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Abstract: Recent technological advances have made it possible to study human behavior by linking novel types of data to more traditional
types of psychological data, for example, linking psychological questionnaire data with genetic risk scores. Revealing the variables that are
linked throughout these traditional and novel types of data gives crucial insight into the complex interplay between the multiple factors that
determine human behavior, for example, the concerted action of genes and environment in the emergence of depression. Little or no theory is
available on the link between such traditional and novel types of data, the latter usually consisting of a huge number of variables. The
challenge is to select – in an automated way – those variables that are linked throughout the different blocks, and this eludes currently
available methods for data analysis. To fill the methodological gap, we here present a novel data integration method.
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In this era of big data, psychological researchers are faced
with a situation where they can supplement the data they
are accustomed to with novel kinds of data. For example,
besides having questionnaire data also other types of data
like experience sampling data, online behavior data, GPS
coordinates, or genetic data may be available on the same
subjects. Linking such additional blocks of information to
the more traditional data holds promising prospects as it
allows to study human behavior as the result of the con-
certed action of multiple influences. For example, having
both questionnaire data on eating and health behavior
together with data on genetic variants for the same subjects
holds the key to finding how genes and environment act
together in the emergence of eating disorders. Indeed, for
most psycho-pathologies and many other behavioral out-
comes, it holds that these are the result of a genetic suscep-
tibility in combination with a risk provoking environment
(Halldorsdottir & Binder, 2017). Thus, analyzing these tra-
ditional data together with novel types of data could pro-
vide us with crucial insights into the complex interplay
between the multiple factors that determine human
behavior.

Revealing the joint mechanisms in these integrated or
linked data, such as the interplay between genes and envi-
ronments, is challenging from a data analysis point of view
because of the complex structure of the data. First, there is
the novel kind of data that are very different from the tra-
ditional data we are used to work with: Instead of consisting

of a limited number of targeted measurements, they consist
of a huge amount of variables that have been collected
without a specific focus. A typical example is so-called gen-
ome wide or “omics” data consisting of several thousands
up to several millions of variables, but it is also the case
with naturally occurring data like tweets, web page visits,
or GPS signals (Paxton & Griffiths, 2017). As there is very
little theoretical knowledge about the link between tradi-
tional and novel types of data, one is faced with a variable
selection problem meaning that a data analysis method is
needed that can reveal the relevant variables in an auto-
mated way. Such variable selection methods have been a
very active research topic in statistics during the last years
and led to approaches like lasso regression (Tibshirani,
1996) and sparse component analysis (Zou, Hastie, & Tib-
shirani, 2006). Second, the data consist of multiple blocks
of data, and interest is in finding shared or joined mecha-
nisms; this means revealing the sets of variables that are
linked throughout the blocks. Current practice is to merge
all data and apply methods developed for a single block
of data, for example, state-of-the-art variable selection tech-
niques such as lasso regression and sparse principal compo-
nent analysis (PCA). This is an inappropriate approach that
does not guarantee that variables from each of the blocks
will be selected in case of joined mechanisms. First, usually
the variables in the novel types of data outnumber those in
the traditional data by far. Second, the blocks are domi-
nated by specific information that is typical for the kind
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of processes they measure (e.g., behavioral processes and
response tendencies in questionnaire data, biological pro-
cesses in the genetic data) resulting in higher associations
between the variables within blocks than between blocks.
Hence, analyses that do not account for the multi-block
structure of the data are highly unlikely to find the linked
variables underlying the subtle joint mechanisms at play.

This paper proposes a novel data integration method that
tries to overcome both of these challenges. It presents a sig-
nificant extension of sparse PCA to the case of linked data,
also called multi-block data. A simultaneous component
approach (Kiers, 2000; Van Deun, Smilde, van der Werf,
Kiers, & Van Mechelen, 2009) is taken, and proper con-
straints and regularization terms, including the lasso, are
introduced to account for the presence of dominant
block-specific sources of variation and to force variable
selection.

The remainder of this paper is structured as follows:
First, we will present the method as an extension of PCA
to the multi-block case, and we will introduce an estimation
procedure that is scalable to the setting of (very) large data.
Second, using empirical data with three blocks of data on
parent–child interactions, the substantive added value of
singling out block-specific from common sources of varia-
tion and of sparse representations will be illustrated. Third,
as a proof of concept, we will evaluate the performance of
the method in a simulation study and compare it to the cur-
rent practice of applying sparse PCA. We conclude with a
discussion.

Methods

In this section, first, the notation and data will be intro-
duced; then the model, its estimation, model selection,
and some related methods will be discussed.

Notation and Description of Linked Data

In this paper, we will make use of the standardized notation
proposed by Kiers (2000): Bold lower- and uppercases will
denote vectors and matrices, respectively, superscript “T”
denotes the transpose of a vector or matrix, and a running
index will range from 1 to its uppercase letter (e.g., there is
a total of I subjects where i runs from i = 1,. . ., I).

The data of interest are linked data, where for the same
group of subjects, several blocks of data are analyzed
together. A block of data is defined here as a group of vari-
ables that are homogeneous in the kind of information they
measure (e.g., a set of items, a set of time points, a set of
genes). Formally, we have K blocks of data Xk for k = 1,
. . ., K with in each block scores of the same I subjects on

the Jk variables making up the linked dataset (see Figure 1).
Such data are called multi-block data (Tenenhaus & Tenen-
haus, 2011) and are to be distinguished from multi-set data
where scores are obtained on the same set of J variables but
for different groups of subjects. Note that this paper is
about multi-block data and does not apply to multi-set data.
Furthermore, it is assumed that all data blocks consist of
continues variables.

Model Description of PCA and SCA

A powerful method for finding the sources of structural
variation is principal component analysis (PCA; Jolliffe,
1986). Applied to a single block of data, PCA decomposes
the data of an I � Jk data block Xk into,

Xk ¼ XkWkPT
k þ Ek

¼ TkPT
k þ Ek;

ð1Þ

where Wk denotes the Jk � Q component weight matrix,
Pk denotes the Jk � Q loading matrix, and Ek denotes
the error matrix. PCA is usually defined with PT

kPk ¼ I
as identification constraint. In this formulation of PCA,
the component scores are written explicitly as a linear
combination of the variables. Let tiq be the component

score of subject i on a component q, then tiq ¼
PJk
jk¼1

xijkwjkq

which clearly shows that the component scores are a lin-
ear combination (weighted sum) of the variables scores.
The PCA decomposition can also be applied to all Xk

jointly by treating the multi-block data as one big matrix
of

P
k|Jk variables,

½X1 . . .XK � ¼ ½X1 . . .XK�½WT
1 . . .W

T
K �T PT

1 . . .P
T
K

� �
þ E1 . . .EK½ �; ð2Þ

or in shorthand notation,

Figure 1. Example of a linked dataset: K data blocks are concatenated
together where each data block Xk contains Jk variables for the same I
subjects.
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XC ¼ XCWCPT
C þ EC

¼ TPT
C þ EC

ð3Þ

This model is the simultaneous component (SC) model
(Kiers & ten Berge, 1989). An important property of SC
models is that the same set of component scores underlies
each of the data blocks: Xk = TPk + Ek for all k. Note that
these component scores are a linear combination of all
the variables contained in the different blocks. Simultane-
ous components analysis (SCA) as defined in Equation (3)
does not account for block-specific components nor does
it imply variable selection. Therefore, we further extend it.

To account for the presence of block-specific compo-
nents and to induce variable selection, we introduce partic-
ular constraints on the component weights WC in the SC
model; see model Equation (3). First, we will discuss the
constraints to control for the presence of strong block-spe-
cific variation in the linked data, then we will discuss the
sparseness constraints.

Common and Distinctive Components

Consider the following example with two data blocks and
three components with imposed blocks of zeroes,

T ¼ ½X1X2�
W1

W2

" #
¼ ½X1X2�

0 w112 w113

..

. ..
. ..

.

0 wJ12 wJ13

w121 0 w123

..

. ..
. ..

.

wJ21 0 wJ23

266666666666664

377777777777775
: ð4Þ

(note that the variable subscripts in Equation 4 have their
own subscript to denote the block they belong to; e.g., w112

is the weight of the first variable in the first block on the
second component while w121 is the weight of the first vari-
able in the second block on the first component). Due to
the zero constraints, the scores on the first component
only depend on the variables in the second block:

ti1 ¼
PJ1
j1¼1

xij1wj11 þ
PJ2
j2¼1

xij2wj21 ¼
PJ2
j2¼1

xij2wj21. Likewise, the

scores on the second component only depend on the vari-
ables in the first block. Because these components only
incorporate the information of one particular type of data,
we call them distinctive components as they reflect
sources of variation that are particular for a block. These
are examples of distinctive components that are formed
by a linear combination of variables from one particular
data block only. The third component t3 is a linear combi-
nation of the variables from both data blocks X1 and X2.

Hence, it reflects sources of variation that play in both
data blocks. We call these components common compo-
nents. If there are more than three blocks the distinc-
tion between common and distinctive components can
get blurred, for a detailed discussion see Smilde et al.
(2017).

Usually, the most suitable common and distinctive struc-
ture for WC given the data is not known. In the section on
model selection below, we will discuss a strategy that can
be used to find the most suitable common and distinctive
weight structure for the data at hand.

Sparse Common and Distinctive
Components

The component weight matrix in Equation (4) has nonzero
coefficients for all weights related to the common compo-
nent and also for the nonzero blocks of the distinctive com-
ponents. For the common component, for example, this
implies that it is determined by all variables; no variable
selection takes place. To accomplish variable selection,
we impose sparseness constraints on the component weight
matrix WC, in addition to the constraints that impose dis-
tinctiveness in Equation (4), for example,

T ¼ ½X1X2�

0 w112 0

0 0 w213

..

. ..
. ..

.

0 0 wj13

..

. ..
. ..

.

0 wJ12 0

0 0 w123

w221 0 0

..

. ..
. ..

.

0 0 wj23

..

. ..
. ..

.

wJ21 0 0

266666666666666666666666666666664

377777777777777777777777777777775

: ð5Þ

In this example, the common component is a linear com-
bination of some instead of all variables; the same holds for
the distinctive components. The number and position of the
zeroes are assumed to be unknown. Next, we will introduce
a statistical criterion that implies automated selection of the
position of the zeroes. How to determine the number of zer-
oes, or the degree of sparsity, will be discussed in the sec-
tion on model selection.
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Finding Sparse Common and Distinctive
Components

To find the desired model structure with sparse common
and distinctive components, the following optimization cri-
terion is introduced:

argmin

WC;PC
LðWC;PCÞ ¼ XC � XCWCPT

C

�� ��2

2 þ λ1 WCk k1 þ λ2 WCk k22;

s:t:PT
CPC ¼ I; λ2; λ1 � 0 and zero block constraints onWC;

ð6Þ

with the notation �k k22 denoting the squared Frobenius
norm, this is the sum of squared matrix elements, for
example, Xk k22 ¼

P
i;j
x2ij and �k k1 denoting the sum of the

absolute values of the matrix elements, for example,
Xk k1 ¼

P
i;j

xij
�� ��. The first term in the optimization criterion

is the usual PCA least squares optimization criterion and
implies a solution for WC and PC with minimal squared
reconstruction error of the data by the components. The
second and the third term are, respectively, the lasso
and ridge penalty imposed on the component weight
matrix WC. Both penalties encourage solutions with small
weights; this is shrinkage toward zero (to minimize Eqa-
tion (6) not only a good fit is needed, but also weights that
are as small as possible). The lasso has the additional
property of setting weights exactly to zero (Tibshirani,
1996), introducing variable selection. The ridge penalty
is needed in addition to the lasso penalty, because it leads
to stabler estimates for WC and eases the restriction that
only I coefficients can be selected, which is the case when
only the lasso penalty is used (Zou & Hastie, 2005). The
tuning parameters λ1 and λ2 are the costs associated with
the penalties, a larger value for the tuning parameter
means that having large weights is more expensive, and
thus imply more shrinkage of the weights or – in case of
the lasso – also more zero component weights. The ridge
and lasso regularization together with the common and
distinctive component weight constraints can lead to the
desired component weight estimates as outlined in
Equation (5). Note that the function in Equation (6) also
includes the special cases of PCA (when λ1 = 0 and λ2 =
0 and there are no constraints on WC) and of sparse
PCA as presented by Zou et al. (2006) (when there are
no constraints WC).

We call this novel approach of finding sparse common
and distinctive components by minimizing Equation (6),
SCaDS, short for: sparse common and distinctive SCA. In
order to find the estimates WC and PC of SCaDS given a
fixed number of components, values for λ1, λ2, and zero
block constraints for WC, we make use of a numerical

procedure that alternates between the estimation of WC

and PC until the conditions for stopping have been met.
Conditional on fixed values for WC, there is an analytic
solution for PC, see, for example, ten Berge (1993) and
Zou et al. (2006); for the conditional update of WC given
fixed values for PC, we use a coordinate descent procedure
(see e.g., Friedman, Hastie, & Tibshirani, 2010). Our choice
for coordinate descent is motivated by computational
efficiency, meaning that it can be implemented in a way
that it is a very fast procedure and scalable to the setting
of thousands or even millions of variables without having
to rely on specialized computing infrastructure. Another
advantage is that constraints on the weights can be accom-
modated in a straightforward way because of the fact that
each weight is updated in turn, conditional upon fixed
values for the other weights; hence, weights that are
constrained to have a set value are not updated. The deriva-
tion of the estimates for the component loadings and
weights is detailed in Appendix A.

The alternating procedure results in a non-increasing
sequence of loss values and converges1 to a fixed point, usu-
ally a local minimum. Multiple random starts can be used.
The full SCaDS algorithm is presented in Appendix A, and
its implementation in the statistical software R (R Core
Team, 2016) is available from https://github.com/trbKnl/.

Model Selection

SCaDS runs with fixed values for the number of compo-
nents, their status (whether they are common or distinc-
tive), and the value of the lasso and ridge tuning
parameters. Often these are unknown and model selection
procedures are needed to guide users of the method in the
selection of proper values.

In the component and regression analysis literature, sev-
eral model selection tools have been proposed. The scree
plot, for example, is a popular tool to decide upon the num-
ber of components (Jolliffe, 1986) but also cross-validation
has been proposed (Smilde, Bro, & Geladi, 2004). Given
a known number of components, Schouteden, Van Deun,
Pattyn, and Van Mechelen (2013) proposed an exhaustive
strategy that relies upon an ad hoc criterion to decide upon
the status (common or distinctive) of the components.
Finally, tuning of the lasso and ridge penalties is usually
based on cross-validation (Hastie, Tibshirani, & Friedman,
2009).

Here, we propose to use the following sequential strategy.
First, the number of components is decided upon using
cross-validation, more specifically the Eigenvector method.
In a comparison of several cross-validation methods for

1 Under mild conditions that hold in practice. An example where there is no convergence is starting from WC = 0.
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determining the number of components, this method came
out as the best choice in terms of accuracy and low compu-
tational cost; see Bro, Kjeldahl, Smilde, and Kiers (2008).
Briefly, this method leaves out one or several samples
and predicts the scores for each variable in turn based on
a model that was obtained from the retained samples: For
one up to a large number of components, the mean pre-
dicted residual sum of squares (MPRESS) is calculated
and the model with the lowest MPRESS is retained. Second,
a suitable common and distinctive structure for WC is
found using cross-validation: In this case, the MPRESS is
calculated for all possible common and distinctive struc-
tures. Also in this case, we propose to use the Eigenvector
method detailed in Bro et al. (2008). In a third and final
step, the lasso and ridge parameters λ1 and λ2 are tuned
using the Eigenvector cross-validation method on a grid
of values, chosen such that overly sparse and non-sparse
solutions are avoided.

An alternative to the sequential strategy proposed here is
to use an exhaustive strategy in which all combinations of
possible values for the components, their status, and λ1
and λ2 are assessed using cross-validation and retaining
the solution with lowest MPRESS. However, there are
known cases where sequential strategies outperform
exhaustive strategies (Vervloet, Deun, den Noortgate, &
Ceulemans, 2016), and, furthermore, sequential strategies
have a computational advantage as the number of models
that needs to be compared is much larger in the exhaustive
setting. This number is already large in the sequential set-
ting because all possible common and distinctive structures
are inspected; these are in total ð2K�1ÞþQ�1

Q

� �
possible model

structures.2 For example, with K = 2 data blocks and Q = 3
components, there are ð22�1Þþ3�1

3

� �
¼ 10 possible common

and distinctive structures to examine.

Related Methods

Themethod introduced here builds further on extensions of
principal component analysis. These include sparse PCA
(Zou et al., 2006), simultaneous components with rotation
to common and distinctive components (Schouteden et al.,
2013), and sparse simultaneous component analysis (Gu &
Van Deun, 2016; Van Deun, Wilderjans, van den Berg,
Antoniadis, & Van Mechelen, 2011).

Sparse PCA
In practice, multi-block data are analyzed by treating them
as a single block of variables. The problem of selecting the

linked variables may then be addressed by using a sparse
PCA technique. Zou et al. (2006) proposed a PCA method
with a lasso and ridge penalty on the component weights.
As previously discussed, this is a special case of the method
we propose here (see Equation 6). The drawback of this
approach is that it does not allow to control for dominant
sources of variation.

SCA With Rotation to Common and Distinctive
Components
Schouteden et al. (2013) proposed a rotation technique for
multi-block data that rotates the components resulting from
the simultaneous component analysis toward common and
distinctive components: A target matrix is defined for the
loading matrix that contains blocks of zeros for the distinc-
tive components (similar to the model structure in Equa-
tion 4 and remains undefined for the remaining parts). In
general, the rotated loadings will not be exactly equal to
zero and may even be large. To decide whether the compo-
nents are indeed common or distinctive after rotation,
Schouteden et al. (2013) propose to inspect the proportion
of variance accounted for (%VAF) by the components in
each of the blocks: A component is considered distinctive
when the %VAF is considerably higher in the block(s)
underlying the component than in the other blocks; it is
considered common when the %VAF is approximately
the same in all blocks. This introduces some vagueness in
defining the common and distinctive components. Further-
more, no variable selection is performed. An often used
strategy in the interpretation of the loadings is to neglect
small loadings. This corresponds to treating them as zeros
and performing variable selection. As shown by Cadima
and Jolliffe (1995), this is a suboptimal selection strategy
in the sense that they account for less variation than opti-
mally selected variables. At this point, we would also like
to point out that the definition in terms of %VAF is not use-
ful when the zero constraints are imposed on the compo-
nent weights as the %VAF by a distinctive component
can still be considerable for the block that does not make
up the component. This is because the %VAF is determined
by the component scores and loadings with zero weights not
implying (near) zero loadings.

Sparse SCA
An extension of sparse PCA to the multi-block case was
proposed by Van Deun et al. (2011). This approach allows
for sparse estimation of the component weights using
penalties that do not account for the multi-block structure
like the ridge and lasso penalty but also using penalties that

2 The number of possible common and distinctive structures for a single component weight vector is equal to 2K � 1, because each of the K data
block segments can either be constrained to be equal to zero or can be unconstrained; the case where the component is constrained to be equal
to zero everywhere is not considered, hence the minus 1. For each of the Q components, one of these structures can be picked (with replacement
meaning that two components can be of the same type, e.g., two common components) where the order of the components is of no importance.
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are structured at the level of the blocks like the group and
elitist lasso (Kowalski & Torrésani, 2009; Yuan & Lin,
2006). The group lasso operates like the lasso at the block
level, meaning that it sets whole blocks of coefficients equal
to zero. The elitist lasso performs selection within each of
the blocks, setting many but not all coefficients within each
block equal to zero. Although sparse SCA allows for block-
specific sparsity patterns, no distinction can be made
between common and distinctive components because
the penalties are defined at the level of the blocks (i.e.,
the same penalty for all components). Furthermore, the
proposed algorithmic approach is not scalable to the setting
of a (very) large number of variables: The procedure
becomes slow and requires too much memory with a large
number of variables.

SCA With Penalized Loadings
Recently, Gu and Van Deun (2016) developed an extension
to sparse SCA by penalizing the loading matrix in a compo-
nentwise fashion, hence allowing for both common and dis-
tinctive components. The main distinguishing characteristic
of this paper is that it penalizes the component weights and
not the loadings. This raises the question whether this is
very different, and if so, when to use penalized loadings
and when to use penalized weights.

In regular unrotated PCA, loadings and weights are pro-
portional or even exactly the same in approaches – such as
the one taken here and by Zou et al. (2006) – that impose
orthogonality on the matrix of weights or loadings (Smilde
et al., 2004, p. 54). In case of penalties and sparsity con-
straints, however, loadings and weights take very different
values and careful consideration should be given to their
interpretation. Let us first consider the component weights.
These are the regression weights in the calculation of the
component scores and make the component scores directly
observable. Sparseness of the component weights implies
that the component scores are based on a selection of vari-
ables. An example, where such a weight-based approach
may be most useful, is in the calculation of polygenic risk
scores (Vassos et al., 2017). The loadings, on the other
hand, measure the strength of association or correlation
between the component and variable scores and give a
more indirect or latent meaning to the components.

From an interpretational standpoint, there is also an
important difference between the component weights and
the component loadings. As ten Berge (1986) and refer-
ences therein point out, the component weights convey
how the components depend on the variables, whereas
the component loading matrix conveys the relationship
between the component and the variables. The component
loadings can only be interpreted if the meaning of the com-
ponents are more or less understood (if the components are
not understood, you are inspecting the correlation between

an observed item and something unknown, which is not
insightful), in order to discover the meaning of the compo-
nents, it is necessary to inspect the component weights first.
To conclude, when the aim is to automatically detect the
linked variables throughout different data blocks in order
to reveal common mechanisms at play (e.g., a risk score
based on genetic as well as environmental risk), in a situa-
tion where the components are not yet understood, sparse-
ness of the weights is warranted.

Besides these differences in interpretation, there are also
other differences between a sparse loading and a sparse
weight approach. These include differences in reconstruc-
tion error, with the reconstruction error of a sparse loading
approach being much larger, and differences in the algo-
rithmic approach with algorithms for sparse weights being
computationally more intensive and less stable than algo-
rithms for sparse loadings.

Empirical Data Examples

We will now provide two empirical data examples illustrat-
ing SCaDS. The purpose of these examples is twofold: one,
to show how the analysis of linked data would go in practice
when using SCaDS, and two, to showcase the interpreta-
tional gain of common and distinctive components for mul-
ti-block data and of sparseness in general.

500 Family Study

For the first data example, we will make use of the 500
Family Study (Schneider & Waite, 2008). This study con-
tains questionnaire data from family members of families
in the United States and aims to explore how work affects
the lives and well-being of the members of a family. From
this study, we will use combined scores of different items
from questionnaires collected for the father, mother, and
child of a family. These scores are about the mutual rela-
tions between parents, between parents and their child,
and items about how the child perceives itself; see Table 1
for an overview of the variable labels. In this example, the
units of observation are the families, and the three data
blocks are formed by the variables collected from the
father, the mother and the child. The father and the mother
block both contain eight variables while the child block con-
tains seven variables. There are 195 families in this selec-
tion of the data.

In this section we will discuss the key steps in the analysis
of linked data with SCaDS: pre-processing of the data,
selecting the number of components, identifying the com-
mon and distinctive structure, the tuning of the ridge and
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lasso parameters, and the interpretation of the component
weights.

Pre-Processing of the Data
In this example, the linked data blocks have been scaled
and centered, meaning that all variables have a variance
of one and a mean of zero. This is common practice in
PCA and SCA and has been done to give all variables equal
weight in the analysis. The blocks have not been individu-
ally weighted because they contain (almost) exactly the
same number of variables.

Selecting the Number of Components
To find the number of components to retain, we made use
of 10-fold cross-validation with the Eigenvector method.
Figure 1 in Electronic Supplementary Material 1 (ESM 1)
shows the MPRESS and the standard error of the MPRESS
of the SC models with one up to ten components. The
seven component solution is the solution with the lowest
MPRESS; however, the solution with six components is
within one standard error of the seven components solu-
tion. Relying on the one standard error rule, we will retain
six components as this strikes a better balance between
model fit and model complexity (Hastie et al., 2009).

Identifying the Common and Distinctive Structure
To find the common and distinctive structure of the compo-
nent weights that fits best to the data, we performed 10-fold
cross-validation with the Eigenvector method. Hence, we
have six components and three data blocks, so there are
a total of ð23�1Þþ6�1

6

� 	 ¼ 924 possible component weight
structures to evaluate; the model with the lowest MPRESS
was retained for further analysis; see Table 2. This is a
model with one father-specific component (i.e., a compo-
nent which is a linear combination of items from the father
block only), one mother-specific component, one child-spe-
cific component, two parent (mother and father) compo-
nents, and a common family component (a linear
combination of items from all three blocks).

Tuning of the Ridge and Lasso Parameters
To further increase the interpretability of the components,
we will estimate the component weights with the common
and distinctive component weight structure resulting from
the previous step but including sparseness constraints on
the weights. This requires choosing values for the lasso
and ridge tuning parameters λ1 and λ2. In this example,
the solution is identified because we have more variables
than cases; therefore we do not need the ridge penalty

Table 1. Component weights for the family data resulting from SCA with Varimax rotation

w1 w2 w3 w4 w5 w6

F: Relationship with partners 0.05 0.57 �0.02 0.03 �0.03 �0.09

F: Argue with partners 0.04 0.15 �0.03 �0.06 0.05 �0.47

F: Child’s bright future �0.06 �0.08 0.15 0.47 0.01 �0.20

F: Activities with children 0.10 �0.03 0.04 �0.08 �0.63 �0.08

F: Feeling about parenting �0.06 �0.15 0.06 0.06 �0.12 �0.40

F: Communication with children �0.01 �0.01 �0.08 0.05 �0.49 �0.07

F: Argue with children �0.11 �0.11 �0.06 �0.04 0.04 �0.53

F: Confidence about oneself 0.15 0.22 0.03 0.07 �0.08 �0.43

M: Relationship with partners �0.07 0.60 0.06 0.01 0.06 0.03

M: Argue with partners �0.27 0.16 �0.04 �0.26 0.06 �0.14

M: Child’s bright future �0.38 �0.02 0.18 0.37 0.06 0.03

M: Activities with children �0.27 �0.01 0.09 �0.10 �0.44 0.13

M: Feeling about parenting �0.37 0.06 0.03 0.10 �0.01 �0.03

M: Communication with children �0.42 �0.05 �0.03 �0.02 �0.16 0.05

M: Argue with children �0.39 �0.14 �0.07 �0.15 0.17 �0.14

M: Confidence about oneself �0.35 0.31 �0.07 �0.08 0.01 0.12

C: Self-confidence/esteem �0.18 �0.10 �0.31 0.23 0.01 �0.01

C: Academic performance �0.02 �0.03 �0.12 0.42 0.11 �0.04

C: Social life and extracurricular 0.08 0.12 0.01 0.37 �0.03 0.09

C: Importance of friendship 0.11 0.06 �0.37 0.23 �0.05 0.07

C: Self-image �0.04 �0.02 �0.56 �0.07 0.01 �0.01

C: Happiness 0.02 �0.01 �0.55 �0.11 0.01 �0.04

C: Confidence about the future �0.01 0.13 �0.19 0.27 �0.24 0.07
Variance accounted for (%) 55.2

Note. The items starting with an F, M, or C belong to the father, mother, or child block, respectively.
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term; thus, the ridge penalty is set to 0. The optimal value
for λ1 was picked by performing 10-fold cross-validation by
the Eigenvector method for a sequence of λ1 values that
results in going from no sparsity at all to very high sparsity
inWC. The MPRESS and the standard error of the MPRESS
of the models with the different values for the lasso param-
eter λ1 can be seen in Figure 2 in the ESM 1; the one stan-
dard error rule was used to select the value for λ1.

Interpretation of the Component Weights
We subjected the data to a SCaDS analysis with six compo-
nents, with zero constraints as in Table 2 and λ1 = 0.17.
The estimated component weights are displayed in Table 3.
For comparison, we also included component weights
resulting from SCA followed by Varimax rotation in Table 1,
and SCA followed by thresholding of the weights after
rotation to the common and distinctive structure in Table 4.
We will discuss the component weights from SCaDS first,
after which we will compare these results to the alternative
methods.

The six columns in Table 3 show the component weights
obtained with SCaDS. In total, these components account
for 50.3% of the variance. As imposed, the first component
is father-specific, the second mother-specific, the third is a
parent component, the fifth is child-specific, and the sixth
component is a common family component. The fourth
component was constrained to be a parent component
but, as a result of the lasso penalty, became a second
mother-specific component with nonzero loadings only
from variables belonging to the mother block. Interestingly,
the shared parent component is formed by the variables
“activities with children,” “communication with children”
of the father block, and “activities with children” of the
mother block. The variable descriptions tell us that this
component could be a parent–child involvement indicator.
Large component weights for the common component
are: “child’s bright future” in the mother and father block,
and “self-confidence/esteem” and “academic perfor-
mance” in the child block. This component indicates that
a child’s self-confidence and academic performance is asso-
ciated with both parents believing in a bright future for their
child.

For comparison we included in Table 1 the component
weights of the six components obtained using SCA with
Varimax rotation, this is an unconstrained analysis with
maximal VAF. In total, the six components explain 55.2%
of the variance in the data; this is a bit more than the
50.3% obtained with SCaDS. Even this example with rather
few variables is not straightforward to interpret because all
variables contribute to each of the component. In this case,
a more fair comparison is to rotate the component weights
resulting from the SCA to the common and distinctive
structure displayed in Table 2 and to threshold the small
(in absolute value) coefficients as is often done in practice.
We thresholded such that the same number of zero coeffi-
cients was obtained for each component as for SCaDS. The
results of this analysis can be seen in Table 4. The first
thing that strikes is that the variance accounted for drops
to 41.9%. This confirms the observation made by (Cadima
& Jolliffe, 1995) that the practice of thresholding is a flawed
way to perform variable selection when the aim is to max-
imize the VAF. Also the meaning of the components chan-
ged, although the main patterns found in SCaDS can still be
observed.

Concluding, these results illustrate well that identifying
the common and distinctive structure in multi-block data
eases the interpretation substantially, while still retaining
a high variance accounted for.

An advantage of interpreting the component weights
directly is that the researcher exactly knows the composi-
tion of the component. In some cases, the components
themselves are used in subsequent analysis for example
as predictors in a regression model. For the interpretation

Table 2. The common and distinctive structure that resulted in the
model with the lowest MPRESS out of the 924 possible models

w1 w2 w3 w4 w5 w6

F: Relationship with partners 1 0 1 1 0 1

F: Argue with partners 1 0 1 1 0 1

F: Child’s bright future 1 0 1 1 0 1

F: Activities with children 1 0 1 1 0 1

F: Feeling about parenting 1 0 1 1 0 1

F: Communication with children 1 0 1 1 0 1

F: Argue with children 1 0 1 1 0 1

F: Confidence about oneself 1 0 1 1 0 1

M: Relationship with partners 0 1 1 1 0 1

M: Argue with partners 0 1 1 1 0 1

M: Child’s bright future 0 1 1 1 0 1

M: Activities with children 0 1 1 1 0 1

M: Feeling about parenting 0 1 1 1 0 1

M: Communication with children 0 1 1 1 0 1

M: Argue with children 0 1 1 1 0 1

M: Confidence about oneself 0 1 1 1 0 1

C: Self-confidence/esteem 0 0 0 0 1 1

C: Academic performance 0 0 0 0 1 1

C: Social life and extracurricular 0 0 0 0 1 1

C: Importance of friendship 0 0 0 0 1 1

C: Self-image 0 0 0 0 1 1

C: Happiness 0 0 0 0 1 1

C: Confidence about the future 0 0 0 0 1 1

Notes. The items starting with an F, M, or C belong to the father, mother, or
child block, respectively. Zero indicates a component weight constrained to
zero and one indicates a nonzero (free) component weight. The first com-
ponent is a father component, the second component is a mother com-
ponent, the third and the fourth are mother and father components, the
fifth is a child component, and the sixth is a common component
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of that model, it is certainly useful to have a good grasp on
what the predictors represent. Another advantage is that if
the weights already have been estimated, then computing
new component scores for new units of observation is
straightforward. Because these component weights are
sparse, only the items with nonzero component weights
have to be measured to predict the component score of a
new observed unit. This could greatly reduce the costs of
predicting component scores for newly observed units.

Alzheimer Study

For the second data example, we will use the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data.3 The purpose
of the ADNI study is “to validate biomarkers for use in Alz-
heimer’s disease clinical treatment trials” (Alzheimer’s
Disease Neuroimaging Initiative, 2017).

The ADNI data is a collection of datasets from which we
selected a dataset with items measuring neuropsychological
constructs, and a dataset with gene expression data for
genes related to Alzheimer’s disease. The neuropsycholog-
ical data block consists of 12 variables containing items
from a clinical dementia scale assessed by a professional
and from a self-assessment scale relating to everyday’s cog-
nition. The gene data block contains 388 genes. For a group
of 175 participants, complete data for both the genetic and
the neuropsychological variables is available. This is an
example of a high-dimensional dataset where the number
of variables exceeds the number of cases.

In this specific case, it would be interesting to see
whether there is an association between particular Alzhei-
mer-related genes and items from the clinical scales or
whether the two types of data measure different sources
of variation.

3 The ADNI was launched in 2003 as a public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see http://www.adni-info.org.

Table 3. Component weights for the family data as obtained with SCaDS

w1 w2 w3 w4 w5 w6

F: Relationship with partners 0 0 0 0 0 0

F: Argue with partners �0.57 0 0 0 0 0

F: Child’s bright future 0 0 0 0 0 0.56

F: Activities with children 0 0 0.61 0 0 0

F: Feeling about parenting �0.12 0 0 0 0 0

F: Communication with children 0 0 0.39 0 0 0

F: Argue with children �0.45 0 0 0 0 0

F: Confidence about oneself �0.45 0 0 0 0 0

M: Relationship with partners 0 1.00 0 0 0 0

M: Argue with partners 0 0 0 �0.31 0 0

M: Child’s bright future 0 0 0 0 0 0.53

M: Activities with children 0 0 0.42 0 0 0

M: Feeling about parenting 0 0 0 �0.26 0 0.04

M: Communication with children 0 0 0 �0.44 0 0

M: Argue with children 0 0 0 �0.61 0 0

M: Confidence about oneself 0 0.26 0 �0.18 0 0

C: Self-confidence/esteem 0 0 0 0 �0.27 0.13

C: Academic performance 0 0 0 0 0 0.36

C: Social life and extracurricular 0 0 0 0 0 0.00

C: Importance of friendship 0 0 0 0 �0.41 0

C: Self-image 0 0 0 0 �0.56 0

C: Happiness 0 0 0 0 �0.45 0

C: Confidence about the future 0 0 0 0 �0.15 0.06

%VAF: per component 8.25 7.39 6.62 8.96 10.48 8.56

%VAF: total 50.3

Note. The items starting with an F, M, or C belong to the father, mother, or child block, respectively.
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Pre-Processing of the Data
As in the previous example, the linked data blocks have
been scaled and centered. Furthermore, as one block is
much larger than the other, the blocks have been scaled
to equal sum of squares by dividing each block by the
square root of the number of variables in that block. In this
way, the larger block does not dominate the analyses (see
Van Deun et al., 2009, for a discussion of different weight-
ing strategies).

Selecting the Number of Components
The number of components has been selected making use
of 10-fold cross-validation with the Eigenvector method.
This resulted in a four-component solution (see Figure 3
in ESM 1).

Tuning of the Ridge Parameter
This linked dataset contains more variables than cases;
therefore, we included a ridge penalty (this is λ2 6¼ 0) to
make the solution stable. To tune the value of the ridge
parameter, we performed 10-fold cross-validation with the
Eigenvector method on a sequence of values. The resulting

MPRESS statistics and standard errors thereof are shown in
Figure 4 in ESM 1. The value within one standard error of
the lowest MPRESS was retained for further analyses.

Identifying the Common and Distinctive Structure
To find the common and distinctive structure of the compo-
nent weights which fits best to the data, we performed
10-fold cross-validation with the Eigenvector method on
all possible structures. In this example, we have four compo-
nents and two data blocks, so there are a total of
ð22�1Þþ4�1

4

� �
¼ 15 possible component weight structures to

evaluate. After cross-validation we found the model with
the lowest MPRESS to be a model with four distinctive com-
ponents: two for each block; see Figure 2 for the MPRESS
and standard error of the MPRESS of all the 15 models.

Tuning of the Lasso Parameters
A final step in selecting a suitable model for the ADNI
data is the tuning of the lasso parameter to obtain sparsity
in the component weights beyond the zeroes resulting from
the imposed common and distinctive structure. The
value of the lasso parameter was determined with 10-fold

Table 4. Component weights for the family data resulting from thresholded SCA with rotation to the common and distinctive structure

w1 w2 w3 w4 w5 w6

F: Relationship with partners 0 0 �0.41 0.36 0 0

F: Argue with partners �0.43 0 0 0 0 0

F: Child’s bright future 0 0 0 0 0 0.43

F: Activities with children 0 0 0.42 0.40 0 0

F: Feeling about parenting �0.40 0 0 0 0 0

F: Communication with children 0 0 0 0 0 0

F: Argue with children �0.45 0 0 �0.28 0 0

F: Confidence about oneself �0.47 0 0 0 0 0

M: Relationship with partners 0 0 �0.46 0.33 0 0

M: Argue with partners 0 0 0 0 0 �0.26

M: Child’s bright future 0 0 0 0 0 0.38

M: Activities with children 0 0 0 0 0 0

M: Feeling about parenting 0 0 0 0 0 0

M: Communication with children 0 0.42 0 0 0 0

M: Argue with children 0 0 0 �0.31 0 0

M: Confidence about oneself 0 0.41 0 0 0 0

C: Self-confidence/esteem 0 0 0 0 �0.37 0

C: Academic performance 0 0 0 0 0 0.32

C: Social life and extracurricular 0 0 0 0 0 0.38

C: Importance of friendship 0 0 0 0 �0.43 0

C: Self-image 0 0 0 0 �0.50 �0.26

C: Happiness 0 0 0 0 �0.48 �0.29

C: Confidence about the future 0 0 0 0 �0.29 0

%VAF: per component 8.08 5.81 6.10 4.58 11.17 6.20

%VAF: total 41.9

Notes. The items starting with an F, M, or C belong to the father, mother, or child block, respectively. Small absolute components weights have been set to
zero in order to get just as much sparsity in the component weights as in the SCaDS solution in Table 3.
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cross-validation (Eigenvector method). The MPRESS of the
models for different values of the lasso parameter can be
seen in Figure 5 in ESM 1; the largest value of λ1 within
one standard error of the lowest MPRESS was retained
for the final SCaDS analysis.

Interpretation of the Component Weights
The component weights of the final analysis with the cho-
sen meta-parameters are summarized in a heat plot in
Figure 3. The first two components contain only items from
the gene expression block, and the third and the fourth
component only contain items from the neuropsychological
data block. Notably, the third component mainly contains
items of the self-assessment scale while the fourth compo-
nent mainly contains items of the dementia scale assessed
by the clinician.

Concluding, this particular example shows that SCaDS
can also be applied in the setting of (many) more variables
than observation units. Whether the obtained results also
make sense from a neuropsychological perspective needs
further investigation.

Simulation Studies

We tested the performance of SCaDS in finding back a
sparse common and distinctive model structure in a con-
trolled setting using simulated data. First of all, we were
interested to see whether accounting for the presence of
block-specific components in WC would result in improved

estimates compared to a sparse PCA analysis of the con-
catenated data. If there is no improvement of the estimated
weights by SCaDS over sparse PCA, sparse PCA can be
used for the analysis of multi-block data and there is no
need for SCaDS. Second, we tested the performance of
the cross-validation method in finding back the right com-
mon-distinctive structure given the correct number of
components.

Recovery of the Model Parameters Under
the Correct Model

The data in the first simulation study were generated under
a sparse SCA model with two data blocks and three compo-
nents, of which one component is common and two are dis-
tinctive (one distinctive for each data block; see Equation 5
for such a model structure). The size of the two data blocks
was fixed to 100 rows (subjects) and 250 columns (vari-
ables) per block.

We generated data under six conditions, resulting from a
fully crossed design determined by two factors. A first fac-
tor was the amount of noise in the generated data with
three levels: 5%, 25%, and 50% of the total variation.
The second factor was the amount of sparsity in WC with
two levels: a high amount of sparsity (60% in all three com-
ponents) and almost no sparsity (2% in the common com-
ponent and 52% in the distinctive components) in the
component weight matrix WC. In each condition, 20 data-
sets were generated. We refer the reader to Appendix B for
the details on the procedure we used to generate data with
the desired model structure.
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Figure 2. The MPRESS and stan-
dard error of all 15 models with
different common and distinctive
structures of the linked dataset
from the ADNI study. Model “D1 D1
D2 D2” is the model with the lowest
MPRESS. D1 denotes a distinctive
component for the first block, D2
denotes a distinctive component for
the second block, and C denotes a
common component.
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All datasets were analyzed using both the SCaDS method
introduced here and the sparse PCA analysis introduced by
Zou et al. (2006) and implemented in the elastic net R
package (Zou & Hastie, 2012). SCaDS was applied with cor-
rect input for the zero block constraints on the component
weight matrix, this is with input of the common and distinc-
tive structure that underlies the data. Sparse PCA was
applied with input of the correct number of zero component
weights in WC and this for each component (sparse PCA

can be tuned to yield exactly a given number of zero coef-
ficients because it relies on a LARS estimation procedure;
Tibshirani, Johnstone, Hastie, & Efron, 2004). Using sparse
PCA with the correct number of zero component weights is
equal to supplying the analysis with a perfectly tuned lasso
parameter. In order to achieve a perfectly tuned lasso
parameter for SCaDS, we used an iterative scheme based
on the bisection method for root finding. The method boils
down to estimating the model with a certain lasso value,

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
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Figure 3. A heat plot of the absolute values of the component weights table of the final analysis for the ADNI data example. The variable names
with prefix 1 denote variables belonging to gene expression block; names with prefix 2 denote variables belonging to the neuropsychological block.
The figure has been broken row wise into four pieces to fit the page.

�2018 Hogrefe Publishing. Distributed as a Hogrefe OpenMind article Zeitschrift für Psychologie (2018), 226(4), 212–231
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)

N. C. de Schipper & K. Van Deun, Revealing the Joint Mechanisms in Traditional Data Linked With Big Data 223



after which depending on the number of nonzero weights in
ŴC compared the number of nonzero weights in WC, the
lasso is increased or decreased. This process is repeated
until the number of nonzero component weights in ŴC is
within 0.01% of the number of nonzero component weights
in WC. The ridge parameter λ2 was tuned for one particular
dataset in each of the six conditions with cross-validation
and picked according to the one standard error rule. (The
ridge was not tuned for each individual dataset because
of computational constraints.).

In order to quantify how well the component weight
matrix WC can be recovered by SCaDS and sparse PCA
of the concatenated data, we calculated Tucker’s coefficient
of congruence between the model structureWC and its esti-
mate ŴC as resulting from SCaDS and sparse PCA. Tuck-
er’s coefficient of congruence (Lorenzo-Seva & ten Berge,
2006) is a standardized measure of proportionality between
two vectors, calculated as the cosine of the angle between
two vectors. Note that WC and ŴC are vectorized first
before they are compared. A Tucker congruence coefficient
in the range .85� .95 corresponds to fair similarity between

vectors, while a Tucker congruence coefficient of > .95
correspond to near equal vectors (Lorenzo-Seva & ten
Berge, 2006). Furthermore, we also calculated the percent-
age of correctly as (non-)zero classified component weights.

Box plots of Tucker’s coefficient of congruence between
WC and ŴC are shown in Figure 4, both for the estimates
obtained with our SCaDS method and with sparse PCA.
The two panels correspond to the two levels of sparseness;
within panels, the box plots differ with respect to the
method used to estimate the weight matrix and the noise
level. In all conditions, SCaDS has on average higher con-
gruence than sparse PCA. This indicates that controlling
for block-specific sources of variation results in a better
recovery of the model coefficients (given the correct
model). Furthermore, the bulk of Tucker congruence coef-
ficients obtained when using SCaDS are above the thresh-
old value of 0.85 thus indicating fair similarity of the
estimated component weights to the model component
weights. Sparse PCA, on the other hand, has almost all solu-
tions below the 0.85 threshold. The manipulated noise and
sparseness factors had some influence on the size of
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ficients between WC and ŴC, where
I = 100 and J = 500. Each condition
is based on 20 replications; the
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between WC and ŴC, where I = 100
and J = 500. Each condition is
based on 20 replications.
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Tucker’s congruence. First, as one may expect, congruence
decreased with an increasing level of noise. Second,
comparing the left panel (high level of sparsity) to the right
panel (low level of sparsity), Tucker congruence was higher
for the low level of sparsity.

The box plots in Figure 5 show the percentage of cor-
rectly classified component weights for both estimation pro-
cedures in each of the six conditions. An estimated
component weight is counted as correctly classified if it
has nonzero status in WC as well as in ŴC or if it has zero
status inWC as well as in ŴC. Not surprisingly, SCaDS does
far better compared to sparse PCA, this because SCaDS
makes use of true underlying structure of the data. More
importantly, these results show that if the data do actually
contain an underlying multi-block structure, sparse PCA is
not able to find this structure by default, too much weights
are incorrectly classified. For good recovery of the compo-
nent weights, it necessary to take the correct block structure
into account.

Concluding, this simulation study shows that a multi-
block structure is not picked up by sparse PCA by default.
Furthermore, the simulation results show that to have satis-
factory component weights estimates the correct multi-
block structure needs to be taken into account. In practice,
the underlying multi-block structure of the data is
unknown. Hence, model selection tools that can recover
the correct model are needed.

Finding the Underlying Common and
Distinctive Structure of the Data

In the previous section, we concluded that in order to have
good estimation, the correct underlying multi-block struc-
ture needs to be known. In this section, we will explore to
what extent 10-fold cross-validation with the Eigenvector
method can be used to identify the correct underlying
block structure of the data, assuming the number of compo-
nents is known. We will consider both a high- and a low-
dimensional setting.

In the high-dimensional setting, data were generated
under the same conditions as the previous simulation
study but analyzed without input of the correct common-
distinctive model structure. Instead, for each of the gener-
ated datasets, we calculated the MPRESS and its standard
error for all possible combinations of common and distinc-
tive components; this is 10 possible models for each gener-
ated dataset (2 data blocks 3 combinations). The models are
estimated without a lasso penalty (this is λ1 = 0) and with
the same value for the ridge parameter as in the previous
simulation study.

We illustrate the results obtained for the first three
generated datasets in the high sparsity condition in Figure 6.
The correct model used to generate the data is the model
labeled “D1 D2 C” (representing a model with one
distinctive component for each block and one common
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component). The plots show that the most complex model
(this is the unconstrained “C C C” model) always has the
lowest MPRESS. Furthermore, the plots show that model
fit decreases for models with more imposed zeroes. This
means that 10-fold cross-validation with the Eigenvector
method favors models that are overfitted (i.e., models with
too many nonzero coefficients). To remedy this situation,
the one standard error rule has been proposed (Hastie
et al., 2009). Here, this means that the model with the low-
est complexity (or, the highest number of zeroes) is chosen
that still falls within one standard error of the model with
the lowest MPRESS; if this is more than one model, the
model with lowest MPRESS is chosen. The results in
Figure 6 suggest that this may lead to the correct model
in a number of cases (the two panels at the right).

The results of the full simulation study are summarized
in Table 5. The column labeled “Best model” shows the
proportion of cases where the true model was selected
based on choosing the model with lowest MPRESS. This
strategy never results in selecting the correct model. Upon
closer inspection of the results (e.g., Figure 6), the model
with lowest MPRESS often was the unconstrained model.
Whether the correct model would be selected when apply-
ing the one standard error rule (i.e., choosing the model
with the highest MPRESS but within one standard error
of the model with the lowest MPRESS) can be seen in the
column labeled “One Std Error rule.” Unfortunately, this
does not seem to be the case very often, in only about
10% of the cases the correct model was chosen based on
this heuristic. Clearly, cross-validation as a method for

Table 5. Results of the simulation study for finding the underlying
common and distinctive structure with 10-fold cross-validation in the
high-dimensional setting

Sparsity Noise (%) Best modela One standard error ruleb

High 5 0 0.05

High 25 0 0.35

High 50 0 0.15

Low 5 0 0.20

Low 25 0 0.05

low 50 0 0.05

Notes. aThe proportion of cases where the model with the true structure is
the model with the lowest MPRESS. bThe proportion of cases the model
with the true structure is selected based on the one standard error rule.
The results are based on 20 replications in each condition.
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Table 6. Results of the simulation study for finding the underlying
common and distinctive structure with 10-fold cross-validation in the
low-dimensional setting

Sparsity Noise (%) Best modela One standard error ruleb

High 5 0 0.60

High 25 0 0.95

High 50 0 0.85

Low 5 0 0.65

Low 25 0 1.00

Low 50 0 0.85

Notes. aThe proportion of cases where the model with the true structure is
the model with the lowest MPRESS. bThe proportion of cases the model
with the true structure is selected based on the one standard error rule.
The results are based on 20 replications in each condition.
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selecting the true common-distinctive model structure does
not work in the high-dimensional setting.

We also included results of a second simulation study to
see how 10-fold cross-validation would perform in the low-
dimensional case: data were generated as previously but
with 195 cases and 20 variables. Figure 7 includes results
of three specific generated datasets. Still cross-validation
based on selecting the model with the lowest MPRESS is
biased toward more complex models with fewer zero con-
straints. However, using the one standard error rule, often
the correct model is selected. A full summary of the results
can be seen in Table 6.

Concluding, 10-fold cross-validation with the Eigenvec-
tor method and using the one standard error rule does
seem to work for selecting the correct common-distinctive
model structure in the low-dimensional setting. However,
in the high-dimensional setting overly complex models
are chosen even when using the one standard error rule.
Clearly, other model selection tools have to be tested, also
taking into account that here only one model selection step
was isolated. Although we suggested a sequential strategy
to reduce the computational burden, simultaneous strate-
gies may be needed in order to find the correct model.

Discussion

In this era of big data, researchers in psychology often have
novel types of data available to supplement the more tradi-
tional types of data they are accustomed to. This opens the
avenue to a more informed understanding of the human
behavior system; the different types of data usually probe
different components of the behavioral system and by inte-
grating them a more complete view is obtained. To get this
deeper understanding that goes beyond a fragmented view,
it is crucial that the following questions can be answered:
How do the components of the human behavior system
interact and what do they contribute independently from
the other components? As we argued in this paper, this
means disentangling joint sources of variation from specific
sources of variation present in the data. A further complicat-
ing factor in the analysis of linked traditional and novel data
resides in the often untargeted collection of the novel data:
This not only leads to a very large number of variables but
also to the collection of variables that may or may not be
relevant for the problem under study. On the side of data
analysis, this requires methods that are computationally
efficient and capable of automated variable selection.
To address these issues, we introduced SCaDS, a novel
variable selection method that is suitable to detect the
common and specific mechanisms at play. In this paper,

we proposed the SCaDS model, a procedure to estimate
the model parameters and an implementation of the
algorithm in the freely available statistical softwareR. Impor-
tantly, the proposed implementation of SCaDS can han-
dle a large number of variables including cases where
the total number of variables exceeds the number of
observations.

We illustrated how to use SCaDS using publicly available
data from the 500 Family Study (Schneider &Waite, 2008)
using a block of data for father, for mother, and for their
child. The interpretational advantage of using a sparse
common and distinctive model structure was clearly shown.
We also included an application to Alzheimer patient data
including a block with genetic variables and a block with
cognitive scale variables to illustrate the use of SCaDS in
the high-dimensional setting. Furthermore, support for the
superior performance of SCaDS compared to sparse PCA
of the concatenated data in estimating back the model
parameters was convincingly shown in a simulation study.
Especially in situations where the number of variables
was large compared to the number of observation units,
SCaDS outperformed the approach of applying sparse
methods for a single block of data while ignoring the
multi-block structure.

In this paper, we used cross-validation as a tool to deter-
mine the meta-parameters of the SCaDS method, namely
the number of common and distinctive components and
the level of sparsity. For data generated in the low-
dimensional setting, satisfactory results were obtained, yet,
in the high-dimensional setting, we observed a bias toward
overly complex models. More research needs to be done –

including the use of simulation studies – to investigate if
cross-validation indeed recovers the correct number of com-
mon and distinctive components and the degree of sparse-
ness. Other alternatives that have been proposed in the
literature need to be explored as well, including the convex
hull method (Timmerman, Kiers, & Ceulemans, 2016;
Wilderjans, Ceulemans, & Meers, 2012). Of particular inter-
ests are model selection tools that are less computationally
intensive than cross-validation like the index of sparseness
(Trendafilov, 2013).

To conclude, SCaDS is a promising method for the anal-
ysis of multi-block data that yields insightful representa-
tions of linked data: Intricate relations between very
different sources of information on human behavior are
revealed, even in presence of irrelevant variables. Here,
the methodology was introduced and showcased on data
with a relatively modest number of variables. The imple-
mentation proposed here is scalable to the high-dimen-
sional case of very large sets of variables but more work
is needed to study the performance of SCaDS in such set-
tings using both simulated and empirical data.
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Appendix A

Description Algorithm

In order to obtain a solution for WC with SCaDS, the
following objective function needs to be minimized given
selected values for the tuning parameters: λ2, λ1, the num-
ber of components and a common-distinctive component
weight structure,

arg min
WC;PC

LðWC;PCÞ ¼ XC � XCWCPT
C

�� ��2

2 þ λ1 WCk k1 þ λ2 WCk k22;

s:t:PT
CPC ¼ I; λ2; λ1 � 0 zero block constraints onWC;

ð9Þ

where XC 2 RI�ΣkJk , WC 2 R

P
k

Jk�Q

, PC 2 RΣkJk�Q and I, Jk,
and Q denote the number of cases, variables in block k
and components, respectively. For ease of notation,
we will drop the subscript C and let ΣkJk = L where l =
1, . . ., L.

A solution to Equation (9) can be obtained using an alter-
nating least squares approach. Meaning estimates for P can
be obtained by minimizing (9) conditional on W and vice
versa. The alternating least squares minimization is
repeated until the convergence criterion has been reached.
First, we will discuss the optimizing Equation (9) with

respect to P conditional onW, then we will discuss the opti-
mization of W conditional on P.

The loading matrix P which minimizes Equation (9) con-
ditional on W has an analytic solution given PTP = I. The
solution is given by P = UVT, where U and V are the left
and right singular vectors of XTXW (ten Berge 1993; Zou
et al., 2006).

In order to obtain the component weight matrix W that
minimizes Equation (9) conditional on P, we implemented
a coordinate descent optimization procedure. In order to
use coordinate descent to get estimates for W, we rewrite
Equation (9) as follows,

arg min

W
L Wð Þ ¼ X� XWPT

�� ��2

2 þ λ1 Wk k1 þ λ2 Wk k22

¼ vec Xð Þ � P� Xð Þvec Wð Þk k22 þ λ1 vec Wð Þk k1 þ λ2 vecðWÞk k22;
ð10Þ

where ðP� XÞ 2 RIL�QL denotes the Kronecker product,
between the factor loading matrix P and the data X and
where vec(X) denotes the column vector representation
of X. In the Kronecker product each entry of P is multi-
plied with X and put together in one big matrix. An exam-
ple of (P � X) and vec(X) is given by:
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P� Xð Þ ¼
p11X � � � p1QX

..

. . .
. ..

.

pJK1X � � � pJK1X

2664
3775; vec Xð Þ ¼

x11

..

.

xI1

x12

..

.

xI2

x1J

..

.

xIJ

26666666666666666666666664

37777777777777777777777775

:

In this optimization problem, an elastic net regression
problem can be recognized (Zou & Hastie, 2005), to
demonstrate this let vec(X) be the outcome variable y, let
ðP� XÞ be the matrix X* and let vec(W) be the coefficient
vector β. For clarity, we index the rows and columns of X*
by m and n, respectively. To find estimates for β, we will
use a coordinate descent procedure (Friedman et al.,
2010). This is an iterative procedure for which the solution
to each successive approximation of βn is given by,

βn :¼
S 1

M

P
m
x�mn rm þ x�mn

~βn

� 	
; λ1


 �
1
M

P
m
x�mnx�mn þ λ2

; ð11Þ

where S(z, γ) denotes the soft-thresholding operator: sign
(z)(|z| � γ)+ and (α)+ denotes the positive part function, ~β

~

n

denotes the current estimate of βn, and rm denotes the
current residual ym � Σnx�mn

~βn. The coefficients get
updated until a convergence criterion has been reached.
The component weights constraint by the common and
distinctive structure are skipped by (9) and therefore stay
zero. A minimum of (9) can be found by successively
alternating between the estimation of P and W until the
convergence criterion has been reached. Note that this
optimization problem is not convex, meaning that a min-
imum of (9) does not have to be the global minimum.
Note that P conditional on W and vice versa have global
optima because they result from solving convex optimiza-
tion problems.

The coordinate descent procedure in (9) in its current
form is infeasible to work with and has to be rewritten in
order for it to be usable in practice. This has two reasons,
first, the procedure relies on X*, X* can get very large which
may result into memory problems andmakes the procedure

slow. Second, r needs to be calculated every time βn has
been updated; this is costly as r = y� X*β. In order to make
the coordinate descent procedure efficient, the Kronecker
product needs to be avoided. This can be done by noting
some properties of Σmx�mnx

�
mn. First, let us focus on the dot

product of two columns of X* where each entry in those col-
umns is multiplied by p	q carrying the same index q, (index
numbers with a “	” follow from the context) then because
of the orthonormality of P recognize that Σmx�m	x

�
m	 can be

rewritten as follows,

PM
m
x�m	x

�
m	 ¼ x�T

	 x�
	 ¼

P
l
ðplqx	ÞTðplqx	Þ

¼ P
l
p2lqx

T
	x	 ¼ xT

	x	:
ð12Þ

This means that the dot product of two columns of X*
multiplied by the same p	q, is the same as the dot product
of the corresponding columns from the original data. The
inner product of two columns from X* multiplied by p	q
and p	z where q 6¼ z results in Σlplqplzx

T
	x	 ¼ 0. Second, rec-

ognize that in Equation (11),

PM
m
x�mnrm ¼ x�T

n r ¼ x�T
n y� X� ~β
� 	

¼ P
l
ðpl	x	ÞTxl �

P
l
ðpl	x	ÞTX�~β

¼ P
l
ðpl	x	ÞTxl �

P
n

P
l
ðpl	x	ÞT pl	xn

� 	
~βn

¼ P
l
ðpl	x	ÞTxl �

P
l
xT
	xl~wl	

¼ P
l
xT
	xl pl	 � ~wl	

� 	
¼ xT

	X p	 � ~w	ð Þ:

ð13Þ

Making use of Equations (12) and (13), the updating Equa-
tion (11) can be rewritten as,

wl	 :¼
Sð 1

M ðxT
l Xðp	 � ~w	Þ þ xT

l xl~wl	Þ; λ1Þ
1
M xT

l xl þ λ2
; ð14Þ

which does not rely on the Kronecker product. Note that
each time a coefficient gets updated, the vector
Xðp	 � ~w	Þ needs to be calculated again; this matrix vec-
tor product can be partially avoided by calculating
Xðp	 � ~w	Þ before the updating of the weights in wq

starts. If during the updating wlq is put to zero, the vector
xj~wlq gets added back to Xðp	 � ~w	Þ, and if wlq gets
updated to a new value, the difference xjð~wlq � wlqÞ is
added back to Xðp	 � ~w	Þ. The coordinate descent algo-
rithm is given by Algorithm (1), and the full SCaDS algo-
rithm is given by Algorithm (2).
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Algorithm 1: Coordinate Descent Algorithm for the
Component Weights

1: procedure CoorDeS(X, W, P, λ2, λ1, e, fixed structure
for W)

2: c = empty array of length I
3: while convergence criterion e is not satisfied do
4: for q = 1 to Q do
5: c ¼ Xðpq � ~wqÞ
6: for l = 1 to L do
7: if wlq is not constraint to 0 then
8: ~wlq ¼ wlq

9: a ¼ 1
I ðxT

l cþ ~wlqxT
l xlÞ

10: b = sign(a)(|a| � λ1)+
11: wlq ¼ b

1
Ix

T
l
xlþλ2

12: if |a| < λ1 then
13: wjq = 0
14: c ¼ cþ ~wlqxl

15: else
16: c ¼ cþ xlð~wlq � wlqÞ
17: end if
18: end if
19: end for
20: end for
21: end while
22: return W
23: end procedure

Algorithm 2: Algorithm for SCaDS

1: procedure SCaDS(X, Q, λ2, λ1, e1, e2, fixed structure
for W)

2: initialize W 2 RJ�Q ;P 2 RJ�Q

3: while convergence criterion e1 is not satisfied do
4: store U, VT from SVD(XTXW)
5: P = UVT

6: W = CoorDes(X, W, P, λ2, λ1, e2, fixed structure
for W)

7: end while
8: return W, P
9: end procedure

Appendix B

Specifics Simulation Study

As a starting point for the generation of data in the simula-
tion study, initial data matrices were generated according to
xð1Þ
i 
 MVNð0; 3IÞ, where xð1Þ

i 2 R500 for i = 1, . . ., 100
subjects. The variables in the resulting dataset X(1) were
standardized to have zero mean and unit variance.
Let UDVT be the singular value decomposition of the stan-
dardized matrix X(2). Then, the standard PCA decomposi-
tion can be obtained by setting the loading matrix P(1)

equal to the first three columns of V and setting W(1) also
equal to the first three columns of V (note that the basis
PCA model with orthogonality of the loadings indeed has
equal weights and loadings). As a next step, we imposed
the common and distinctive sparse structure on W(1) as fol-
lows: First, a non-sparse common and distinctive structure
was obtained by setting – for the distinctive components –

all those component weights that correspond to the vari-
ables of a particular block equal to zero (see Equation 4);
next, sparseness of the common component and of the non-
zero parts of the distinctive component was imposed by set-
ting all coefficients with an absolute value lower than some
threshold to zero. The threshold was taken such that the
level of sparseness defined by the condition was attained.
The resulting matrix of component weights W is the model
structure. Subsequently, the model structure for P was
obtained by setting the loadings equal to solution of the
least squares problem arg min

P Xð2Þ � Xð2ÞWPTð1Þ�� ��2
condi-

tional on W see Appendix A. Finally, the data X* that were
used as the input to the SCaDS and sparse PCA analyses
were obtained by adding noise,

X� ¼ Xð2ÞWPT þ cE; ð7Þ
where E is a random error matrix where the rows are gen-
erated from MVNð0; IÞ, and where c is a scalar that con-
trols the signal to noise ratio (SNR) in X*. The SNR is
calculated as follows.

SNR ¼ 1� dVarðXð2ÞWPTÞdVarðX�Þ
: ð8Þ

To obtain the scalar c to get the desired SNR, substitute
the SNR (in the simulation study these 0.05, 0.25, 0.5) into
Equation (8) and solve for c. No multiple starts were used in
the simulation study; the algorithm was started with a
“warm” start by initializing W with first three columns of
V from X* = UDVT.
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