by 36% in PostC versus
control patients. Contractile function was still improved in
the PostC group at 1 year following infarct [212]. Whether or
not PostC protects against endothelial IR injury in humans
remains unclear [213, 214].

To our knowledge, no data on IPC, RPC, or PostC in
human heart transplantation have been published so far.
Analogously, data on MAPK inhibitors in this setting are
restricted to animal models, as discussed in the next section.

8. MAPK Inhibition in Experimental
Heart Transplantation

ERK1/2, JNK, and p38 MAPK activation within cardiac
grafts has been demonstrated in dogs [215]. MAPK activa-
tion can contribute to graft injury via multiple mechanisms
including cytokine upregulation [216–219], immune cell
activation, and apoptosis.

JNK promotes T-cell activation and differentiation. For
instance, JNK and ERK1/2 have been shown to stimulate
IL-2 production by Thy-1-activated mouse T lymphocytes
in vitro [220]. JNK inhibition reduced histological rejection
and improved graft survival in a rat model of heart
transplantation [221].

p38 MAPK is involved in IL-2R signaling in T lympho-
cytes, while also stimulating cytokine release from human
macrophages in vitro [222]. A p38 MAPK inhibitor admin-
istered at reperfusion improved functional recovery of rat
hearts after prolonged hypothermic ischemia [223]. In a
brain-dead donor model, a p38 MAPK inhibitor lowered sys-
temic levels of proinflammatory cytokines while not affecting
intracardiac cytokine levels [224]. Addition of a p38 MAPK
inhibitor to the Celsior solution enhanced the viability of
cardiac grafts from non-heart-beating donors in a canine
model of heart transplantation [225]. Moreover, p38 MAPK
blockade attenuated the release of proinflammatory IL-6 by
human endothelial cells in vitro after cooling and rewarming

[226]. p38 MAPK inhibition similarly prevented endothe-
lial adhesion molecule expression and polymorphonuclear
accumulation after myocardial IR injury in rats [74]. p38
MAPK blockade markedly reduced vascular smooth muscle
cell proliferation in aortic grafts and the development of
graft vasculopathy [227]. Finally, addition of a p38 MAPK
inhibitor to the Euro-Collins and University of Wisconsin
solutions mitigated IR injury in lung [228] and liver [229]
grafts, respectively, as well as in kidney grafts from non-
heart-beating donors [230]. Thus, a p38 MAPK inhibitor
applied during organ procurement and storage can protect
the graft against IR injury.

9. PC and PostC in Experimental
Heart Transplantation

The potential relevance of PC and PostC strategies to organ
transplantation has been reviewed elsewhere [231–233].
Proof-of-principle studies in animal models have demon-
strated that IPC can impart protection on cardiac grafts
[234–236]. Pretreatment of rat hearts with an adenosine
analog prior to harvesting and storage in the Euro-Collins
solution for 8 hours improved functional recovery at reper-
fusion [237]. In another study, IPC combined with Na+/H+

antiporter inhibition improved cardiac function in rat hearts
after 4 hours of storage at 4◦C in Celsior solution and
extracorporeal reperfusion [238]. KATP channel activation
mimicked the protective effect of IPC in hearts after pro-
longed hypothermic storage [239–241]. However, one study
showed IPC-induced cardioprotection after global ischemia,
but not after cold cardioplegia [242]. Also, brain death
completely abolished PC-mediated protection in ischemic
rabbit hearts [243]. This finding might be explained by
catecholamine storm after brain death, since norepinephrine
injection before IPC abolished protection in the absence of
brain death [244]. AMP-activated protein kinase (AMPK)
is emerging as a target for PC in transplantation medicine
[245].

PC induced by sildenafil administration to the donor
30 min before the onset of ischemia improved the function
of cardiac grafts after 3 h of hypothermic cardioplegic arrest
[246]. In contrast, PostC induced by sildenafil administra-
tion 5 min before reperfusion in the recipient was ineffective.

PKCδ inhibition improved cardiac contractile perfor-
mance and coronary perfusion after cold cardioplegic arrest
in isolated rat hearts [247]. This approach similarly attenu-
ated heart transplant injury and graft coronary vasculopathy
after prolonged organ ischemia [248]. Isoflurane as well as
inhaled hydrogen or carbon monoxide has been shown to
alter energy substrate metabolism to preserve mechanical
function in isolated rat hearts after extended no-flow
hypothermic storage [249, 250].

Ischemic RPC was tested in a pig model of orthotopic
heart transplantation from brain-dead donors [251]. RPC of
the recipient by four 5 min cycles of lower limb ischemia
attenuated IR injury of the denervated donor heart via a KATP

channel-dependent mechanism.
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Ischemic PostC was tested in isolated working rat hearts
after global total ischemia (4 h/4◦C) and 45 min of reper-
fusion [252]. Three brief episodes of total global ischemia
applied at the onset of reperfusion reduced myocardial injury
and postischemic dysfunction. In another study, both PostC
and remote PostC attenuated tissue damage in warm
ischemic rat cardiac grafts [253].

The first clinical application of IPC in solid organ trans-
plantation concerned liver transplantation [254]. Although
IPC mitigated inflammatory responses [255], it was associ-
ated with initial poor function. It did neither improve nor
compromise the outcome of cadaver liver transplantation
[254].

10. Concluding Remarks and Perspectives

Proof-of-principle studies have provided evidence that ther-
apeutic manipulation of the donor heart at the time of
transplantation can mitigate graft injury, immunogenicity,
and rejection. A possibility is that molecular events during
the triggering phase of PC, which induce protection, can be
applied to the donor heart before transplantation. A precon-
ditioning drug (e.g., sildenafil) can be administered to the
donor before organ retrieval and/or 5 min before reperfusion
in the recipient [246]. The clinical efficacy of ischemic PostC
in STEMI patients [185] suggests that this approach might
be beneficial in heart-transplanted patients as well. A p38
MAPK inhibitor can be added to an organ preservation
solution or administered at reperfusion [223, 225]. A p38
MAPK inhibitor administered to the recipient markedly
inhibited the development of aortic graft vasculopathy in
an experimental model [227]. Small-molecule inhibitors of
p38 MAPK have been developed [256] and tested in initial
clinical trials in patients with active rheumatoid arthritis
or neuropathic pain [257, 258]. Further preclinical studies
are needed, however, before these drugs can be tested
in heart transplant recipients. In principle, extended p38
MAPK inhibitor administration during several weeks or
months after transplantation might protect against graft
vasculopathy.

Because distinct MAPK isoforms have different substrate
affinities and functions [61, 145, 159], the precise identifica-
tion of MAPK isoforms that contribute to IR injury would
allow for the development of targeted therapies. Avoiding
indiscriminate MAPK blockade is important because MAPK
activates signaling pathways participating in host defense
against infection and tumors.

Despite promising results obtained with MAPK inhibi-
tors as well as PC and PostC in animal models, it should be
noted that clinical trials of cardioprotective agents success-
fully tested in animal models have been largely negative so far
[259]. However, a recent trial suggested a protective effect of
cyclosporine, a MPTP opening inhibitor, against reperfusion
injury in patients with acute myocardial infarction [260]. In
transplantation medicine, MAPK inhibitors will need to be
tested in combination with other PC and PostC strategies,
as well as with improved organ preservation solutions and

reperfusion protocols (e.g., continuous myocardial perfusion
and controlled initial reperfusion) [261–263].
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Menasché, “Ischemic preconditioning with opening of mito-
chondrial adenosine triphosphate-sensitive potassium chan-
nels or Na+/H+ exchange inhibition: which is the best
protective strategy for heart transplants?” Journal of Thoracic
and Cardiovascular Surgery, vol. 121, no. 1, pp. 155–162,
2001.
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