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Bohr, Hasselbalch and Krogh demonstrated a group of 
sigmoid curves under various carbon dioxide contents in 
1904. Hill fitted these curves in 1910 with Hill equation 
without the physical meanings of Hill coefficient and dis-
sociation constant. In 1965, Monod-Wyman-Changeux 
model (MWC) popularized the word “allostery” with 81 
words of symmetry to define an orthosteric nature of 
cooperativity in a single and symmetric sigmoid curve. 
Paradoxically the MWC model didn’t quantify the 
homotropic Hill coefficient and confusingly described the 
symmetry of sigmoid shapes with three allosteric vari-
ables. A heterotropic Bohr equation, by clarifying the 
biophysical symmetry in allostery, suggests the solution 
of allosteric coefficients with only one Bohr variable. We 
reveal that the mathematical need of a fictional monomer 
by MWC model justify a symmetric logistic curve with  
a parabolic kernel of dissociation constant to model the 
1904 sigmoid curves. The logistic-derived Bohr equation 
and its half-saturated P50 equation successfully used the 
embedded P50 values in the 1904 sigmoidal curves to 
quantify their hyperbolic conformational shifts and Hill 
coefficients (n) pending for a century. Both are the loga-
rithmic functions of carbon dioxide. This truly quantita-
tive Bohr equation digitizes the allosteric regulation of 
the orthosteric affinity by precisely cloning the original 
group of dissociation/association curves published in 

1904. The Bohr equation honestly suggests that nature 
should have chosen the allosteric Bohr effects to modify 
hemoglobin to cope with the swift dynamic of gas 
exchange. The discovery of the Bohr function in Bohr 
equation challenges the feasibility of the orthosteric 
cooperativity of hemoglobin.
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Nature chose phosphate to modify proteins for the chemi-
cal versatility of phosphate [1]. By considering the universal 
and	allosteric	posttranslational	modifications	(PTMs),	why	
would nature choose orthosteric oxygen to modify the most 
dynamic and ever switching hemoglobin by deleting the 
allosteric	PTMs?	The	failure	to	quantify	the	cooperativity	is	
a paradox to this orthosteric choice of nature [2,3]. Is our 
interpretation	of	the	allosteric	nature	insufficient	as	the	hemo-
globin	is	concerned?

“Fractional saturation is not a direct measurement of con-
formational	change.”	This	is	a	famous	quotation	of	Wyman	
regarding	 when	 he	 explored	 the	 unexplained	 difference	
between	 the	 number	 of	 ligand	 binding	 sites	 and	 the	Hill	 
coefficient,	nH [2]. The modeling of allosteric cooperativity 
originated	from	the	sigmoid	Hill	equation	[2,3].	The	maxi-
mal	Hill	coefficient	or	the	quantitative	cooperativity of the 
four-heme hemoglobin is well known to be only near 3 

The cooperative hemoglobin is the crowning model of the versatile allosteric enzymes. The failure to model the cooperativity quantitatively since 
1904 means the inevitable failures of both the allosteric quest of drugs and the discovery of the allosteric mechanism of disease. The application  
of the biophysical law of symmetry solved the centennial paradox incurred by the orthosteric Hill coefficient. Hemoglobin turns out to be non- 
orthosteric and then transforms itself from a descriptive Hill equation into a quantitative Bohr equation. The Monod-Wyman-Changeux (MWC) 
model erased the allosteric Bohr effects in the misused Hill equation with the prejudiced perceptiveness of cooperative oxygen binding.
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Wyman described the dynamic symmetry of “one” satura-
tion curve by transforming the macroscopic dissociation 
constant	in	Hill	equation	into	two	alloseric	constants	to	con-
struct both the homotropic allostery of MWC model and the 
“mathematical	 fiction	 of	monomer”	 (Equation	 (2))	 [3].	 In	
1904,	 Bohr	 actually	 demonstrated	 the	 Bohr	 effect	 with	 a	
larger dissociation constant (Kd) toward T state favoring the 
decrease	 of	 oxygen	 affinity	 in	 a group of sigmoid curves 
[2,7]. For the creation of MWC model, Wyman improperly 
erased	 this	 prominent	 Bohr	 effect	 by	 assuming	 a	 small	
microscopic dissociation constant (c=KR/KT≤1)	and	a	large,	
homotropic, allosteric constant (L=T0/R0>>1). These two 
conjoined allosteric variables, Lcn, preserved the spirit of  
a larger Kd to construct the upper and lower part of “one” 
sigmoid, to which Wyman assigned “symmetry” and “the 
homotropic	cooperativity”	(Equation	(2)).	Consequently,	the	
larger dissociation constant (Kd) and the potentially allosteric 
Bohr	effect	degenerated	 to	serve	 two	new	constants	 in	 the	
allostery describing the orthosteric (homotropic) allostery 
(Equation	(3))	[2,3].

y = 
xn

Kd+xn  { 
2.1: Hill’s approximation of Bohr curves, 

unspecified n as a positive real number } (2)

= 
xn

KT ∙KA+xn  { 
2.2: Wyman’s symmetric saturation curve, 

n is a homotropic integer }

= 
( x

n√KA
)n

KT+( x
n√KA

)n = 
( x

c )n

L+( x
c )n  

{ 
2.3: Introducing two allosteric constants, 

since c ≤ 1, then L >> 1. } 

= 
(x)n

Lcn+(x)n { 
2.4: MWC’s homotropic allostery 

(page 99 of [3]) }

= 
( x
ℓ ∙c )n

1+( x
ℓ ∙c )n	≡	

α
1+α  

{ 

2.5: The making of a fictional monomer, 

n =1, α = 
x
ℓc  and ℓ ∙c = 1 (Fig. 1) }  

{ (From allosteric (Bohr) Kd to homotropic allostery)      }2.6: Kd = KT ∙KA = L ∙cn = (ℓ ∙c)n 

let L = KT = 

T0

R0
 = ℓn, c = 

n√KA = 

n√Kd ∙
R0

T0
 = 

Kr

Kt
 ,

L, ℓ: Large and small “homotropic” allosteric constants,  
T0, R0, r.t: the macro—and microscopic Two—states

Or we could view the homotropic MWC model as an inte-
grated model of a group of Bohr curves in one symmetric 
sigmoid. Unfortunately this conjoined existence of a large, 
homotropic L (=T0/R0=ℓn) and a small c (=KR/KT by Wyman) 
in	Equation	(3)	creates	what	Crick	described,	“the	price	of	

[2–4].	 Paradoxically,	 the	 Hill	 equation	 did	 not	 provide	 a	
quantitative	 fact,	 which	 is	 still	 unsolved	 as	 a	 centennial	
problem	 [4].	 Neither	 Hill	 provided	 a	 direct	 measurement	 
of oxygen uptake during exercise but a reverse exponential 
equation	for	approximating	oxygen	uptake	(VO2) [5]. Never-
theless,	 maximal	 oxygen	 consumption	 (VO2max) became 
another unsettled physiology [5]. Illogically, however, the 
Hill	equation	is	widely	used	as	a	dynamic	model	in	pharma-
cology	and	the	receptor	kinetics,	where	the	Hill	coefficient	
(nH) is used as a descriptive number of cooperativity, the  
sigmoid	shape	and	could	be	derived	from	the	Hill	plot	[2,6].	
Yet “there is still no mathematical description that could 
describe	quantitatively	the	action	of	agonists	on	G-protein-	
coupled	receptors	(GPCRs)”	[6].	However,	why	is	the	Hill	
coefficient	 (nH) of hemoglobin orthosteric rather than 
allosteric?	 In	 1904,	 Bohr	 showed	 a group of sigmoidal 
curves	by	oxygen	bindings	to	demonstrate	the	Bohr	effect	as	
the carbon dioxide (CO2) content of fresh canine blood was 
increased [7]. Why was the mathematical description of 
these	Bohr	effects	lost	in	the	orthosteric	Hill	equation	since	
1910	[2–4,8]?
This	 first-ever	 quantitative	 and	 heterotropic	 model	 of	

hemoglobin explores the ambiguously allosteric regulation 
residing in the 1904 hemoglobin dissociation curves. To 
prove	 this	model,	 one	 needs	 to	 answer	 two	 questions.	 Is	 
the	 saturation	 curve	 symmetric	or	 asymmetric?	And	why	
Wyman described allostery in a single and symmetric  
sigmoid curve while Bohr presented a group of asymmetric 
sigmoid	curves?

Methods
The analysis of orthosteric symmetry traces the sigmoidal 
origin of Hill equation
The creation of orthosteric symmetry in MWC model

“Jeffries Wyman had noted several years earlier that  
the symmetry of the saturation curves of hemoglobin by 
oxygen seemed to suggest the existence of a structural 
symmetry within the protein molecule itself; this idea  
was brilliantly confirmed by the work of Perutz.”

Jacqes Monod, Nobel Lecture, December 11, 1965

The ABC of a homotropic MWC model and the dynamic 
symmetry

Kd = 
KT

KR
 = KT ∙KA (1)

{ (The basics of a saturation curve)                               }Kd: the macroscopic dissociation constant
KR: the macroscopic dissociation constants for R state
KT: the macroscopic dissociation constants for T state

KA: the affinity constant, KA = 
1

KR
 

Following	 the	 basics	 of	 a	 saturation	 curve	 (Equation	 (1)),	



492 Biophysics and Physicobiology Vol. 16

independent	 of	 absolute	 affinities.”	 [3]),	 the	Hill	 numbers	
were	left	alone	as	an	integer	without	an	allosteric	definition.

The reversed engineering of allostery from the sigmoidal 
Hill	equation	by	Wyman	might	be	due	to	 the	stereotypical	
coexistence	of	 the	discrete	oxygen-binding	equations,	also	

allostery”	and	“the	conflicting	needs”	of	an	allosteric	protein	
[2]. The decreasing affinity of oxygen for the lower sigmoid 
and the more than needed increasing affinity for the upper 
sigmoid with the increasing orthosteric interaction were 
revealed by Crick [2,9]. Franakly, a homotropic ℓ (L) com-
promised	 the	 lower	 Bohr	 effect	 to	 secure	 needlessly	 the	
upper	R	state	affinity	only	in	the	name	of	symmetry	[2]. This 
design of allosteric protein violated the reciprocity (a hyper-
bolic symmetry of dynamic in Fig. 1) between allosteric 
effect	and	affinity,	namely,	Kd=KT∙KA or ℓ ∙c=1 (Equations	
(1) & (2)). The dynamic symmetry that Wyman preferred is 
ℓ=c and thus KR=KT. Furthermore, the cooperativity of 
hemoglobin can only be orthosteric because the KR is the 
dissociation and association constant simultaneously in the 
name of orthosteric symmetry, and α=F/KR rather than  
α=x/(ℓ ∙c). This is the creation of the orthosteric allostery of 
hemoglobin	(Equation	(3)).	Consequently	Wyman	changed	
the dynamic nature of symmetry in allostery by embracing  
a homotropic or orthosteric nature of allostery [3].

^YF = 
Lcα(1 + cα)n−1

 + α(1 + α)n−1

L(1 + cα)n
 + (1 + α)n

	≡	
α

1+α  = 
F

KR+F  (3)

{ (the saturation curve in MWC model)                         }c = 
KR

KT
	≤ 1, L = 

T0

R0
 >> 1; α = 

F
KR

 ,

^YF: saturation function; F: substrate concentration,
The rightward hyperbolic equation of the fictional 
monomer is derived with c = 1 and an insignificant L.
(L = 9054, c = 0.014, for a α4 sigmoid fitting) [3]

According to the six statements of the orthosteric MWC 
model in its 1965 publication [3], the protein is an oligomer 
consisting of n identical protomers, arranged symmetrically 
(the	first	statement)	[2].	The	hemoglobin	tetramer	and	its n 
identical protomers shift between two and only two con-
formational states (the fourth statement) [2]. R-state is for 
the	relaxed,	high-affinity	state	and	T-state	is	for	the	tensed,	
low-	affinity	 state.	The	 equilibrium	 between	 the	 two	 states	
determines the “homotropic” allosteric constant (L=ℓn), 
which is separated from the concept of affinity	 (the	 fifth	
statement).

Apparently, Wyman constructed the allostery-detached 
orthosteric symmetry by introducing two-homotropic 
allosteric	 constant	 and	 the	 “heterotropic	 effects	 would	 be	
due	exclusively	to	displacements	of	the	spontaneous	equilib-
rium between the R and T states of the protein” [3]. Thus the 
heterotropic	effects	only	changed	L	without	effects	on	c, KR 
and KT [3]. Furthermore, the MWC model risked losing the 
separate	measurement	of	the	oxygen	affinity,	1/KR, and the 
dissociation constant, KT in a group of	Bohr	curves	(Equa-
tion (1)) by conjoining them into Lcn to describe “one”  
symmetric	 saturation	 curve	 (Equation	 (2)).	 And	 only	 by	
these descriptive words (“The homotropic interactions are 

Figure 1 Crick’s	concern	and	Parabolic	model	of	allosteric	hemo-
globin: orthosteric symmetry, allosteric symmetry and reversible coop-
erativity. The principle of reciprocity is what Crick’s concerned about 
homotropic	 allostery.	Allosteric	 activity	 and	 affinity	 should	 follows	
(ℓ ∙c)=1, a hyperbolic hyperbola (the blue curve). This demands a hetero-
tropic	definition	of	allosteric	activity	and	creates	this	parabolic	model	
of Kd. The Kd (red line) is a symmetric exponential function of the Bohr 
effect	 (B) and Kd	 defines	 the	 sigmoid	 shape	 in	 the	 saturation	 curve.	
Bohr shifts swings itself symmetrically on the hyperbolic (ℓ ∙c)=1 
between T and R states. This proves cooperativity is symmetric. The 
parabolic nature of cooperativity, N=B2, displays the orthosteric sym-
metry for n=1, the allosteric symmetry for n=2, the positively cooper-
ative	Bohr	effect	for	[2<n<3]	(N>B>1, the blue area), a reduction in 
the	 allosteric	 (Hill)	 number	 for	 [3<n<4]	 (N>n), and the negatively 
cooperative	 Bohr	 effect	 for	 [1<n<2]	 (N<B<1,	 the	 red	 area).	 The	
equivalence	of	N and n (N=n=2.618) occurs at the homeostatic point 
with B=1.618 (PCO2=41.5, pH=7.382).	The	equivalence	of	N and B 
(N=B=1) at the allosteric symmetry measures no cooperativity at n=2 
(for a sigmoid S2). The range of hemoglobin’s allosteric activity (N) is 
bounded by n	in	[0.382<n<2.618].	The	present	allosteric	studies	could	
only	observed	the	allosteric	range	in	[1.618<n<2.618]	(or	[1.7<n<3.2]	
by	Hill	and	Bohr	and	Q	by	Crick	[2],	the	blue	area)	with	negation	of	 
the	negative	allostery,	((1-Q)	by	Crick	[2],	the	red	area).	Note	that	the	
orthosteric symmetry at n1 (B=0)	is	different	from	the	allosteric	sym-
metry at n2 (B=1). Theoretically, there should be another negative Bohr 
effect	 resides	 in	 the	 range	of	orthosteric	 symmetry	 [0.382<n<1]	 to	
present the allosteric resistance to receptor inhibition. (ℓ: allosteric  
constant of monomer, c:	affinity	defined	 in	Equation	(B); Ln(0): the 
measurement of sigmoidicity as a value deviated from 0.5; Kd: dissoci-
ation constant, ((eN

n)n); P50=eN
n ; N: cooperativity number; B: Bohr shift; 

n:	Bohr	coefficient;	T=1.618 as a solution of B2=1+B, R=0.618; T, R 
also present T-state and R-state; the x-axis represents the Bohr shift,  
B; the y-axis represents a numerical value.)
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pseudo-symmetry of the orthosteric MWC model presented 
in	Equation	(3).	This	manipulation	of	Hill	equation	incurred	
the	consequences	of	inevitable	frustrations	in	the	agonistic	
modeling	for	other	allosteric	proteins	[6]	and	a	flip-flopped	
physiology of respiration [5,9]. Thus a thorough understand-
ing of the biophysical symmetry in terms of the hemoglobin 
saturation	curve	is	inevitable	to	construct	a	truly	quantitative	
Hill	equation	for	the	Bohr	sigmoid	curves.

The fictional monomer of MWC model with n=1 and 
the structural symmetry

With a relative view in structure between the allosteric 
site and orthosteric one, one should ask: “Why is the cooper-
ativity of the oxygen binding curve asymmetric as a sigmoid 
shape?”	To	reveal	the	asymmetric	nature	of	the	original	Hill	
equation,	 the	 sigmoidal	 relationship	 between	 the	 logistic	
curve (Ln) and the hemoglobin saturation curve (Sn) needs 
further	 clarification.	The	 focus	 is	 their	 related	 transforma-
tions through the dissociation constant, Kd. (This is the phar-
macological approach to the semi-logarithm presentation  
of substrate-receptor saturation curve. The physiological 
scaling	of	Hill	equations	will	be	added	later	for	the	reproduc-
tion of the 1904 sigmoid curves in Results and Discussion: 
To clone the old 1904 Bohr sigmoid curves is to prove the 
new	Bohr	equation.)
From	the	descriptive	Hill	equation	(Equation	(4),	Fig.	2)	

[6,8]:

known	 as	 the	mass	 action	 equation,	 and	 the	Hill	 equation	
listed	by	Hill	since	1910	(below).	In	fact,	Hill	had	clarified	
his	 object	 was	 to	 see	whether	 his	 equation	 could	 satisfy	 
the sigmoidal observations rather than “to base any direct 
physical meaning on n and K” [8].

Hb + O2	↔
?  HbO2	{?:	unknown allosteric mechanism}, 

Hbn + nO2	↔
?  HbnO2n {n: unknown integer in 1910},

y = 100 
Kxn

1+Kxn

{ The original Hill equation,                  }n: real number reported by Hill [8],
K: aggregation constant,
x: PaO2 mmHg

It	is	clear	in	Equation	(2)	that	the	symmetry of “a” saturation 
curve	fitted	by	the	MWC	model	in	Equation	(3)	actually	has	
all intrinsic asymmetries that belong to all the lost Bohr 
effects demonstrated in 1904 (the swinging Kd on the hyper-
bola, (ℓ ∙c)=1). In plain words, Wyman mistook the sum of 
heterotropic	allosteric	effects	as	“one”	homotropic	allostery	
(Another	 important	 proof	 of	 this	 error	 is	 Equation	 (18)).	 
Furthermore, the high mixed venous saturation around 75% 
observed in physiology [5] and the enthusiastically pharma-
cological	 exploitations	 of	 Hill	 equation	 [6]	 reinforced	 the	

Figure 2 The sigmoidal transformations of the Bohr shifts: positive cooperativity as a sigmoid and negative cooperativity as a hyperbola. Oxy-
gen saturation curves (S1, S2, Sn: n=2.618) are the exponentially invariant transformations of the logistic sigmoids (L1, L2, Ln). There is loss of the 
sigmoidal information from L1 to hyperbolic S1. A logistic Bohr shift (B) on L1 would project into a hyperbolic Bohr shift point (PB) on S1 (the two 
red arrows). The PB of S1 (the red dot overlapping with the P50 of S1) walks upward along the hyperbolic S1curve to P73 and P83 to simultaneously 
exaggerate the saturation plateau and the dissociation sigmoid of the logistic curve and thus creates the S2 and Sn. The displacement of P50 (Black 
arrow)	is	an	exponential	function	of	the	Bohr	shift.	This	finding	clarifies	that	the	cooperative	origin	of	the	sigmoid	shape	is	the	Bohr	shift	(B or PB). 
In	homeostasis,	we	have	a	homeostatic	Bohr	coefficient	of n2.618 (black sigmoidal line) with P50 of approximately 27 mmHg	that	Hill	equation	took	
it as n=N=2.7.	A	theoretical	and	negative	Bohr	effect	saturation	curve	(green	line,	n=0.5) is shown. The negative and leftward Bohr shift (-B) 
transforms	a	flattened	 logistic	sigmoid	 into	a	downward	shifted	hyperbolic	saturation	curve	 to	maintain	a	relatively	high-affinity	plateau	under	
suppressed n. In addition, PB decreases hyperbolically to P38 (the lowest green dot on S1) without sigmoidicity. Note that S2 is the allosteric transla-
tion of the orthosteric S1, and both the hyperbolic S1 and sigmoid S2 are not allosteric cooperative because both are the symmetry of cooperativity. 
(L: Logistic curve; S: saturation curve; S(-B):	saturation	curve	of	a	negative	Bohr	effect;	SaO2:	oxygen	saturation;	PaO2: oxygen partial pressure; 
ln(PaO2):	natural	logarithm	of	PaO2; P50:	PaO2 at 50% saturation; P73: PB of n2; P83: PB of n2.618.)
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hyperbolic	equation	(Sα)	of	the	fictional	monomer	(Equations	
(3) & (7)) also supports this hyperbolic assumption of the 
orthosteric symmetry before the allosteric interaction. There-
fore, both the hyperbolic S1 and sigmoid L1 should be the 
proper	 symmetry	 of	 the	 fictional	monomer	 as	 a	 structural	
symmetry that was proposed by Wyman [3] and plausibly 
both represent the orthosteric symmetry. This model will 
describe	this	structural	symmetry	of	a	fictional	monomer	as	
the symmetric monomer, Sα, which in essence of symmetry 
equals	L1.	The	Equations	(5)	&	(6)	and	the	need	of	a	mathe-
matical	fiction	of	equivalent	monomer	by	the	MWC	model	to	
reconstruct	symmetry	in	allostery	differentiates	the	allosteric	
Bohr	equation	from	the	pharmacological	Hill	equation	which	
describes the law of mass actions [6].

After revealing the structural symmetry as a primitive 
logistic curve and delineating the compromising symmetry 
of a homotropic dynamic proposed by MWC model yet con-
cerned	by	Crick	(Equations	(3)	&	(7)),	we	then	ask:	“What	 
is the mathematical connection between the hyperbolic S1 
curve and the sigmoid Bohr Sn	 curves?”	 and	 in	 allosteric	
sense,	 “How	 the	 allosteric	 transition	 shifts	 the	 fictional	
orthosteric	symmetry	to	the	real	allosteric	symmetry?”	The	
answer is in the problematic Kd shown in the ABC of MWC 
model.

Results and Discussion
Rediscover the lost Bohr shift (B) in the symmetric 
monomer
Crick and the heterotropic definition of allostery
It	deserves	 to	 repeat	 that	Hill	did	not	base	any	physical	

meaning of n and K	 for	 any	 Hill	 approximation	 of	 the	 
Bohr	 sigmoid	curve	 [6,8].	The	 indefinable	orthosteric	Hill	
coefficients	by	the	MWC	model	could	neither	quantify	the	
1904 sigmoid curves nor numerate the allosteric interaction 
coefficients	 [2,3]	 despite	 its	 claim	 that	 curve	 fitting	 was	 
not	 necessary	 to	 verify	 its	model.	And	Crick’s	 definition	 
of	 allosteric	 coefficients	 still	 depended	 on	 a	 quantitative	 
saturation	 equation	 that	 did	 not	 exist	 (Equation	 (3))	 [2,6].	
Therefore,	 this	 heterotropic	model	 drops	 the	 two	 fictional	
constants (L and c) and returns to the basic, the dissociation 
constant (Kd). By following Wyman’s trial to build a sym-
metric kernel in Kd (KR=KT by Wyman) to describe the  
symmetry of a saturation curve (L1 or Sα), let us outsource 
the	 allostery	 to	 the	 deleted	 Bohr	 effect	 reclaimed	 in	 the	 
symmetric sigmoid, Ln	 (Equation	 (5))	 and	 then	verify	 this	
assumption with the 1904 sigmoid curves. Firstly, the math-
ematical	symmetry	of	reciprocity	(Equation	(8))	should	be	
preserved	during	the	making	of	the	fictional	monomer	and	
the	symmetric	monomer	in	Equations	(2)	&	(3).

For an allosteric hemoglobin, it should conform to:

ℓ ∙c = 1 (8)
{Crick’s concern about allostery [2]}

Snb = 
xnb

Kd+xnb
  (4)

{ S: saturatin sigmoid; x: PaO2; Kd = (P50)nb,                  }nb ∈ positive integer (number of oxygen binding sites),
P50 = the PaO2 at 50% O2 saturation.

This	 model	 derives	 a	 logistic	 sigmoid	 equation	 (Ln) that 
could be symmetric when n=1:

Ln = 
enx

(eB)(n−1)+enx   (5)

{ Logistic sigmoid,                                                 }Kd = (K)(n−1), K = eB,
n: Bohr coefficient, B: Bohr shift, x: ln(PaO2) 

For n = 1, L1
 = 

ex

1+ex  vs. Hill L1
 = 

ex

KR+ex  (6)

{L1(0) = 0.5 vs. Hill L1(ln(KR)) = 0.5}

In	this	logistic	sigmoid	equation	Ln	(Equation	(5)),	Kd is 1 by 
the initial condition of n=1. This logistic sigmoid with n=1 
(L1), which transforms from the hyperbolic monomer pro-
posed by MWC model, has the simplest symmetry of a 
dynamic	system	(Equation	 (6),	Fig.	2).	Then	 the	allosteric	
transition, for n>1, is asymmetric because it translates from 
the orthosteric symmetry of this logistic sigmoid (L1). Note 
that the hyperbolic S1 saturation curve to which “we assign 
no cooperativity” transforms itself to this sigmoid L1 (Fig. 
2). Thus, the initial logistic modeling of L1 as the orthosteric 
sigmoid of the saturation curves (Sn) is valid. Therefore,  
the	 three	orthosteric,	 hyperbolic	 equations	 in	Equation	 (7)	 
present	 symmetry,	 asymmetry	 and	 fictional	 symmetry	
respectively in terms of the dissociation constant when n=1. 
Regrettably	the	high	mixed	venous	PvO2	that	Hill	observed	
in the exercise oxygen consumption studies warps this sig-
moidal	 symmetry	 of	 the	Hill	 equation	with	 a	 deviated	KR 
[5,8]. This demanded MWC model to reconstruct a sym-
metrical	dynamic	by	introducing	“a	mathematical	fiction	of	
equivalent	monomer”	(Equations	(2)	&	(3))	[3,10].

S1 = 
x

1+x  vs. Hill S1 = 
x

KR+x  

vs. the fictional symmetry Sα = 
α

1+α (7)

{α	=	 x
KR

}
In fact, the loss of the lower sigmoidal information during 
the orthosteric transformation from the logistic L1 to the 
hyperbolic S1 suggests the hyperbolic nature of the ortho-
steric bindings rather than the sigmoidal association of the 
orthosteric	affinities,	which	the	MWC	model	enthusiastically	
adopted into the allosteric concept as homotropic coopera-
tivity (orthosteric cooperativity [2–4,6]). Additionally, the 



Lee: The allosteric symmetry 495

The	saturation	equation,	Sn,	and	the	logistic	equation,	Ln, 
are a pair of functions that allosterically couple the gas 
exchange	inside	the	RBCs	(Equation	(13)).

Sn = 
xn

eB(n−1)+xn = 
xn

eB2+xn = 
xn

eN+xn = 
xn

(eN
n )n

+xn
 (13)

{Saturation Sigmoid: Bohr equation}

Ln = 
enx

(eB)(n−1)+enx = 
enx

eN+enx

{Logistic Sigmoid}

This	Bohr	equation	(Sn) approximates the hemoglobin disso-
ciation	curve	better	than	the	orthosteric	Hill	equation	because	
the lost Bohr shift is included with the corrected orthosteric 
symmetry and the lower part of sigmoid shape is a function 
of the lost Bohr shift (Fig. 2). The positive Bohr shift (+B) 
moves the orthosteric symmetry (0, 0.5) on the logistic L1 
curve upward and along this logistic sigmoid to a Bohr-
shifted point representing the positive allosteric action of 
CO2. This Bohr shift on the logistic L1 would be as follows:

Bohr shift = (B, 
eB

1+eB ) on the symmetric monomer, 

Sα = 
α

1+α  (14)

{Bohr shift on the logistic L1 curve;	−1 < B < 2}

On the Bohr Sn-curve, the corresponding point would be the 
hyperbolic Bohr shift, PB	(Equation	(15)),	tracing	on	the	S1 
(the bold-red arrow in Fig. 1). Without allosteric action or B 
as zero, PB remains unmoved as a symmetric P50 in S1	(Equa-
tion (15)).

PB = (eB, 
eB

1+eB ) on the symmetric monomer, 

Sα = 
α

1+α  (15)

{Bohr shift departs from the P50 on the hyperbolic S1 curve.}

This PB of Sn moves from P50 of n1 through P73 of n2	to	P83 of 
n2.618 on the hyperbolic S1-curve (Fig. 2). Thus, these Bohr 
shifts walk hyperbolically upward on S1 to create their  
specific	sigmoidicity	(Equation	(11))	and	the	allosteric	con-
formation. And the saturation plateau of Sn exaggerates the 
upper sigmoid of the logistic curve, Ln, exponentially and 
visually. Therefore, on the symmetric monomer (S1, L1, and 
in general, Sα)	 two	 equilibriums	 coexist	 at	 the	 orthosteric	
symmetry. One is the P50 and the other is the lost Bohr shift 
point (PB). For an allosteric action of CO2, the P50 exhibits a 
rightward shift (the bold-black arrow in Fig. 2) while PB 
moves hyperbolically upward (the bold-red arrow in Fig. 2) 
to	 reset	 the	 allosteric	 equilibrium	 between	 the	 two	 con-
formational states depending on the Bohr shift (B) or the 

Logically,	 the	 definition	 of	 allosteric	 activities	 for	n>1 in 
Equation	(9)	should	be	heterotropic, not homotropic, to con-
form to this Crick’s concern about allostery [2]. Secondly, if 
the	metabolic	goal	of	the	allosteric	Bohr	effect	is	principally	
to maximize the CO2 uptake level of RBCs under metabolic 
stresses and synchronously to regulate oxygen delivery in a 
feedback mechanism, then	we	can	define	the	allosteric	Bohr	
regulation	of	hemoglobin	function	in	Equations	(9)	&	(10).	
In plain words, the Bohr shift creates the allosteric activity 
that reciprocally regulates the affinity	of	oxygen	(Equation	
(9)).	Thus	 the	 allosteric	 definition	 in	Equation	 (9)	 is	 solid	
both physically and physiologically.

B = n − 1 (9)

B(n − 1) = B2 = N (10)

Kd = eB2 = eN = (eN
n )n = (P50)n (11)

{ Parabolic model of Kd.                       }n: Bohr coefficient, 0 < n < 3,
B: Bohr shift,	−1 < B < 2,
N: cooperativity number, 0 < N < 4,
B ∈ real numbers

From	this	heterotropic	definition	of	allostery,	the	emerging	
parabolic model of a heterotropic Kd reestablishes the funda-
mental	 symmetry	of	cooperativity	 (Equations	 (10)	&	(11),	
Fig.	 1)	 that	was	 violated	by	 the	 “conjoined	Bohr	 effects”,	 
the homotropic allosteric constants, and the indiscriminate  
n	as	a	positive	integer	(Equations	(2)	&	(12)).	Actually	the	
three allosteric variables, L, c, and the integer n, reduced  
the	 potentially	 quantitative	Hill	 equation	 to	 a	 qualitative	 
one.	For	the	sake	of	the	definition	of	KR=KT	in	the	fictional	
monomer, the MWC model took the price of allostery by 
assigning homotropic cooperativity to take over the hetero-
tropic	effect	[2,3].	The	nonlinear	and	undividable	symmetry	
of cooperativity (Kd), which most allosteric studies linearly 
divided	into	two	fictional	constants	(L & c)	in	Equation	(12),	
quantifies	the	allostery	with	only	one	allosteric	variable,	the	
Bohr shift (B) (Fig. 1).

Kd = eN = (eN
n )n = (eN1+N2

n )n = (eN1)(eN2

n )n = L ∙cn (12)

{ Parabolic model explains the MWC model. }n: positive integer, L = eN1, c = e
N2

n ,
N = N1 + N2 ,
N, N1, N2 ∈ indefinable real numbers

The walks of the Bohr shifts on the orthosteric symmetries: 
the modeling of conformational shifts

How does the Bohr shift restore the lost, lower sigmoid 
shape of the L1-logistic curve from the orthosteric, hyper-
bolic S1?
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pressure. This negative allosteric transition sitting in the 
orthosteric symmetry could explain the allosteric resistance 
to	 receptor	 inhibition	or	a	quantitative	mechanism	of	drug	
resistance	 [6].	 The	 Bohr	 equation,	 rather	 than	 the	 ortho-
steric	Hill	equation,	quantitatively	explains	both	the	positive	
allosteric transition (with B>1) and the negative allosteric 
transition (with |B|<1)	 by	 its	 mathematical	 precision	 in	 
modeling the switching mechanism of allosteric regulation 
(1). Most of laboratory observations with the orthosteric 
concept	 of	 allostery	 had	 difficulties	 in	 quantifying	 these	
microscopic transformations of cooperativity from sigmoid 
to	 hyperbola	 and	 reciprocally	 [9,10,12–15].	 Paradoxically	
the MWC model, a reversed explanation of the allostery, 
introduced	more	 unquantifiable	 variables	 for	 the	 insignifi-
cant c as unity and the indiscriminate orthosteric coopera-
tivity, for example, n=4	(Equation	(17),	the	original	equation	
7 and Fig. 2 in reference [3]). The pharmacological adoption 
of	the	MWC	model	(Equation	(17))	should	be	careful	[6].

Ȳs = 
α(1 + α)n−1

L 
(1 + β)n

(1 + γ)n  + (1 + α)n
 (17)

{ Ȳs: saturation function,                                              }α = 
F
KR

, β = 
I

KI
, γ = 

A
KA

, c = 1, n = 4, L = 10(n−1), 

K1 and KA: the microscopic dissociation constant 
of inhibitor (I) and activator (A) with the two states

The allosteric symmetry as a symmetric monomer
The allosteric symmetry, S2, shows no allosteric coopera-

tivity because both N and B	 are	 equally	 unity	 despite	 its	 
sigmoid shape. This non-cooperative allosteric symmetry 
(S2 in Fig. 2; N=B=1 in Fig. 1) between the symmetric Bohr 
effects	 shown	 in the group of Bohr curves in 1904 is the 
fictional	symmetry	of	fictional	monomer	between	two	states;	
namely,	the	fixed	KR in a single symmetric saturation curve 
created	by	the	MWC	model	(Equations	(2)	&	(3)).	Thus	the	
sym	metric	 monomer	 (with	 the	 fictional	 coefficient,	 n=1) 
conceived by the MWC model should be this non-cooperative 
S2 (with allosteric number, n=2,	Equation	(18))	rather	than	a	
non-	cooperative	 hyperbolic	 one	with	Hill	 coefficient	n=1. 
Equation	(18)	is	another	proof	that	MWC	model	interpreted	
the heterotropic allostery as the homotropic allostery.

S2 = 
x2

(e 1
2 )2

 + x2
	≡	

α
1+α (≠	 F

KR+F  (Equation (3))) (18)

{α = ( x
√e )2

 = ( x
P50

)2

 ≠	
F
KR

, Kd = 
KT

KR
 = e}

Then	Wyman’s	proposal	of	the	fictional	monomer	should	be	
able	to	reduce	the	Bohr	equation	abstractly	“as a symmetric 
monomer”	 (Equation	 (19)).	The	fictional	monomer	 should	

allosteric	coefficient	(n=1+B) [2,10].
The horizontal shift of P50 provides a precise ruler- 

equation	 because	 the	 three	 allosteric	 variables	B, N and n  
are	calculable	from	the	constant	Equation	with	a	symmetric	
value,	0.5	(Equation	(16))	with	any	measured	value	of P50.

P50 = (eN
n , 0.5) (16)

{ The quantitative Bohr effect, }n = 1 + B, N = B2

The	orthosteric	Hill	equation	by	MWC	model	divided	this	
allosteric P50 and used part of it	 as	 the	 fixed,	 orthosteric	 
KR	 (Equation	(11))	[11].	Consequently,	 the	Bohr	effect	has	
been unfavorably marginalized in the allosteric researches 
[2–4,9,10],	despite	 the	failure	of	 the	original	Hill	equation	
and	MWC	model	to	provide	a	symmetric	allosteric	equation	
like the allosteric PB and P50	 in	 Equations	 (15)	 &	 (16)	
[2–4,8,10,11].	 The	 divided	 and	 fictionally	 fixed	 KR in  
MWC	model	(Equation	(11))	generated	the	most	confusing	
hypothesis that in the absence of ligand there were several 
coexistent	conformations	(at	least	two)	with	up	to	eight	equi-
librium constants in the reversible two states of a single  
protein	[3,4,10]	and	lost	the	significant	linkage	between	the	
Bohr shift and P50	in	Equatioin	(16).	The	structural	mecha-
nism within this linkage deserves further explorations. The 
positive	 hydrogen	 ion	 (H+) or CO2 should be the absent 
ligand in the allosteric sense because metabolism (with a 
specific	 output	 of	 CO2)	 determines	 the	 specific	 need	 of	 
oxygen as a common sense. The very original concept of 
allostery is the feedback regulation of enzymes, which was 
decoupled and lost since the introduction of MWC model 
[3,6].

Identity and inverse: the allosteric symmetry and  
the negative allostric (|B|<1) effect

By the parabolic model of heterotropic dissociation con-
stant, the orthosteric symmetry S1 (B=0 & N=0) translates 
to the allosteric symmetry S2 (B=1 & N=B) under the het-
erotropic	 (Bohr)	modification	 (Fig.	 1).	The	 identity	 of	 the	
group of hemoglobin then transforms to the real allosteric 
symmetry	from	the	fictional	orthosteric	symmetry	(S1→S2, 
Fig. 2). From this allosteric identity (n=2, B=1) and by the 
parabolic	(symmetric)	nature	of	the	cooperativity	(Equation	
(10);	Fig.	1),	 the	allosteric	 transitions	differentiate	 into	 the	
positive cooperativity (if B>1, then N>B,	Bohr	effect,	n>2) 
and the negative cooperativity (if B<1,	 then	 N<B, and 
1<n<2).	Thus	symmetric	Bohr	effects	should	exist	naturally	
[12,13].	This	 should	be	 the	 result	 of	 hemoglobin	modifi-
cation	 by	 Bohr	 protons,	 a	 particular	 PTM.	 Theoretically	
another	negative	Bohr	effect	could	develop	under	 receptor	
inhibition	(defined	as	n<1);	 then,	for	example,	 the	reason-
able sigmoid curve for an allosteric receptor inhibition of 
n=0.5 could be presented in Figure 2. Logically this Bohr 
effect	 would	 show	 a	 negative	 allosteric	 mechanism	 that	
counters the receptor inhibition with a hyperbola under 
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model lost one yet essential allosteric information, the 
hetero	tropic	effect	and	unavoidably	produced	a	lot	of	para-
doxical information.

The conformational constrains
Bohr	 equation	 fulfills	 most	 statements	 of	MWC	model	

with this simplest concept of a symmetric monomer because 
allostery conforms to the physical law of symmetry that is 
universal despite MWC model’s improper interpretations of 
three allosteric constants. The confusing concept of confor-
mational	constraints	 is	exactly	 the	Bohr	modifications	 that	
impose upon the identity hemoglobin, S2 [3,12]. Consis-
tently, the Bohr shift (and the hydrogen bond), not oxygen, 
creates the symmetric cooperativity of hemoglobin within 
the asymmetric Bohr curves (Figs. 1, 2). Thus a sigmoid 
shape	does	not	always	equal	cooperativity	and	a	hyperbolic	
curve could show cooperativity in the name of symmetry.  
To prove this counterintuitive allostery, we should verify this 
model with the original Bohr experiment in 1904 [7].

To clone the old 1904 Bohr sigmoid curves is to prove 
the new Bohr equation
How	to	realize	the	1904	Bohr	shifts	(B) and the allosteric 

coefficients	quantitatively?	I	probed	the	illustrated	P50 values 
in the 1904 sigmoidal curves of the underestimated Bohr 
experiment [7] by a ruler and placed them into the simplest 
P50	equation	(Equations	(20)	&	(21))	to	determine	their	cor-
responding	Bohr	coefficients,	n (Table 1, Fig. 3a).

P50 = (10·e
N
n , 0.5) (20)

{the allosteric P50 equation with physiological scaling}

For a measured P50: P50 = 10·e
N
n  = 10·e

(n−1)2

n
 ,

then to obtain n is to solve the quadratic equation below:

n2
 − (2 + ln( P50

10 ))n + 1 = 0 (21)

{n > 1 for the 1904 experiment} 

These	original	Bohr	coefficients	(n) ranged from 1.82 to 3.09 
with	the	corresponding	PCO2 values ranging from 5 mmHg	
to 80 mmHg	(Table	1).	Compatibly,	Hill	reported	the	range	
of	Hill	coefficients	of	hemoglobin	to	be	from	1.67	to	3.19	in	
1910 [2,3,8]. Furthermore, with these re-discovered allosteric 
Bohr	 coefficients,	 the	 Bohr	 equation	 (Equation	 (22))	 can	
easily clone the original 1904 sigmoidal curves (Fig. 3a) and 
their	Bohr	 shifts	were	 algebraically	quantified	 for	 the	first	
time (Table 1). Thus, the centennial 1904 Bohr experiment 
justifies	this	allosteric	Bohr	equation	with	their	embedded,	
symmetric P50 values. For its inherited symmetry, P50 is a 
precise	ruler	to	measure	the	allosteric	coefficients,	 the	Hill	
numbers.	Please	note	the	pseudo-Hill	equation	of	Equation	
(22),	with	PaO2 as an orthosteric variable in the allosteric 
power	 of	 Bohr	 coefficients,	 is	 the	 quantitative	 description	 

not be used as a “real” monomer with an allosteic constant, 
L and a homotropic integer n	of	Hill	number	(Equations	(3)	
& (17)). It abstracts the conformational shifts into the rela-
tive and symmetric relation of Bohr shift versus P50 under 
the heterotropic allosteric interactions, n	(In	Equations	(14)	
& (15), the two Bohr shifts in the separate logistic and 
hyperbolic curves walk on the same symmetric monomer.). 
The increasing n corresponds to the increasing tightness  
in	 the	 fictional	 hemoglobin	 monomer.	 By	 fixing	 on	 the	
allosteric symmetry [16] and in the opposite direction, “there 
are always two states reversibly accessible to the allosteric 
oligomers” [3]. Then any allosteric oligomer could con-
sistenly reduce itself as a symmetric monomer by following 
the law of symmetry and by this reasoning, the symmetry  
of cooperativity always preserves (the sixth statement of 
MWC model) [2,3,16]. In plain words, the asymmetric satu-
ration curve in appearance is symmetric in the allosteric 
sense of a symmetric monomer, L1. By comparative studies 
of	the	Equations	(18)	&	(19)	versus	Equation	(3),	the	errors	
MWC model made are clearly corresponding to those men-
tioned in Methods. Thus the one and only one symmetric 
sigmoid that MWC model had been after is the symmetric 
monomer	of	Bohr	equation	(Equation	(19)).

Sn = 
xn

Kd+xn

 
≡	Sα = 

α
1+α	≡	

( x
P50

)n

1+( x
P50

)n (19)

{ Bohr equation as a symmetric monomer, }If  x = PB = eB,

then  ( x
P50

)n
= ( PB

P50
)n

= (e B
1+B)n

= α,

N = B2, Kd = eN,
n: Bohr coefficients

Structure-function relation
This	Bohr	equation	with	the	parabolic	kernel	of	Kd clearly 

demonstrates the physical law of symmetry that resides in 
the hemoglobin structurally as a symmetric monomer and 
dynamically	as	the	fictional	monomer	[17].	Interestingly	and	
confusingly,	 Wyman	 interpreted	 this	 fictional	 monomer	
inversely with the increasing discrete bindings by oxygen 
[the contemporary science]. If we follow how Wyman 
extends the concept of symmetry from the saturation func-
tion into the molecular structure, then the tetramer of hemo-
globin might operate allosterically as a symmetric dimer of 
αβ	dimer	 (Equation	 (18))	 that	Ackers	et al. had suggested 
[16]. Because at the very symmetric point of the non- 
cooperative allosteric symmetry, which Wyman interpreted 
as	a	fixed	KR, the two perpendicular symmetries (the dynamic 
symmetry and the structural symmetry) intersect and thus 
both ℓ=c and ℓ ∙c=1	 are	 satisfied	 by	 a	 sigmoid	 without	 
cooperativity like L1. By transforming a group of Bohr  
sigmoid curves into one single symmetric monomer, MWC 
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could	reduce	Equation	(23)	to	Equation	(25)	through	Equa-
tion (24) for the modeling of simplicity.

( B − 0.11
1.04 ) = log10[CO2], (24)

B = log10[CO2], (25)

And, n = 1 + log10[CO2] (26)

{ [1 mmHg	<	[CO2]	<	100 mmHg],       }B: Bohr shift,	0	<	B	<	2,
n: Bohr coefficient or Hill number. 

Equations	(25)	&	(26)	could	be	the	covered	gems	of	the	1904	
Bohr	experiment.	Equation	(25),	the	Bohr	function,	translates	
the	quantitative	connection	between	the	P50 and the CO2 con-
tent	shown	in	the	original	sigmoidal	curves	(Equation	(16)).	
Thus,	 the	Bohr	 function	 in	Bohr	equation	consolidates	 the	
non-orthosteric nature of the allostery in hemoglobin that is 
demonstrated by the 1904 Bohr experiment [7]. This Bohr 
function, a natural function unappreciated by most con-
temporary scientists, should be the major contribution of  
the coauthor in the 1904 Bohr experiment, Karl Albert  
Hasselbalch	(12),	who	envisioned	the	Anderson-Hasselbalch	
pH	equation	[9,10,12]	that	provided	the	connection	between	
the Bohr function and pH.
With	 the	 Bohr	 function	 (Equation	 (25)),	 the	 parabolic	

Bohr kernel in the dissociation constant transforms into a 
logarithmic Bohr model. The allosteric analysis thus changes 
from a real number of Bohr shifts to a function of the CO2 
content. Next, we can justify using the Bohr function to ana-
lyze	the	allosteric	Bohr	coefficient	(n) by simply extends the 
mathematical properties of logarithm.

of	allosteric	 regulation	 that	MWC	model	missed.	Unques-
tionably,	 the	 physical	meaning	 of	 the	Bohr	 coefficient	 (n)  
is neither a number of oxygen binding sites nor an ortho-
steric	interaction	coefficient	[2–4,6].	And	inversely,	the	oxy-
hemoglobin	(Hb(O2)4)	has	a	smaller	Hill	number	(n=1.618) 
than	 the	one	of	deoxyhemoglobin	(Hb)	 (n=2.618) under a 
PCO2	of	41.5	mmHg	and	a pH	of	7.38	 in	 the	homeostatic	
blood (see below: Bohr function). Because the larger Bohr 
coefficient	(n) means a larger dissociation constant due to a 
positive	 allosteric	 effect	 that	 favors	T	 state	 and	 the	 lower	
affinity.

Bohr equation: Sn = 100 × 
(0.1x)n

(eN
n )n

+(0.1x)n

= 100 × 
xn

(P50)n
+xn

 (22)

The explicit logarithmic Bohr function of CO2 in the 1904 
S-curves
The	central	question	of	allosteric	quantification	 remains	

unanswered. What is the physical entity of the Bohr shift 
defined	as	Bohr	coefficient	minus	one	(B=n−1)?	Or	what	is	
the	quantitative	relationship	between	the	Bohr	shift	(B) and 
the CO2	content	used	by	Bohr	in	1904?	This	model	further	
investigated the simple linear regression between the loga-
rithm of the contents of CO2 set by Bohr in 1904 and the 
Bohr shift (B)	listed	in	Table	1.	The	Equation	(23)	shows	the	
statistically	significant	correlation,	the	lost	result	of	the	1904	
Bohr experiment (p<0.0001,	Statistical	details	are	shown	in	
the legend of Fig. 3b).

B = 0.11 + 1.04·log10 [CO2] (23)

And, by considering the Bohr’s outspoken statement of the 
“large” laboratory errors in his 1904 experiment [7], we 

Table 1 Allosteric	Bohr	coefficients	(n,	Hill	numbers)	calculated	from	the	embedded	P50s in the 
second	figure	of	the	1904	Bohr	experiment	with	the	original	CO2 concentrations [7]

Lab. CO2 5 10 20 40 80

P50*a 14.5 19 23.5 31 41
n*b 1.82 2.18 2.45 2.77 3.09
B*b 0.82 1.18 1.45 1.77 2.09
N*b 0.67 1.39 2.10 3.13 4.36
PCO2(B)*c 6.6 15.1 28.2 58.9 123
Lab.	Error*d (+32%) (+51%) (+41%) (+47%) (+54%)
Log10[CO2]Lab 0.70 1 1.30 1.60 1.90

*a. A ruler retrieved P50 values directly from the sigmoid curves illustrated by Bohr in 1904 [7].
*b. B, n, and N are calculated values from the P50	equation	(Equations	(9),	(10)	&	(20)).
*c.	PCO2(B)=10B	by	reversing	the	Equation	(25).	These	were	the	working	PCO2 that created the 
1904	sigmoid	curves.	Bohr	admitted	in	the	published	report,	“However,	from	a	quantitative	point	
of view, the results were only reproducible with a relatively large error, which may be due to 
great variability of the hemoglobin molecule.” [7]
*d. Laboratory error of measurement*4 =	[(PCO2(B)−Lab.	CO2)/(Lab. CO2)]%.
(Lab. CO2:	 the	 experimental	 settings	 of	PCO2	 in	 1904;	PCO2(B):	 the	 calculated	PCO2 corre-
sponding to the measured P50	(by	Equation	25);	B: Bohr shift, n:	Bohr	coefficient,	N: cooperativ-
ity number.)
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(a)

(b)

Figure 3 (a)	Mathematical	restoration	of	all	1904	Bohr	sigmoidal	curves	confirms	the	Bohr	equation	as	the	allosteric	modeling	of	hemoglobin.	
The Bohr-drawn hemoglobin saturation/dissociation curves are cloned from the original P50 values in the 1904 sigmoidal curves provided by Bohr 
(All allosteric numbers are listed in Table 1). Initially, we calculated n with the P50	equation	and	the	measured	P50	values	(Equation	(21)).	With	the	
calculated n	and	Bohr	equation,	we	recreated	the	1904	Bohr	curves	(Equation	(22)).	Bohr	equation	is	perfect	in	curve	fittings.	These	recreated	Bohr	
curves	are	illustrated	as	the	1904	format	with	their	specific	Hill	numbers	in	parallel	with	the	CO2 contents. Acceptable operational errors in a labo-
ratory in 1904 resulted in overshooting the cooperativity number N	(4.36>4).	The	physiological	Bohr	(Hill)	coefficient	(under	PaCO2=40 mmHg)	
coded in the 1904 experiment was 2.77 (>2.618) with N as 3.13 (>2.618), and n≠N. The red-dotted line represents the orthosteric symmetry, the 
symmetric monomer of n=1. It is a hyperbola corresponding to the symmetry of cooperativity and not cooperative. In vivo we should focus on the 
allosteric range of the Bohr shifts spanning along this n1	hyperbola.	The	different	shapes	of	the	sigmoid	and	the	hyperbola,	which	correlate	to	the	
relatively	different	affinities	of	oxygen,	prove	in	this	graph	to	be	functionally	attributed	to	the	Bohr	equation	with	the	various	Bohr	coefficients	
calculable from the measurements of P50. (b) Linear regression of the relation between Bohr shift (B) and log10[CO2]. ([CO2]: the laboratory settings 
of the Bohr experiment in 1904; y: Bohr shift (B); x: log10[CO2]; m=1.040±0.02261 and b=0.1092±0.03095 for a linear relation: y=mx+b. Correla-
tion	coefficient:	r=0.99929,	Coefficient	of	determination:	R2=0.9986, Standard error=0.012, and p<0.0001.	Statistical	drawing	software:	Desmos® 
graphing calculator)
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shift of 1.618 (B>1). Then, the saturation curve (Sn−1) would 
have	 a	 low	Bohr	 coefficient	 of	 1.618	 and	 a	 Bohr	 shift	 of	
0.618 (B<1).	 The	 allosteric	 range	 between	 the	 coupled	
allosteric Bohr activities is exactly unity according to  
Equation	 (27).	 Moreover,	 the	 cooperativity	 (N) connects 
these two-states sigmoid curves in a reciprocal continuum of 
a tenfold concentration gradient of carbon dioxide within 
this allosteric range in RBCs (from 4.15 mmHg-PCO2 to 
41.5 mmHg-PCO2 in this physiological example with a Bohr 
coefficient	 of	 2.618).	 Then	 the	 hemoglobin	 becomes	 an	
oscillator under various metabolic rates to meet the need of 
oxygen	(Equation	(28)).

1	=	∆n = log10 [10] = log10 
[26.0]
[2.60] = log10 

[41.5]
[4.15] 

= log10 
[54.0]
[5.40] = log10 

[58.3]
[5.83] (28)

Logarithm identity as the allosteric symmetry
The	 Bohr	 coefficient,	 n,	 by	 the	 definition	 of	 the	 Bohr	 

function	and	the	parabolic	model,	should	reflect	that	cooper-
ativity (N) should cover the limited	allosteric	range	(Δn) of 
unity (Fig. 2). This allosteric N establishes a cooperative 
connection	 between	 two	Bohr	 coefficients	 (n and n-1, B). 
Thus,	we	need	two	coupled	1904	sigmoid	curves	of	different	
Bohr	 coefficients	 to	 describe	 the	 symmetric	 positive	 and	
negative allosteric transitions in RBCs in vivo because the 
natural compartmentalisations of the arterial and venous cir-
culations (Fig. 4). Following the discovery of Bohr function 
(Equation	 (25)),	 the	 logarithm	 identity	 realizes	 physically	
the “ two-states” of the MWC model.

1 = log1010 = log10 
PCO2

(PCO2

10 )
 (= loga 

[xa]

([xa]
a ) )  (27)

{xa: the allosteric ligand}

As the homeostatic example, let us consider a dissociation 
curve (Sn)	with	a	high	Bohr	coefficient	of	2.618	and	a	Bohr	

Figure 4 Implicit allosteric range, allosteric constant, reversible allosteric transition and respiratory exchange ratio in the “two-states” sigmoid 
curves	(The	group	of	hemoglobin	saturation	curves	shown	in	1904).	The	Bohr	effect	modified	the	orthosteric	symmetry,	S1 (n=1), to the allosteric 
symmetry, S2 (n=2)	and	both	curves	are	non-cooperative.	The	coupled	Bohr	coefficients	circumscribe	the	allosteric	range	of	hemoglobin	between	
the negatively cooperative Sn−1 and positively cooperative Sn (n=2.618). The allosteric range is consistently unity. The circle dots are the PB (Bohr 
shift). The black dots are the P50. The non-cooperative S2	with	Bohr	coefficient	of	two,	or	the	allosteric	switching	point	at	the	logarithmic	identity,	
subserves	the	reversible	allosteric	Bohr	effects	between	Sn−1 and Sn.	Note	PAO2 is 105 mmHg-PaO2 at the position of the alveoli. This value is below 
the	allosteric	range	of	the	Bohr	coefficient	at	2.732	(the	black	arrow),	where	the	maximal	PaO2 needs to be 117 mmHg-PaO2 (the allosteric constant 
shifted	rightward).	This	finding	suggests	why	we	need	the	Root	effect	and	negative	Bohr	effect	under	stress	(relative	hypoxia)	that	was	demonstrated	
in	fish	[12,13].	The	peripheral	 tissue	cells	non-cooperatively	use	74.7 mmHg-PO2 to produce two fractions of 37.35 mmHg-PCO2 (41.5 mmHg	
minus 4.15 mmHg),	which	RBCs	rebreathe	cooperatively	to	deliver	93.6 mmHg-PaO2.	This	125%	bio-efficiency	is	 inversely	downgraded	to	an	
orthosteric	respiratory-exchange-ratio	(RER)	of	79.8%.	Allostery	supersedes	 the	 law	of	mass	action	by	a	parabolic	rule	 that	 is	moderated	by	a	 
logarithmic function. This 93.6 mmHg-PaO2	(PaO2.ac)	is	the	dynamic	equilibrium	point	of	the	allosteric	constant,	described	inversely in MWC 
model with a value near 100, which is the ratio of KT/KR. KT/KR is larger than 1. And KT≠KR. (Sn−1, saturation curve with KR; Sn, dissociation curve 
with KT,	PaO2.ac:	PaO2	mmHg	at	allosteric	constant)
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Sn = 100 × 

xn

Kd+xn  = 100 × 

xn

(P50)n+xn  

= 100 × 

( x
ℓ ∙c )n

1+( x
ℓ ∙c )n

 
≡	100 × 

α
1+α  (30)

This	allosteric	Bohr	equation	(Equation	(30))	is	frankly	dif-
ferent	 from	 the	 pharmacological	 Hill	 equation	 (Equation	
(4))	 despite	 that	 equations	 both	 are	 sigmoidal	 and	 even	
describe the same homeostatic dissociation curve when N 
equals	n	at	2.618.	The	former	has	an	allosteric	Bohr	coeffi-
cient,	and	the	latter	has	a	homotropic	Hill	numbers.	This	is	a	
“rabbit-duck illusion” in science. Naturally, the Kd has a 
duality	in	the	ligand	affinity	of	orthosteric	receptor	under	the	
allosteric	 regulation	by	 the	principle	 of	 reciprocity	 (Equa-
tion (8)). The MWC model actually reintroduced the deleted, 
positive	Bohr	effect.	Within	the	hyperbolic	symmetric	mono-
mer	 of	 Bohr	 equation,	 the methodologically lost affinity- 
information in the lower sigmoid of the logistic monomer, 
L1, (c=1	in	Equation	(30)	[14])	trespassed	on	the	symmetric	
P50 by disintegrating the allosteric symmetry into one large 
allosteric	 constant,	 one	 insignificant	microscopic	 dissocia-
tion constant, KT, and the stray KR.	Consequently,	 the	 un-	
natural MWC model inversely elaborated the positive Bohr 
effect	as	the	positive	cooperativity	of	oxygen	binding	in	the	
allosteric range of [Q:	2<n<3]	[3]	and	then	lost	most	bio-
physical and physiological correlations. For example, the 
lost allosteric range as the negative allostery [(1-Q):	1<n<2]	
[2,4],	 the	 Equations	 (16)	&	 (18)	&	 (19)	 and	 the	 constant	
finger	tip	saturation	with	the	pulse	oxymeter	corresponds	to	 
a	PaO2	 that	 is	 the	fixed	allosteric	constant	(KR) that MWC 
model	 described	 in	 Equation	 (3)	 (Fig.	 4).	 The	 price	 of	
allostery in pharmacology is even bigger for the unsettling 
issues	of	affinity	and	efficacy,	the	entangling	effects	of	ligand	
binding	and	effects	of	conformational	changes	and	the	inter-
pretations	of	mutant	effect	on	receptor	(by	paraphrasing	the	
review	essay	of	Colquhoun	[18]).
The	Bohr	equation	is	the	simplest,	symmetric	and	quanti-

tative model showing how the feedback mechanism couples 
the	allostery	[18,19].	The	magnificent	trial	of	MWC	model	
as	a	symmetric	Group	 theory	had	foreseen	 the	communi-
cated network of allosteric groups of more than twenty 
enzymes coupled in the glycolysis and the Krebs cycle in 
addition to the crowning hemoglobin, carbonic anhydrase 
complex and anion exchanger [12]. According to the pre-
served “allosteric organization” proposed by Changeux 
[12,19], then we could treat the membrane receptors, for 
example	 GPCRs,	 as	 the	 allosteric	 organization	 of	 hemo-
globin linked-carbonic anhydrase-anion exchanger receptors 
(“HbCARs”)	 by	 following	 the	 universal	 physical	 law	 of	
symmetry in the symmetric monomer model of allosteric 
cooperativity [6,12,19,20].

2.618 = log10 
[41.5]
[4.15]  + log10 [41.5] 

≡	[Capacity] + B (29)

{The homeostatic Bohr coefficient with PaCO2=41.5 mm}

In	Equation	(28),	 the	corresponding	allosteric	Bohr	coeffi-
cients are 2.414, 2.618, 2.732 and 2.766, respectively. The 
buffering	 capacity	 of	 hemoglobin	 expands	 and	 telescopes,	
and	vice	versa.	This	explains	 the	Root	effect	existing	as	a	
logarithmic	 variant	 of	 Bohr	 effect,	 which	 Rummer	 et al.  
suggested [12,13]. By this identity of logarithm, the allosteric 
range is constantly unity [2–4] that is already shown in the 
parabolic model of dissociation constant (Fig. 2). Crick 
coined	and	quantified	the	term	“allosteric	range”	(Q) in his 
footnote	on	allostery	[2].	The	Equations	(28)	&	(29)	imply	
that the allosteric symmetry is the logarithm identity. And 
there	 are	 numerous	 two-states	 corresponding	 to	 different	
metabolic	rates.	As	for	a	specific	metabolic	rate,	there	exists	
one and only one symmetric two-states (Fig. 4).

The Bohr effect lost in the MWC model
In the original manuscript on the nature of allosteric tran-

sition [3], there was a paragraph describing why the MWC 
model	missed	 the	allosteric	Bohr	effect.	“Since,	again,	 the	
homotropic	interactions	are	 independent	of	absolute	affini-
ties,	certain	conditions	or	agents	may	modify	the	affinity	of	
an	 allosteric	 ligand	 without	 altering	 its	 interaction	 coeffi-
cient.	This	is	apparently	the	case	for	the	Bohr	effect	shown	
by hemoglobin: as is well known, the oxygen saturation 
curves	obtained	at	different	values	of	pH	can	all	be	superim-
posed by a simple, adequately chosen, change of the abscissa 
scale. In terms of the model, this would mean that the bind-
ing	 of	 the	 ‘Bohr	 protons’	 does	 not	 alter	 the	 equilibrium	
between	 the	 two	 hypothetical	 states	 of	 the	 protein.	Hence	
also the Bohr protons themselves would not be allosteric 
ligand, and their own binding is not expected to be co- 
operative.” These words documented the inappropriateness 
of extending the orthosteric MWC model into the allosteric 
search of medicines or allosteric pharmacology [6,11,14,15], 
which	 compounded	 the	 large	 and	 fictional	 allosteric	 con-
stants with the small ratio of microscopic dissociation  
constants	 without	 an	 allosteric	 definition	 of	 Hill	 numbers	 
(Equation	(17))	[2–4,6,10,14,15].	Thus	MWC	model	strug-
gled	 in	 calculating	 the	 numerical	 difference	 between	 the	
number	 of	 orthosteric	 binding	 sites	 and	 the	Hill	 number	
[2,4,10].	The	 difference	 is	 outside	 the	 allosteric	 range	 of	
cooperativity according to the parabolic model of coopera-
tivity (Fig. 2) [2].

Does the orthosteric cooperativity exist in reciprocity?
Following the elucidation of the allosteric symmetry,  

the cooperative	Bohr	equation	 in	 the	 form	of	a	symmetric	
monomer is:
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Bohr coefficient (n):	When	the	allosteric	Bohr	equation	was	
equal	to	the	orthosteric	Hill	equation	at	N=nH, we could not 
differentiate	whether	the	allosteric	number	was	a	Bohr	coef-
ficient	or	a	Hill	coefficient.	This	is	a	“rabbit-duck	illusion”	
proposed by Wittgenstein and Kuhn [22]. Thus, I used the 
Bohr	 coefficient	 (n)	 to	 emphasize	 the	 allosteric	 difference	
due	 to	 the	Bohr	effect	 from	the	orthosteric	Hill	coefficient	
(nH).	Synonym:	Hill	number
Orthosteric: This term describes the action at the substrate 
site.	Synonym:	Homotropic
Root effect:	the	logarithmic	variant	of	Bohr	effect
Symmetry: A group has a set and a binary operation, *. A 
group conforms to the four axioms:
1. Closure. For all a, b∈G, a*b∈G.
2. Associativity. For all a, b, c∈G, a*(b*c)=(a*b)*c.
3. Identity. There exists one and only one identity, e∈G, 

such that for all a∈G, e*a=a*e=a
4. Inverse. For all a∈G,there exists one and only one 

a−1∈G, such that a*a−1=e=a−1*a
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