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Bohr, Hasselbalch and Krogh demonstrated a group of 
sigmoid curves under various carbon dioxide contents in 
1904. Hill fitted these curves in 1910 with Hill equation 
without the physical meanings of Hill coefficient and dis-
sociation constant. In 1965, Monod-Wyman-Changeux 
model (MWC) popularized the word “allostery” with 81 
words of symmetry to define an orthosteric nature of 
cooperativity in a single and symmetric sigmoid curve. 
Paradoxically the MWC model didn’t quantify the 
homotropic Hill coefficient and confusingly described the 
symmetry of sigmoid shapes with three allosteric vari-
ables. A heterotropic Bohr equation, by clarifying the 
biophysical symmetry in allostery, suggests the solution 
of allosteric coefficients with only one Bohr variable. We 
reveal that the mathematical need of a fictional monomer 
by MWC model justify a symmetric logistic curve with  
a parabolic kernel of dissociation constant to model the 
1904 sigmoid curves. The logistic-derived Bohr equation 
and its half-saturated P50 equation successfully used the 
embedded P50 values in the 1904 sigmoidal curves to 
quantify their hyperbolic conformational shifts and Hill 
coefficients (n) pending for a century. Both are the loga-
rithmic functions of carbon dioxide. This truly quantita-
tive Bohr equation digitizes the allosteric regulation of 
the orthosteric affinity by precisely cloning the original 
group of dissociation/association curves published in 

1904. The Bohr equation honestly suggests that nature 
should have chosen the allosteric Bohr effects to modify 
hemoglobin to cope with the swift dynamic of gas 
exchange. The discovery of the Bohr function in Bohr 
equation challenges the feasibility of the orthosteric 
cooperativity of hemoglobin.
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Nature chose phosphate to modify proteins for the chemi-
cal versatility of phosphate [1]. By considering the universal 
and allosteric posttranslational modifications (PTMs), why 
would nature choose orthosteric oxygen to modify the most 
dynamic and ever switching hemoglobin by deleting the 
allosteric PTMs? The failure to quantify the cooperativity is 
a paradox to this orthosteric choice of nature [2,3]. Is our 
interpretation of the allosteric nature insufficient as the hemo-
globin is concerned?

“Fractional saturation is not a direct measurement of con-
formational change.” This is a famous quotation of Wyman 
regarding when he explored the unexplained difference 
between the number of ligand binding sites and the Hill  
coefficient, nH [2]. The modeling of allosteric cooperativity 
originated from the sigmoid Hill equation [2,3]. The maxi-
mal Hill coefficient or the quantitative cooperativity of the 
four-heme hemoglobin is well known to be only near 3 

The cooperative hemoglobin is the crowning model of the versatile allosteric enzymes. The failure to model the cooperativity quantitatively since 
1904 means the inevitable failures of both the allosteric quest of drugs and the discovery of the allosteric mechanism of disease. The application  
of the biophysical law of symmetry solved the centennial paradox incurred by the orthosteric Hill coefficient. Hemoglobin turns out to be non- 
orthosteric and then transforms itself from a descriptive Hill equation into a quantitative Bohr equation. The Monod-Wyman-Changeux (MWC) 
model erased the allosteric Bohr effects in the misused Hill equation with the prejudiced perceptiveness of cooperative oxygen binding.
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Wyman described the dynamic symmetry of “one” satura-
tion curve by transforming the macroscopic dissociation 
constant in Hill equation into two alloseric constants to con-
struct both the homotropic allostery of MWC model and the 
“mathematical fiction of monomer” (Equation (2)) [3]. In 
1904, Bohr actually demonstrated the Bohr effect with a 
larger dissociation constant (Kd) toward T state favoring the 
decrease of oxygen affinity in a group of sigmoid curves 
[2,7]. For the creation of MWC model, Wyman improperly 
erased this prominent Bohr effect by assuming a small 
microscopic dissociation constant (c=KR/KT≤1) and a large, 
homotropic, allosteric constant (L=T0/R0>>1). These two 
conjoined allosteric variables, Lcn, preserved the spirit of  
a larger Kd to construct the upper and lower part of “one” 
sigmoid, to which Wyman assigned “symmetry” and “the 
homotropic cooperativity” (Equation (2)). Consequently, the 
larger dissociation constant (Kd) and the potentially allosteric 
Bohr effect degenerated to serve two new constants in the 
allostery describing the orthosteric (homotropic) allostery 
(Equation (3)) [2,3].

y = 
xn

Kd+xn  { 
2.1: Hill’s approximation of Bohr curves, 

unspecified n as a positive real number }	 (2)

= 
xn

KT ∙KA+xn  { 
2.2: Wyman’s symmetric saturation curve, 

n is a homotropic integer }

= 
( x

n√KA
)n

KT+( x
n√KA

)n = 
( x

c )n

L+( x
c )n  

{ 
2.3: Introducing two allosteric constants, 

since c ≤ 1, then L >> 1. } 

= 
(x)n

Lcn+(x)n { 
2.4: MWC’s homotropic allostery 

(page 99 of [3]) }

= 
( x
ℓ ∙c )n

1+( x
ℓ ∙c )n ≡ 

α
1+α  

{ 

2.5: The making of a fictional monomer, 

n =1, α = 
x
ℓc  and ℓ ∙c = 1 (Fig. 1) }  

{ (From allosteric (Bohr) Kd to homotropic allostery)      }2.6: Kd = KT ∙KA = L ∙cn = (ℓ ∙c)n 

let L = KT = 

T0

R0
 = ℓn, c = 

n√KA = 

n√Kd ∙
R0

T0
 = 

Kr

Kt
 ,

L, ℓ: Large and small “homotropic” allosteric constants,  
T0, R0, r.t: the macro—and microscopic Two—states

Or we could view the homotropic MWC model as an inte-
grated model of a group of Bohr curves in one symmetric 
sigmoid. Unfortunately this conjoined existence of a large, 
homotropic L (=T0/R0=ℓn) and a small c (=KR/KT by Wyman) 
in Equation (3) creates what Crick described, “the price of 

[2–4]. Paradoxically, the Hill equation did not provide a 
quantitative fact, which is still unsolved as a centennial 
problem [4]. Neither Hill provided a direct measurement  
of oxygen uptake during exercise but a reverse exponential 
equation for approximating oxygen uptake (VO2) [5]. Never-
theless, maximal oxygen consumption (VO2max) became 
another unsettled physiology [5]. Illogically, however, the 
Hill equation is widely used as a dynamic model in pharma-
cology and the receptor kinetics, where the Hill coefficient 
(nH) is used as a descriptive number of cooperativity, the  
sigmoid shape and could be derived from the Hill plot [2,6]. 
Yet “there is still no mathematical description that could 
describe quantitatively the action of agonists on G-protein-
coupled receptors (GPCRs)” [6]. However, why is the Hill 
coefficient (nH) of hemoglobin orthosteric rather than 
allosteric? In 1904, Bohr showed a group of sigmoidal 
curves by oxygen bindings to demonstrate the Bohr effect as 
the carbon dioxide (CO2) content of fresh canine blood was 
increased [7]. Why was the mathematical description of 
these Bohr effects lost in the orthosteric Hill equation since 
1910 [2–4,8]?
This first-ever quantitative and heterotropic model of 

hemoglobin explores the ambiguously allosteric regulation 
residing in the 1904 hemoglobin dissociation curves. To 
prove this model, one needs to answer two questions. Is  
the saturation curve symmetric or asymmetric? And why 
Wyman described allostery in a single and symmetric  
sigmoid curve while Bohr presented a group of asymmetric 
sigmoid curves?

Methods
The analysis of orthosteric symmetry traces the sigmoidal 
origin of Hill equation
The creation of orthosteric symmetry in MWC model

“Jeffries Wyman had noted several years earlier that  
the symmetry of the saturation curves of hemoglobin by 
oxygen seemed to suggest the existence of a structural 
symmetry within the protein molecule itself; this idea  
was brilliantly confirmed by the work of Perutz.”

Jacqes Monod, Nobel Lecture, December 11, 1965

The ABC of a homotropic MWC model and the dynamic 
symmetry

Kd = 
KT

KR
 = KT ∙KA	 (1)

{ (The basics of a saturation curve)                               }Kd: the macroscopic dissociation constant
KR: the macroscopic dissociation constants for R state
KT: the macroscopic dissociation constants for T state

KA: the affinity constant, KA = 
1

KR
 

Following the basics of a saturation curve (Equation (1)), 
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independent of absolute affinities.” [3]), the Hill numbers 
were left alone as an integer without an allosteric definition.

The reversed engineering of allostery from the sigmoidal 
Hill equation by Wyman might be due to the stereotypical 
coexistence of the discrete oxygen-binding equations, also 

allostery” and “the conflicting needs” of an allosteric protein 
[2]. The decreasing affinity of oxygen for the lower sigmoid 
and the more than needed increasing affinity for the upper 
sigmoid with the increasing orthosteric interaction were 
revealed by Crick [2,9]. Franakly, a homotropic ℓ (L) com-
promised the lower Bohr effect to secure needlessly the 
upper R state affinity only in the name of symmetry [2]. This 
design of allosteric protein violated the reciprocity (a hyper-
bolic symmetry of dynamic in Fig. 1) between allosteric 
effect and affinity, namely, Kd=KT∙KA or ℓ ∙c=1 (Equations 
(1) & (2)). The dynamic symmetry that Wyman preferred is 
ℓ=c and thus KR=KT. Furthermore, the cooperativity of 
hemoglobin can only be orthosteric because the KR is the 
dissociation and association constant simultaneously in the 
name of orthosteric symmetry, and α=F/KR rather than  
α=x/(ℓ ∙c). This is the creation of the orthosteric allostery of 
hemoglobin (Equation (3)). Consequently Wyman changed 
the dynamic nature of symmetry in allostery by embracing  
a homotropic or orthosteric nature of allostery [3].

^YF = 
Lcα(1 + cα)n−1

 + α(1 + α)n−1

L(1 + cα)n
 + (1 + α)n

 ≡ 
α

1+α  = 
F

KR+F 	 (3)

{ (the saturation curve in MWC model)                         }c = 
KR

KT
 ≤ 1, L = 

T0

R0
 >> 1; α = 

F
KR

 ,

^YF: saturation function; F: substrate concentration,
The rightward hyperbolic equation of the fictional 
monomer is derived with c = 1 and an insignificant L.
(L = 9054, c = 0.014, for a α4 sigmoid fitting) [3]

According to the six statements of the orthosteric MWC 
model in its 1965 publication [3], the protein is an oligomer 
consisting of n identical protomers, arranged symmetrically 
(the first statement) [2]. The hemoglobin tetramer and its n 
identical protomers shift between two and only two con
formational states (the fourth statement) [2]. R-state is for 
the relaxed, high-affinity state and T-state is for the tensed, 
low-affinity state. The equilibrium between the two states 
determines the “homotropic” allosteric constant (L=ℓn), 
which is separated from the concept of affinity (the fifth 
statement).

Apparently, Wyman constructed the allostery-detached 
orthosteric symmetry by introducing two-homotropic 
allosteric constant and the “heterotropic effects would be 
due exclusively to displacements of the spontaneous equilib-
rium between the R and T states of the protein” [3]. Thus the 
heterotropic effects only changed L without effects on c, KR 
and KT [3]. Furthermore, the MWC model risked losing the 
separate measurement of the oxygen affinity, 1/KR, and the 
dissociation constant, KT in a group of Bohr curves (Equa-
tion (1)) by conjoining them into Lcn to describe “one”  
symmetric saturation curve (Equation (2)). And only by 
these descriptive words (“The homotropic interactions are 

Figure 1  Crick’s concern and Parabolic model of allosteric hemo-
globin: orthosteric symmetry, allosteric symmetry and reversible coop-
erativity. The principle of reciprocity is what Crick’s concerned about 
homotropic allostery. Allosteric activity and affinity should follows 
(ℓ ∙c)=1, a hyperbolic hyperbola (the blue curve). This demands a hetero-
tropic definition of allosteric activity and creates this parabolic model 
of Kd. The Kd (red line) is a symmetric exponential function of the Bohr 
effect (B) and Kd defines the sigmoid shape in the saturation curve. 
Bohr shifts swings itself symmetrically on the hyperbolic (ℓ ∙c)=1 
between T and R states. This proves cooperativity is symmetric. The 
parabolic nature of cooperativity, N=B2, displays the orthosteric sym-
metry for n=1, the allosteric symmetry for n=2, the positively cooper-
ative Bohr effect for [2<n<3] (N>B>1, the blue area), a reduction in 
the allosteric (Hill) number for [3<n<4] (N>n), and the negatively 
cooperative Bohr effect for [1<n<2] (N<B<1, the red area). The 
equivalence of N and n (N=n=2.618) occurs at the homeostatic point 
with B=1.618 (PCO2=41.5, pH=7.382). The equivalence of N and B 
(N=B=1) at the allosteric symmetry measures no cooperativity at n=2 
(for a sigmoid S2). The range of hemoglobin’s allosteric activity (N) is 
bounded by n in [0.382<n<2.618]. The present allosteric studies could 
only observed the allosteric range in [1.618<n<2.618] (or [1.7<n<3.2] 
by Hill and Bohr and Q by Crick [2], the blue area) with negation of  
the negative allostery, ((1-Q) by Crick [2], the red area). Note that the 
orthosteric symmetry at n1 (B=0) is different from the allosteric sym-
metry at n2 (B=1). Theoretically, there should be another negative Bohr 
effect resides in the range of orthosteric symmetry [0.382<n<1] to 
present the allosteric resistance to receptor inhibition. (ℓ: allosteric  
constant of monomer, c: affinity defined in Equation (B); Ln(0): the 
measurement of sigmoidicity as a value deviated from 0.5; Kd: dissoci-
ation constant, ((eN

n)n); P50=eN
n ; N: cooperativity number; B: Bohr shift; 

n: Bohr coefficient; T=1.618 as a solution of B2=1+B, R=0.618; T, R 
also present T-state and R-state; the x-axis represents the Bohr shift,  
B; the y-axis represents a numerical value.)
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pseudo-symmetry of the orthosteric MWC model presented 
in Equation (3). This manipulation of Hill equation incurred 
the consequences of inevitable frustrations in the agonistic 
modeling for other allosteric proteins [6] and a flip-flopped 
physiology of respiration [5,9]. Thus a thorough understand-
ing of the biophysical symmetry in terms of the hemoglobin 
saturation curve is inevitable to construct a truly quantitative 
Hill equation for the Bohr sigmoid curves.

The fictional monomer of MWC model with n=1 and 
the structural symmetry

With a relative view in structure between the allosteric 
site and orthosteric one, one should ask: “Why is the cooper-
ativity of the oxygen binding curve asymmetric as a sigmoid 
shape?” To reveal the asymmetric nature of the original Hill 
equation, the sigmoidal relationship between the logistic 
curve (Ln) and the hemoglobin saturation curve (Sn) needs 
further clarification. The focus is their related transforma-
tions through the dissociation constant, Kd. (This is the phar-
macological approach to the semi-logarithm presentation  
of substrate-receptor saturation curve. The physiological 
scaling of Hill equations will be added later for the reproduc-
tion of the 1904 sigmoid curves in Results and Discussion: 
To clone the old 1904 Bohr sigmoid curves is to prove the 
new Bohr equation.)
From the descriptive Hill equation (Equation (4), Fig. 2) 

[6,8]:

known as the mass action equation, and the Hill equation 
listed by Hill since 1910 (below). In fact, Hill had clarified 
his object was to see whether his equation could satisfy  
the sigmoidal observations rather than “to base any direct 
physical meaning on n and K” [8].

Hb + O2 ↔
?  HbO2 {?: unknown allosteric mechanism}, 

Hbn + nO2 ↔
?  HbnO2n {n: unknown integer in 1910},

y = 100 
Kxn

1+Kxn

{ The original Hill equation,                  }n: real number reported by Hill [8],
K: aggregation constant,
x: PaO2 mmHg

It is clear in Equation (2) that the symmetry of “a” saturation 
curve fitted by the MWC model in Equation (3) actually has 
all intrinsic asymmetries that belong to all the lost Bohr 
effects demonstrated in 1904 (the swinging Kd on the hyper-
bola, (ℓ ∙c)=1). In plain words, Wyman mistook the sum of 
heterotropic allosteric effects as “one” homotropic allostery 
(Another important proof of this error is Equation (18)).  
Furthermore, the high mixed venous saturation around 75% 
observed in physiology [5] and the enthusiastically pharma-
cological exploitations of Hill equation [6] reinforced the 

Figure 2  The sigmoidal transformations of the Bohr shifts: positive cooperativity as a sigmoid and negative cooperativity as a hyperbola. Oxy-
gen saturation curves (S1, S2, Sn: n=2.618) are the exponentially invariant transformations of the logistic sigmoids (L1, L2, Ln). There is loss of the 
sigmoidal information from L1 to hyperbolic S1. A logistic Bohr shift (B) on L1 would project into a hyperbolic Bohr shift point (PB) on S1 (the two 
red arrows). The PB of S1 (the red dot overlapping with the P50 of S1) walks upward along the hyperbolic S1curve to P73 and P83 to simultaneously 
exaggerate the saturation plateau and the dissociation sigmoid of the logistic curve and thus creates the S2 and Sn. The displacement of P50 (Black 
arrow) is an exponential function of the Bohr shift. This finding clarifies that the cooperative origin of the sigmoid shape is the Bohr shift (B or PB). 
In homeostasis, we have a homeostatic Bohr coefficient of n2.618 (black sigmoidal line) with P50 of approximately 27 mmHg that Hill equation took 
it as n=N=2.7. A theoretical and negative Bohr effect saturation curve (green line, n=0.5) is shown. The negative and leftward Bohr shift (-B) 
transforms a flattened logistic sigmoid into a downward shifted hyperbolic saturation curve to maintain a relatively high-affinity plateau under 
suppressed n. In addition, PB decreases hyperbolically to P38 (the lowest green dot on S1) without sigmoidicity. Note that S2 is the allosteric transla-
tion of the orthosteric S1, and both the hyperbolic S1 and sigmoid S2 are not allosteric cooperative because both are the symmetry of cooperativity. 
(L: Logistic curve; S: saturation curve; S(-B): saturation curve of a negative Bohr effect; SaO2: oxygen saturation; PaO2: oxygen partial pressure; 
ln(PaO2): natural logarithm of PaO2; P50: PaO2 at 50% saturation; P73: PB of n2; P83: PB of n2.618.)
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hyperbolic equation (Sα) of the fictional monomer (Equations 
(3) & (7)) also supports this hyperbolic assumption of the 
orthosteric symmetry before the allosteric interaction. There-
fore, both the hyperbolic S1 and sigmoid L1 should be the 
proper symmetry of the fictional monomer as a structural 
symmetry that was proposed by Wyman [3] and plausibly 
both represent the orthosteric symmetry. This model will 
describe this structural symmetry of a fictional monomer as 
the symmetric monomer, Sα, which in essence of symmetry 
equals L1. The Equations (5) & (6) and the need of a mathe-
matical fiction of equivalent monomer by the MWC model to 
reconstruct symmetry in allostery differentiates the allosteric 
Bohr equation from the pharmacological Hill equation which 
describes the law of mass actions [6].

After revealing the structural symmetry as a primitive 
logistic curve and delineating the compromising symmetry 
of a homotropic dynamic proposed by MWC model yet con-
cerned by Crick (Equations (3) & (7)), we then ask: “What  
is the mathematical connection between the hyperbolic S1 
curve and the sigmoid Bohr Sn curves?” and in allosteric 
sense, “How the allosteric transition shifts the fictional 
orthosteric symmetry to the real allosteric symmetry?” The 
answer is in the problematic Kd shown in the ABC of MWC 
model.

Results and Discussion
Rediscover the lost Bohr shift (B) in the symmetric 
monomer
Crick and the heterotropic definition of allostery
It deserves to repeat that Hill did not base any physical 

meaning of n and K for any Hill approximation of the  
Bohr sigmoid curve [6,8]. The indefinable orthosteric Hill 
coefficients by the MWC model could neither quantify the 
1904 sigmoid curves nor numerate the allosteric interaction 
coefficients [2,3] despite its claim that curve fitting was  
not necessary to verify its model. And Crick’s definition  
of allosteric coefficients still depended on a quantitative  
saturation equation that did not exist (Equation (3)) [2,6]. 
Therefore, this heterotropic model drops the two fictional 
constants (L and c) and returns to the basic, the dissociation 
constant (Kd). By following Wyman’s trial to build a sym
metric kernel in Kd (KR=KT by Wyman) to describe the  
symmetry of a saturation curve (L1 or Sα), let us outsource 
the allostery to the deleted Bohr effect reclaimed in the  
symmetric sigmoid, Ln (Equation (5)) and then verify this 
assumption with the 1904 sigmoid curves. Firstly, the math-
ematical symmetry of reciprocity (Equation (8)) should be 
preserved during the making of the fictional monomer and 
the symmetric monomer in Equations (2) & (3).

For an allosteric hemoglobin, it should conform to:

ℓ ∙c = 1	 (8)
{Crick’s concern about allostery [2]}

Snb = 
xnb

Kd+xnb
 	 (4)

{ S: saturatin sigmoid; x: PaO2; Kd = (P50)nb,                  }nb ∈ positive integer (number of oxygen binding sites),
P50 = the PaO2 at 50% O2 saturation.

This model derives a logistic sigmoid equation (Ln) that 
could be symmetric when n=1:

Ln = 
enx

(eB)(n−1)+enx  	 (5)

{ Logistic sigmoid,                                                 }Kd = (K)(n−1), K = eB,
n: Bohr coefficient, B: Bohr shift, x: ln(PaO2) 

For n = 1, L1
 = 

ex

1+ex  vs. Hill L1
 = 

ex

KR+ex 	 (6)

{L1(0) = 0.5 vs. Hill L1(ln(KR)) = 0.5}

In this logistic sigmoid equation Ln (Equation (5)), Kd is 1 by 
the initial condition of n=1. This logistic sigmoid with n=1 
(L1), which transforms from the hyperbolic monomer pro-
posed by MWC model, has the simplest symmetry of a 
dynamic system (Equation (6), Fig. 2). Then the allosteric 
transition, for n>1, is asymmetric because it translates from 
the orthosteric symmetry of this logistic sigmoid (L1). Note 
that the hyperbolic S1 saturation curve to which “we assign 
no cooperativity” transforms itself to this sigmoid L1 (Fig. 
2). Thus, the initial logistic modeling of L1 as the orthosteric 
sigmoid of the saturation curves (Sn) is valid. Therefore,  
the three orthosteric, hyperbolic equations in Equation (7)  
present symmetry, asymmetry and fictional symmetry 
respectively in terms of the dissociation constant when n=1. 
Regrettably the high mixed venous PvO2 that Hill observed 
in the exercise oxygen consumption studies warps this sig-
moidal symmetry of the Hill equation with a deviated KR 
[5,8]. This demanded MWC model to reconstruct a sym
metrical dynamic by introducing “a mathematical fiction of 
equivalent monomer” (Equations (2) & (3)) [3,10].

S1 = 
x

1+x  vs. Hill S1 = 
x

KR+x  

vs. the fictional symmetry Sα = 
α

1+α	 (7)

{α = x
KR

}
In fact, the loss of the lower sigmoidal information during 
the orthosteric transformation from the logistic L1 to the 
hyperbolic S1 suggests the hyperbolic nature of the ortho-
steric bindings rather than the sigmoidal association of the 
orthosteric affinities, which the MWC model enthusiastically 
adopted into the allosteric concept as homotropic coopera-
tivity (orthosteric cooperativity [2–4,6]). Additionally, the 
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The saturation equation, Sn, and the logistic equation, Ln, 
are a pair of functions that allosterically couple the gas 
exchange inside the RBCs (Equation (13)).

Sn = 
xn

eB(n−1)+xn = 
xn

eB2+xn = 
xn

eN+xn = 
xn

(eN
n )n

+xn
	 (13)

{Saturation Sigmoid: Bohr equation}

Ln = 
enx

(eB)(n−1)+enx = 
enx

eN+enx

{Logistic Sigmoid}

This Bohr equation (Sn) approximates the hemoglobin disso-
ciation curve better than the orthosteric Hill equation because 
the lost Bohr shift is included with the corrected orthosteric 
symmetry and the lower part of sigmoid shape is a function 
of the lost Bohr shift (Fig. 2). The positive Bohr shift (+B) 
moves the orthosteric symmetry (0, 0.5) on the logistic L1 
curve upward and along this logistic sigmoid to a Bohr-
shifted point representing the positive allosteric action of 
CO2. This Bohr shift on the logistic L1 would be as follows:

Bohr shift = (B, 
eB

1+eB ) on the symmetric monomer, 

Sα = 
α

1+α 	 (14)

{Bohr shift on the logistic L1 curve; −1 < B < 2}

On the Bohr Sn-curve, the corresponding point would be the 
hyperbolic Bohr shift, PB (Equation (15)), tracing on the S1 
(the bold-red arrow in Fig. 1). Without allosteric action or B 
as zero, PB remains unmoved as a symmetric P50 in S1 (Equa-
tion (15)).

PB = (eB, 
eB

1+eB ) on the symmetric monomer, 

Sα = 
α

1+α 	 (15)

{Bohr shift departs from the P50 on the hyperbolic S1 curve.}

This PB of Sn moves from P50 of n1 through P73 of n2 to P83 of 
n2.618 on the hyperbolic S1-curve (Fig. 2). Thus, these Bohr 
shifts walk hyperbolically upward on S1 to create their  
specific sigmoidicity (Equation (11)) and the allosteric con-
formation. And the saturation plateau of Sn exaggerates the 
upper sigmoid of the logistic curve, Ln, exponentially and 
visually. Therefore, on the symmetric monomer (S1, L1, and 
in general, Sα) two equilibriums coexist at the orthosteric 
symmetry. One is the P50 and the other is the lost Bohr shift 
point (PB). For an allosteric action of CO2, the P50 exhibits a 
rightward shift (the bold-black arrow in Fig. 2) while PB 
moves hyperbolically upward (the bold-red arrow in Fig. 2) 
to reset the allosteric equilibrium between the two con
formational states depending on the Bohr shift (B) or the 

Logically, the definition of allosteric activities for n>1 in 
Equation (9) should be heterotropic, not homotropic, to con-
form to this Crick’s concern about allostery [2]. Secondly, if 
the metabolic goal of the allosteric Bohr effect is principally 
to maximize the CO2 uptake level of RBCs under metabolic 
stresses and synchronously to regulate oxygen delivery in a 
feedback mechanism, then we can define the allosteric Bohr 
regulation of hemoglobin function in Equations (9) & (10). 
In plain words, the Bohr shift creates the allosteric activity 
that reciprocally regulates the affinity of oxygen (Equation 
(9)). Thus the allosteric definition in Equation (9) is solid 
both physically and physiologically.

B = n − 1	 (9)

B(n − 1) = B2 = N	 (10)

Kd = eB2 = eN = (eN
n )n = (P50)n	 (11)

{ Parabolic model of Kd.                       }n: Bohr coefficient, 0 < n < 3,
B: Bohr shift, −1 < B < 2,
N: cooperativity number, 0 < N < 4,
B ∈ real numbers

From this heterotropic definition of allostery, the emerging 
parabolic model of a heterotropic Kd reestablishes the funda-
mental symmetry of cooperativity (Equations (10) & (11), 
Fig. 1) that was violated by the “conjoined Bohr effects”,  
the homotropic allosteric constants, and the indiscriminate  
n as a positive integer (Equations (2) & (12)). Actually the 
three allosteric variables, L, c, and the integer n, reduced  
the potentially quantitative Hill equation to a qualitative  
one. For the sake of the definition of KR=KT in the fictional 
monomer, the MWC model took the price of allostery by 
assigning homotropic cooperativity to take over the hetero-
tropic effect [2,3]. The nonlinear and undividable symmetry 
of cooperativity (Kd), which most allosteric studies linearly 
divided into two fictional constants (L & c) in Equation (12), 
quantifies the allostery with only one allosteric variable, the 
Bohr shift (B) (Fig. 1).

Kd = eN = (eN
n )n = (eN1+N2

n )n = (eN1)(eN2

n )n = L ∙cn	 (12)

{ Parabolic model explains the MWC model. }n: positive integer, L = eN1, c = e
N2

n ,
N = N1 + N2 ,
N, N1, N2 ∈ indefinable real numbers

The walks of the Bohr shifts on the orthosteric symmetries: 
the modeling of conformational shifts

How does the Bohr shift restore the lost, lower sigmoid 
shape of the L1-logistic curve from the orthosteric, hyper-
bolic S1?
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pressure. This negative allosteric transition sitting in the 
orthosteric symmetry could explain the allosteric resistance 
to receptor inhibition or a quantitative mechanism of drug 
resistance [6]. The Bohr equation, rather than the ortho-
steric Hill equation, quantitatively explains both the positive 
allosteric transition (with B>1) and the negative allosteric 
transition (with |B|<1) by its mathematical precision in  
modeling the switching mechanism of allosteric regulation 
(1). Most of laboratory observations with the orthosteric 
concept of allostery had difficulties in quantifying these 
microscopic transformations of cooperativity from sigmoid 
to hyperbola and reciprocally [9,10,12–15]. Paradoxically 
the MWC model, a reversed explanation of the allostery, 
introduced more unquantifiable variables for the insignifi-
cant c as unity and the indiscriminate orthosteric coopera-
tivity, for example, n=4 (Equation (17), the original equation 
7 and Fig. 2 in reference [3]). The pharmacological adoption 
of the MWC model (Equation (17)) should be careful [6].

Ȳs = 
α(1 + α)n−1

L 
(1 + β)n

(1 + γ)n  + (1 + α)n
	 (17)

{ Ȳs: saturation function,                                              }α = 
F
KR

, β = 
I

KI
, γ = 

A
KA

, c = 1, n = 4, L = 10(n−1), 

K1 and KA: the microscopic dissociation constant 
of inhibitor (I) and activator (A) with the two states

The allosteric symmetry as a symmetric monomer
The allosteric symmetry, S2, shows no allosteric coopera-

tivity because both N and B are equally unity despite its  
sigmoid shape. This non-cooperative allosteric symmetry 
(S2 in Fig. 2; N=B=1 in Fig. 1) between the symmetric Bohr 
effects shown in the group of Bohr curves in 1904 is the 
fictional symmetry of fictional monomer between two states; 
namely, the fixed KR in a single symmetric saturation curve 
created by the MWC model (Equations (2) & (3)). Thus the 
symmetric monomer (with the fictional coefficient, n=1) 
conceived by the MWC model should be this non-cooperative 
S2 (with allosteric number, n=2, Equation (18)) rather than a 
non-cooperative hyperbolic one with Hill coefficient n=1. 
Equation (18) is another proof that MWC model interpreted 
the heterotropic allostery as the homotropic allostery.

S2 = 
x2

(e 1
2 )2

 + x2
 ≡ 

α
1+α (≠ F

KR+F  (Equation (3)))	 (18)

{α = ( x
√e )2

 = ( x
P50

)2

 ≠ 
F
KR

, Kd = 
KT

KR
 = e}

Then Wyman’s proposal of the fictional monomer should be 
able to reduce the Bohr equation abstractly “as a symmetric 
monomer” (Equation (19)). The fictional monomer should 

allosteric coefficient (n=1+B) [2,10].
The horizontal shift of P50 provides a precise ruler-

equation because the three allosteric variables B, N and n  
are calculable from the constant Equation with a symmetric 
value, 0.5 (Equation (16)) with any measured value of P50.

P50 = (eN
n , 0.5)	 (16)

{ The quantitative Bohr effect, }n = 1 + B, N = B2

The orthosteric Hill equation by MWC model divided this 
allosteric P50 and used part of it as the fixed, orthosteric  
KR (Equation (11)) [11]. Consequently, the Bohr effect has 
been unfavorably marginalized in the allosteric researches 
[2–4,9,10], despite the failure of the original Hill equation 
and MWC model to provide a symmetric allosteric equation 
like the allosteric PB and P50 in Equations (15) & (16) 
[2–4,8,10,11]. The divided and fictionally fixed KR in  
MWC model (Equation (11)) generated the most confusing 
hypothesis that in the absence of ligand there were several 
coexistent conformations (at least two) with up to eight equi-
librium constants in the reversible two states of a single  
protein [3,4,10] and lost the significant linkage between the 
Bohr shift and P50 in Equatioin (16). The structural mecha-
nism within this linkage deserves further explorations. The 
positive hydrogen ion (H+) or CO2 should be the absent 
ligand in the allosteric sense because metabolism (with a 
specific output of CO2) determines the specific need of  
oxygen as a common sense. The very original concept of 
allostery is the feedback regulation of enzymes, which was 
decoupled and lost since the introduction of MWC model 
[3,6].

Identity and inverse: the allosteric symmetry and  
the negative allostric (|B|<1) effect

By the parabolic model of heterotropic dissociation con-
stant, the orthosteric symmetry S1 (B=0 & N=0) translates 
to the allosteric symmetry S2 (B=1 & N=B) under the het-
erotropic (Bohr) modification (Fig. 1). The identity of the 
group of hemoglobin then transforms to the real allosteric 
symmetry from the fictional orthosteric symmetry (S1→S2, 
Fig. 2). From this allosteric identity (n=2, B=1) and by the 
parabolic (symmetric) nature of the cooperativity (Equation 
(10); Fig. 1), the allosteric transitions differentiate into the 
positive cooperativity (if B>1, then N>B, Bohr effect, n>2) 
and the negative cooperativity (if B<1, then N<B, and 
1<n<2). Thus symmetric Bohr effects should exist naturally 
[12,13]. This should be the result of hemoglobin modifi
cation by Bohr protons, a particular PTM. Theoretically 
another negative Bohr effect could develop under receptor 
inhibition (defined as n<1); then, for example, the reason-
able sigmoid curve for an allosteric receptor inhibition of 
n=0.5 could be presented in Figure 2. Logically this Bohr 
effect would show a negative allosteric mechanism that 
counters the receptor inhibition with a hyperbola under 
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model lost one yet essential allosteric information, the 
heterotropic effect and unavoidably produced a lot of para-
doxical information.

The conformational constrains
Bohr equation fulfills most statements of MWC model 

with this simplest concept of a symmetric monomer because 
allostery conforms to the physical law of symmetry that is 
universal despite MWC model’s improper interpretations of 
three allosteric constants. The confusing concept of confor-
mational constraints is exactly the Bohr modifications that 
impose upon the identity hemoglobin, S2 [3,12]. Consis-
tently, the Bohr shift (and the hydrogen bond), not oxygen, 
creates the symmetric cooperativity of hemoglobin within 
the asymmetric Bohr curves (Figs. 1, 2). Thus a sigmoid 
shape does not always equal cooperativity and a hyperbolic 
curve could show cooperativity in the name of symmetry.  
To prove this counterintuitive allostery, we should verify this 
model with the original Bohr experiment in 1904 [7].

To clone the old 1904 Bohr sigmoid curves is to prove 
the new Bohr equation
How to realize the 1904 Bohr shifts (B) and the allosteric 

coefficients quantitatively? I probed the illustrated P50 values 
in the 1904 sigmoidal curves of the underestimated Bohr 
experiment [7] by a ruler and placed them into the simplest 
P50 equation (Equations (20) & (21)) to determine their cor-
responding Bohr coefficients, n (Table 1, Fig. 3a).

P50 = (10·e
N
n , 0.5)	 (20)

{the allosteric P50 equation with physiological scaling}

For a measured P50: P50 = 10·e
N
n  = 10·e

(n−1)2

n
 ,

then to obtain n is to solve the quadratic equation below:

n2
 − (2 + ln( P50

10 ))n + 1 = 0	 (21)

{n > 1 for the 1904 experiment} 

These original Bohr coefficients (n) ranged from 1.82 to 3.09 
with the corresponding PCO2 values ranging from 5 mmHg 
to 80 mmHg (Table 1). Compatibly, Hill reported the range 
of Hill coefficients of hemoglobin to be from 1.67 to 3.19 in 
1910 [2,3,8]. Furthermore, with these re-discovered allosteric 
Bohr coefficients, the Bohr equation (Equation (22)) can 
easily clone the original 1904 sigmoidal curves (Fig. 3a) and 
their Bohr shifts were algebraically quantified for the first 
time (Table 1). Thus, the centennial 1904 Bohr experiment 
justifies this allosteric Bohr equation with their embedded, 
symmetric P50 values. For its inherited symmetry, P50 is a 
precise ruler to measure the allosteric coefficients, the Hill 
numbers. Please note the pseudo-Hill equation of Equation 
(22), with PaO2 as an orthosteric variable in the allosteric 
power of Bohr coefficients, is the quantitative description  

not be used as a “real” monomer with an allosteic constant, 
L and a homotropic integer n of Hill number (Equations (3) 
& (17)). It abstracts the conformational shifts into the rela-
tive and symmetric relation of Bohr shift versus P50 under 
the heterotropic allosteric interactions, n (In Equations (14) 
& (15), the two Bohr shifts in the separate logistic and 
hyperbolic curves walk on the same symmetric monomer.). 
The increasing n corresponds to the increasing tightness  
in the fictional hemoglobin monomer. By fixing on the 
allosteric symmetry [16] and in the opposite direction, “there 
are always two states reversibly accessible to the allosteric 
oligomers” [3]. Then any allosteric oligomer could con
sistenly reduce itself as a symmetric monomer by following 
the law of symmetry and by this reasoning, the symmetry  
of cooperativity always preserves (the sixth statement of 
MWC model) [2,3,16]. In plain words, the asymmetric satu-
ration curve in appearance is symmetric in the allosteric 
sense of a symmetric monomer, L1. By comparative studies 
of the Equations (18) & (19) versus Equation (3), the errors 
MWC model made are clearly corresponding to those men-
tioned in Methods. Thus the one and only one symmetric 
sigmoid that MWC model had been after is the symmetric 
monomer of Bohr equation (Equation (19)).

Sn = 
xn

Kd+xn

 
≡ Sα = 

α
1+α ≡ 

( x
P50

)n

1+( x
P50

)n	 (19)

{ Bohr equation as a symmetric monomer, }If  x = PB = eB,

then  ( x
P50

)n
= ( PB

P50
)n

= (e B
1+B)n

= α,

N = B2, Kd = eN,
n: Bohr coefficients

Structure-function relation
This Bohr equation with the parabolic kernel of Kd clearly 

demonstrates the physical law of symmetry that resides in 
the hemoglobin structurally as a symmetric monomer and 
dynamically as the fictional monomer [17]. Interestingly and 
confusingly, Wyman interpreted this fictional monomer 
inversely with the increasing discrete bindings by oxygen 
[the contemporary science]. If we follow how Wyman 
extends the concept of symmetry from the saturation func-
tion into the molecular structure, then the tetramer of hemo-
globin might operate allosterically as a symmetric dimer of 
αβ dimer (Equation (18)) that Ackers et al. had suggested 
[16]. Because at the very symmetric point of the non-
cooperative allosteric symmetry, which Wyman interpreted 
as a fixed KR, the two perpendicular symmetries (the dynamic 
symmetry and the structural symmetry) intersect and thus 
both ℓ=c and ℓ ∙c=1 are satisfied by a sigmoid without  
cooperativity like L1. By transforming a group of Bohr  
sigmoid curves into one single symmetric monomer, MWC 
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could reduce Equation (23) to Equation (25) through Equa-
tion (24) for the modeling of simplicity.

( B − 0.11
1.04 ) = log10[CO2],	 (24)

B = log10[CO2],	 (25)

And, n = 1 + log10[CO2]	 (26)

{ [1 mmHg < [CO2] < 100 mmHg],       }B: Bohr shift, 0 < B < 2,
n: Bohr coefficient or Hill number. 

Equations (25) & (26) could be the covered gems of the 1904 
Bohr experiment. Equation (25), the Bohr function, translates 
the quantitative connection between the P50 and the CO2 con-
tent shown in the original sigmoidal curves (Equation (16)). 
Thus, the Bohr function in Bohr equation consolidates the 
non-orthosteric nature of the allostery in hemoglobin that is 
demonstrated by the 1904 Bohr experiment [7]. This Bohr 
function, a natural function unappreciated by most con
temporary scientists, should be the major contribution of  
the coauthor in the 1904 Bohr experiment, Karl Albert  
Hasselbalch (12), who envisioned the Anderson-Hasselbalch 
pH equation [9,10,12] that provided the connection between 
the Bohr function and pH.
With the Bohr function (Equation (25)), the parabolic 

Bohr kernel in the dissociation constant transforms into a 
logarithmic Bohr model. The allosteric analysis thus changes 
from a real number of Bohr shifts to a function of the CO2 
content. Next, we can justify using the Bohr function to ana-
lyze the allosteric Bohr coefficient (n) by simply extends the 
mathematical properties of logarithm.

of allosteric regulation that MWC model missed. Unques-
tionably, the physical meaning of the Bohr coefficient (n)  
is neither a number of oxygen binding sites nor an ortho-
steric interaction coefficient [2–4,6]. And inversely, the oxy-
hemoglobin (Hb(O2)4) has a smaller Hill number (n=1.618) 
than the one of deoxyhemoglobin (Hb) (n=2.618) under a 
PCO2 of 41.5 mmHg and a pH of 7.38 in the homeostatic 
blood (see below: Bohr function). Because the larger Bohr 
coefficient (n) means a larger dissociation constant due to a 
positive allosteric effect that favors T state and the lower 
affinity.

Bohr equation: Sn = 100 × 
(0.1x)n

(eN
n )n

+(0.1x)n

= 100 × 
xn

(P50)n
+xn

	 (22)

The explicit logarithmic Bohr function of CO2 in the 1904 
S-curves
The central question of allosteric quantification remains 

unanswered. What is the physical entity of the Bohr shift 
defined as Bohr coefficient minus one (B=n−1)? Or what is 
the quantitative relationship between the Bohr shift (B) and 
the CO2 content used by Bohr in 1904? This model further 
investigated the simple linear regression between the loga-
rithm of the contents of CO2 set by Bohr in 1904 and the 
Bohr shift (B) listed in Table 1. The Equation (23) shows the 
statistically significant correlation, the lost result of the 1904 
Bohr experiment (p<0.0001, Statistical details are shown in 
the legend of Fig. 3b).

B = 0.11 + 1.04·log10 [CO2]	 (23)

And, by considering the Bohr’s outspoken statement of the 
“large” laboratory errors in his 1904 experiment [7], we 

Table 1  Allosteric Bohr coefficients (n, Hill numbers) calculated from the embedded P50s in the 
second figure of the 1904 Bohr experiment with the original CO2 concentrations [7]

Lab. CO2 5 10 20 40 80

P50*a 14.5 19 23.5 31 41
n*b 1.82 2.18 2.45 2.77 3.09
B*b 0.82 1.18 1.45 1.77 2.09
N*b 0.67 1.39 2.10 3.13 4.36
PCO2(B)*c 6.6 15.1 28.2 58.9 123
Lab. Error*d (+32%) (+51%) (+41%) (+47%) (+54%)
Log10[CO2]Lab 0.70 1 1.30 1.60 1.90

*a. A ruler retrieved P50 values directly from the sigmoid curves illustrated by Bohr in 1904 [7].
*b. B, n, and N are calculated values from the P50 equation (Equations (9), (10) & (20)).
*c. PCO2(B)=10B by reversing the Equation (25). These were the working PCO2 that created the 
1904 sigmoid curves. Bohr admitted in the published report, “However, from a quantitative point 
of view, the results were only reproducible with a relatively large error, which may be due to 
great variability of the hemoglobin molecule.” [7]
*d. Laboratory error of measurement*4 = [(PCO2(B)−Lab. CO2)/(Lab. CO2)]%.
(Lab. CO2: the experimental settings of PCO2 in 1904; PCO2(B): the calculated PCO2 corre-
sponding to the measured P50 (by Equation 25); B: Bohr shift, n: Bohr coefficient, N: cooperativ-
ity number.)
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(a)

(b)

Figure 3  (a) Mathematical restoration of all 1904 Bohr sigmoidal curves confirms the Bohr equation as the allosteric modeling of hemoglobin. 
The Bohr-drawn hemoglobin saturation/dissociation curves are cloned from the original P50 values in the 1904 sigmoidal curves provided by Bohr 
(All allosteric numbers are listed in Table 1). Initially, we calculated n with the P50 equation and the measured P50 values (Equation (21)). With the 
calculated n and Bohr equation, we recreated the 1904 Bohr curves (Equation (22)). Bohr equation is perfect in curve fittings. These recreated Bohr 
curves are illustrated as the 1904 format with their specific Hill numbers in parallel with the CO2 contents. Acceptable operational errors in a labo-
ratory in 1904 resulted in overshooting the cooperativity number N (4.36>4). The physiological Bohr (Hill) coefficient (under PaCO2=40 mmHg) 
coded in the 1904 experiment was 2.77 (>2.618) with N as 3.13 (>2.618), and n≠N. The red-dotted line represents the orthosteric symmetry, the 
symmetric monomer of n=1. It is a hyperbola corresponding to the symmetry of cooperativity and not cooperative. In vivo we should focus on the 
allosteric range of the Bohr shifts spanning along this n1 hyperbola. The different shapes of the sigmoid and the hyperbola, which correlate to the 
relatively different affinities of oxygen, prove in this graph to be functionally attributed to the Bohr equation with the various Bohr coefficients 
calculable from the measurements of P50. (b) Linear regression of the relation between Bohr shift (B) and log10[CO2]. ([CO2]: the laboratory settings 
of the Bohr experiment in 1904; y: Bohr shift (B); x: log10[CO2]; m=1.040±0.02261 and b=0.1092±0.03095 for a linear relation: y=mx+b. Correla-
tion coefficient: r=0.99929, Coefficient of determination: R2=0.9986, Standard error=0.012, and p<0.0001. Statistical drawing software: Desmos® 
graphing calculator)
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shift of 1.618 (B>1). Then, the saturation curve (Sn−1) would 
have a low Bohr coefficient of 1.618 and a Bohr shift of 
0.618 (B<1). The allosteric range between the coupled 
allosteric Bohr activities is exactly unity according to  
Equation (27). Moreover, the cooperativity (N) connects 
these two-states sigmoid curves in a reciprocal continuum of 
a tenfold concentration gradient of carbon dioxide within 
this allosteric range in RBCs (from 4.15 mmHg-PCO2 to 
41.5 mmHg-PCO2 in this physiological example with a Bohr 
coefficient of 2.618). Then the hemoglobin becomes an 
oscillator under various metabolic rates to meet the need of 
oxygen (Equation (28)).

1 = ∆n = log10 [10] = log10 
[26.0]
[2.60] = log10 

[41.5]
[4.15] 

= log10 
[54.0]
[5.40] = log10 

[58.3]
[5.83]	 (28)

Logarithm identity as the allosteric symmetry
The Bohr coefficient, n, by the definition of the Bohr  

function and the parabolic model, should reflect that cooper-
ativity (N) should cover the limited allosteric range (Δn) of 
unity (Fig. 2). This allosteric N establishes a cooperative 
connection between two Bohr coefficients (n and n-1, B). 
Thus, we need two coupled 1904 sigmoid curves of different 
Bohr coefficients to describe the symmetric positive and 
negative allosteric transitions in RBCs in vivo because the 
natural compartmentalisations of the arterial and venous cir-
culations (Fig. 4). Following the discovery of Bohr function 
(Equation (25)), the logarithm identity realizes physically 
the “ two-states” of the MWC model.

1 = log1010 = log10 
PCO2

(PCO2

10 )
 (= loga 

[xa]

([xa]
a ) ) 	 (27)

{xa: the allosteric ligand}

As the homeostatic example, let us consider a dissociation 
curve (Sn) with a high Bohr coefficient of 2.618 and a Bohr 

Figure 4  Implicit allosteric range, allosteric constant, reversible allosteric transition and respiratory exchange ratio in the “two-states” sigmoid 
curves (The group of hemoglobin saturation curves shown in 1904). The Bohr effect modified the orthosteric symmetry, S1 (n=1), to the allosteric 
symmetry, S2 (n=2) and both curves are non-cooperative. The coupled Bohr coefficients circumscribe the allosteric range of hemoglobin between 
the negatively cooperative Sn−1 and positively cooperative Sn (n=2.618). The allosteric range is consistently unity. The circle dots are the PB (Bohr 
shift). The black dots are the P50. The non-cooperative S2 with Bohr coefficient of two, or the allosteric switching point at the logarithmic identity, 
subserves the reversible allosteric Bohr effects between Sn−1 and Sn. Note PAO2 is 105 mmHg-PaO2 at the position of the alveoli. This value is below 
the allosteric range of the Bohr coefficient at 2.732 (the black arrow), where the maximal PaO2 needs to be 117 mmHg-PaO2 (the allosteric constant 
shifted rightward). This finding suggests why we need the Root effect and negative Bohr effect under stress (relative hypoxia) that was demonstrated 
in fish [12,13]. The peripheral tissue cells non-cooperatively use 74.7 mmHg-PO2 to produce two fractions of 37.35 mmHg-PCO2 (41.5 mmHg 
minus 4.15 mmHg), which RBCs rebreathe cooperatively to deliver 93.6 mmHg-PaO2. This 125% bio-efficiency is inversely downgraded to an 
orthosteric respiratory-exchange-ratio (RER) of 79.8%. Allostery supersedes the law of mass action by a parabolic rule that is moderated by a  
logarithmic function. This 93.6 mmHg-PaO2 (PaO2.ac) is the dynamic equilibrium point of the allosteric constant, described inversely in MWC 
model with a value near 100, which is the ratio of KT/KR. KT/KR is larger than 1. And KT≠KR. (Sn−1, saturation curve with KR; Sn, dissociation curve 
with KT, PaO2.ac: PaO2 mmHg at allosteric constant)
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Sn = 100 × 

xn

Kd+xn  = 100 × 

xn

(P50)n+xn  

= 100 × 

( x
ℓ ∙c )n

1+( x
ℓ ∙c )n

 
≡ 100 × 

α
1+α 	 (30)

This allosteric Bohr equation (Equation (30)) is frankly dif-
ferent from the pharmacological Hill equation (Equation 
(4)) despite that equations both are sigmoidal and even 
describe the same homeostatic dissociation curve when N 
equals n at 2.618. The former has an allosteric Bohr coeffi-
cient, and the latter has a homotropic Hill numbers. This is a 
“rabbit-duck illusion” in science. Naturally, the Kd has a 
duality in the ligand affinity of orthosteric receptor under the 
allosteric regulation by the principle of reciprocity (Equa-
tion (8)). The MWC model actually reintroduced the deleted, 
positive Bohr effect. Within the hyperbolic symmetric mono-
mer of Bohr equation, the methodologically lost affinity-
information in the lower sigmoid of the logistic monomer, 
L1, (c=1 in Equation (30) [14]) trespassed on the symmetric 
P50 by disintegrating the allosteric symmetry into one large 
allosteric constant, one insignificant microscopic dissocia-
tion constant, KT, and the stray KR. Consequently, the un-
natural MWC model inversely elaborated the positive Bohr 
effect as the positive cooperativity of oxygen binding in the 
allosteric range of [Q: 2<n<3] [3] and then lost most bio-
physical and physiological correlations. For example, the 
lost allosteric range as the negative allostery [(1-Q): 1<n<2] 
[2,4], the Equations (16) & (18) & (19) and the constant 
fingertip saturation with the pulse oxymeter corresponds to  
a PaO2 that is the fixed allosteric constant (KR) that MWC 
model described in Equation (3) (Fig. 4). The price of 
allostery in pharmacology is even bigger for the unsettling 
issues of affinity and efficacy, the entangling effects of ligand 
binding and effects of conformational changes and the inter-
pretations of mutant effect on receptor (by paraphrasing the 
review essay of Colquhoun [18]).
The Bohr equation is the simplest, symmetric and quanti-

tative model showing how the feedback mechanism couples 
the allostery [18,19]. The magnificent trial of MWC model 
as a symmetric Group theory had foreseen the communi-
cated network of allosteric groups of more than twenty 
enzymes coupled in the glycolysis and the Krebs cycle in 
addition to the crowning hemoglobin, carbonic anhydrase 
complex and anion exchanger [12]. According to the pre-
served “allosteric organization” proposed by Changeux 
[12,19], then we could treat the membrane receptors, for 
example GPCRs, as the allosteric organization of hemo
globin linked-carbonic anhydrase-anion exchanger receptors 
(“HbCARs”) by following the universal physical law of 
symmetry in the symmetric monomer model of allosteric 
cooperativity [6,12,19,20].

2.618 = log10 
[41.5]
[4.15]  + log10 [41.5] 

≡ [Capacity] + B	 (29)

{The homeostatic Bohr coefficient with PaCO2=41.5 mm}

In Equation (28), the corresponding allosteric Bohr coeffi-
cients are 2.414, 2.618, 2.732 and 2.766, respectively. The 
buffering capacity of hemoglobin expands and telescopes, 
and vice versa. This explains the Root effect existing as a 
logarithmic variant of Bohr effect, which Rummer et al.  
suggested [12,13]. By this identity of logarithm, the allosteric 
range is constantly unity [2–4] that is already shown in the 
parabolic model of dissociation constant (Fig. 2). Crick 
coined and quantified the term “allosteric range” (Q) in his 
footnote on allostery [2]. The Equations (28) & (29) imply 
that the allosteric symmetry is the logarithm identity. And 
there are numerous two-states corresponding to different 
metabolic rates. As for a specific metabolic rate, there exists 
one and only one symmetric two-states (Fig. 4).

The Bohr effect lost in the MWC model
In the original manuscript on the nature of allosteric tran-

sition [3], there was a paragraph describing why the MWC 
model missed the allosteric Bohr effect. “Since, again, the 
homotropic interactions are independent of absolute affini-
ties, certain conditions or agents may modify the affinity of 
an allosteric ligand without altering its interaction coeffi-
cient. This is apparently the case for the Bohr effect shown 
by hemoglobin: as is well known, the oxygen saturation 
curves obtained at different values of pH can all be superim-
posed by a simple, adequately chosen, change of the abscissa 
scale. In terms of the model, this would mean that the bind-
ing of the ‘Bohr protons’ does not alter the equilibrium 
between the two hypothetical states of the protein. Hence 
also the Bohr protons themselves would not be allosteric 
ligand, and their own binding is not expected to be co- 
operative.” These words documented the inappropriateness 
of extending the orthosteric MWC model into the allosteric 
search of medicines or allosteric pharmacology [6,11,14,15], 
which compounded the large and fictional allosteric con-
stants with the small ratio of microscopic dissociation  
constants without an allosteric definition of Hill numbers  
(Equation (17)) [2–4,6,10,14,15]. Thus MWC model strug-
gled in calculating the numerical difference between the 
number of orthosteric binding sites and the Hill number 
[2,4,10]. The difference is outside the allosteric range of 
cooperativity according to the parabolic model of coopera-
tivity (Fig. 2) [2].

Does the orthosteric cooperativity exist in reciprocity?
Following the elucidation of the allosteric symmetry,  

the cooperative Bohr equation in the form of a symmetric 
monomer is:
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Bohr coefficient (n): When the allosteric Bohr equation was 
equal to the orthosteric Hill equation at N=nH, we could not 
differentiate whether the allosteric number was a Bohr coef-
ficient or a Hill coefficient. This is a “rabbit-duck illusion” 
proposed by Wittgenstein and Kuhn [22]. Thus, I used the 
Bohr coefficient (n) to emphasize the allosteric difference 
due to the Bohr effect from the orthosteric Hill coefficient 
(nH). Synonym: Hill number
Orthosteric: This term describes the action at the substrate 
site. Synonym: Homotropic
Root effect: the logarithmic variant of Bohr effect
Symmetry: A group has a set and a binary operation, *. A 
group conforms to the four axioms:
1.	 Closure. For all a, b∈G, a*b∈G.
2.	 Associativity. For all a, b, c∈G, a*(b*c)=(a*b)*c.
3.	 Identity. There exists one and only one identity, e∈G, 

such that for all a∈G, e*a=a*e=a
4.	 Inverse. For all a∈G,there exists one and only one 

a−1∈G, such that a*a−1=e=a−1*a
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