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Background. Molecular categorization of lung cancer in medical care is becoming increasingly important on a regular basis.
One of the molecular classifications of NSCLC (early-stage NSCLC) supports that tumors of different biological varieties differ
in terms of their genomes and clinical characteristics. Methods. Based on published immune cell signatures and early-stage
NSCLC gene expression data including cancer genome maps, we used consensus cluster analysis to identify immune molecular
subtypes associated with early-stage NSCLC expression subtypes. )ese subtypes were correlated with early-stage NSCLC
expression subtypes. Next, applying a wide range of statistical techniques, we evaluated the link between molecular subtypes
and clinical features, immunological microenvironment, and immunotherapy reactivity. Molecular subtypes were defined as
a classification of cancerous cells. Results. Multiple RNAseq cross-platform datasets of immune genes were used to identify two
molecular subtypes (C1 and C2) of NSCLC, with C1 showing a more favorable prognosis than C2.)e results were validated on
the CSE datasets. In terms of clinical characteristics, C2 subtype samples with a worse prognosis showed a more advanced
tumor stage and higher mortality. C2 showed immuno-infiltrative characteristics but had depletion of T-cells. Biological
functions such as EMT were enriched on C2. A low TIDE score in C1 indicated that C1 samples could benefit from taking
immunotherapy. C2 were more susceptible to standard chemotherapeutic treatments such paclitaxel, cisplatin, sorafenib,
crizotinib, and erlotinib. Conclusion. According to our findings, early-stage NSCLC patients may benefit from receiving
treatment with immune checkpoint blockade therapy.

1. Introduction

Lung cancer is one of the primary reasons leading to cancer
death in the world [1]. It is predicted that the incidence of
lung cancer would continue to climb in China due to the
country’s rapidly growing and aging population as well as
increased environmental pollution [2]. Histological classi-
fication is what differentiates nonsmall cell lung cancer or
NSCLC from small cell lung cancer, which accounts for at
least 80 percent of all cases of lung cancer. NSCLC and small
cell lung cancer are the subtypes of lung cancer. Patients who
are diagnosed with lung cancer at an early stage have, in
general, a better prognosis than those at a more advanced
stage. Significant variation in clinical prognosis is present
even among early-stage NSCLC patients with similar

macroscopic clinical characteristics, highlighting the need of
a deeper understanding about the molecular mechanisms of
action [3].

In recent years, new research possibilities in the field of
tumor immunology have emerged as a result of the rapid
development of high-throughput genomic technologies as
well as the rise of bio-informatics tools [4]. It is feasible to
obtain an estimate total number of immune cells in the body
according to the fact that the gene expression patterns of
various cell types are distinct from one another. Researchers
have begun probing into the topography of immune cell
infiltration based on data obtained from molecular tech-
niques such as sequencing and gene chip analysis. One could
view this as a future direction of research. A variety of
different bio-informatics methods have been developed in
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order to accomplish the goal of detecting the stable abun-
dance and relative proportion of immune cell sub-
populations present in samples taken from tumorous tissues.
To name a few examples, these tools include MCP-counter
[5], ESTIMATE [6], and CIBERSORT [7].)e creation of an
early-stage staging system for NSCLC based on the features
of tumors and the immune responses to those tumor-
infiltrating immune cells via such a method is believed to
be promising, and future research on immune-related
critical regulatory genes and molecular pathways would
help to achieve a more comprehensive and systematic
knowledge of the tumor immunological microenvironment.

)is research made use of public data from the Gene
Expression Synthesis (GEO) and a genome Atlas database of
early NSCLC to immunotype patients based on the prog-
nostic significance of specific subpopulations of immune
cells. We investigated the subtype distribution with regard to
clinical features, the significance of prognostic factors, and
the subtype-specific heterogeneity-related pathways. Finally,
an exploration into the association between subtypes, hu-
man immune cell populations, and distinctive genes was
carried out. )ese findings might offer a strong basis for
immunotherapy of NSCLC at an early stage in the near
future.

2. Materials and Methods

2.1. �e Components and Steps Involved. )e RNAseq
datasets and subsequent clinical information for NSCLC
were collected from the TCGA database (https://www.
cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga). NSCLC covers lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC). When
it comes to the RNAseq data, the genes showing no ex-
pression in any of the samples were removed, the expression
profile originally presented in FPKM format was changed to
TPM format, and log2 processing was performed. )e
ComBat functionality available in the SVA package [8] was
used to combine the LUAD and LUSC samples into a single
dataset named RNAseq. )is was performed for the purpose
of avoiding any batch effects that may have existed between
the two different types of samples. )e CEL files (including
survival time) of the four datasets GSE29013 [9], GSE31210
[10], GSE37745 [11], and GSE50081 [12] were retrieved from
the database, and the samples of the GPL570 chip [HG-
U133_Plus_2]. )e RMA function (robust multiarray av-
erage expression way of measuring) of R package Affy
(V1.66.0) [13] was utilized to process and normalize the
expression spectrum data for obtaining the dataset’s ex-
pression spectrum. It was required to eliminate the batch
effect that occurred throughout all four datasets; therefore,
the ComBat function included in the SVA package [8] was
introduced to combine them all into a single dataset (GSE).
We employed the GPL570 annotation file supplied in the
combined data set in order to turn the probes into gene
symbols. To be more specific, when multiple probes belong
to one same gene symbol, the expression spectrum of the
gene symbol was taken as its medium value, whereas if
a probe corresponded to multiple gene symbols, the

expression of the probe was then removed. For the GSE
analysis, only samples of early-stage NSCLC with data about
survival time and status were kept (Table 1).

For the purpose of gathering clinical data, only samples
from stages I and II were retained, while those lacking in-
formation regarding survival status or time were deleted.
)e statistical information regarding the processed samples
is presented in Table 2, and in general, the samples were in
the early stage of tumor.

)e IMMOPORT website, which can be visited at
https://www.immport.org/home, was mined for a maximum
number of 1793 genes related to immune (Table S1).

2.2. Cluster Evaluation. Both the RNAseq dataset and the
GSE dataset containing immune genes were subjected to
univariate Cox analysis with the coxph function of the R
package survival (V3.1-12). )e p value threshold for this
analysis was set at 0.05. After that, the genes related to
prognosis, which were found at the intersection of the two
datasets, were selected for additional study. Next, the R
package ConsensusClusterPlus (V 1.52.0) was utilized to
conduct molecular typing on RNAseq dataset samples and
CSE dataset samples in a way distinct from one another [14].
After that, KM curves, which are able to manifest the dif-
ferences in survival curves, were plotted for the various
molecular subtypes. After that, the subtype assignment was
confirmed based on the mRNA expression data of the
immune genes discussed earlier using the method of t-
distribution-based random neighborhood embedding (t-
SNE) [15]. In addition, discrepancies in the allocation of
clinical features across distinct molecular subtypes were
studied using the chi-square test, and a value of p< 0.05 was
taken to show if there was a statistical difference.

2.3. Enrichment of Gene Sets byAnalysis Performed on a Single
Sample (ssGSEA). Gene set variation analysis, often known
as GSVA, is a method of unattended, nonparametric gene set
enrichment that predicts the score of particular pathways or
indicators [16]. )e method is based on transcriptome data.
Previously published study retrieved 16 human signature-
related indicator genes [17], the properties of which were
known to be linked with tumor drivers and were investigated
by using the R packages GSVA [16] and GSEABase
(V1.50.1). When attempting to quantify immune cell in-
filtration, the ssGSEA technique is typically applied. )e
Kruskal–Wallis test was then introduced here in order to
compare the scores of immune cell infiltration across the
various subtypes.

2.4. Analysis of Immune Microenvironment. )e immuno-
logical microenvironment was analyzed applying the MCP-
counter approach [18], which has been considered as being
able to accurately quantify the absolute abundant supply of
ten distinct cell populations, including eight immune cell
populaces (T cells, CD8 T cells, cytotoxic lymphocytes, B
lineage, NK cells, and monocytic lineage) as well as two
stromal cell populations. )e immune cell populations
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include T cells, CD8 T cells, and NK cells and monocytic
lymphocytes (myeloid dendritic cells and neutrophils). )e
Kruskal–Wallis test was used in order to make a comparison
between the scores of immune cell infiltration displayed by
the various subtypes. )is was conducted for the goal of
determining if there was a significant difference between the
scores.

)e ESTIMATE algorithm was used to assess stromal
fractions and immune fractions depending on biomarkers
linked with stromal cell and immune cell infiltration in
tumor tissues. )ese fractions were determined based on the
stromal fractions and immune fractions. )e algorithm
estimated stromal fractions and immune fractions with data
downloaded from the public website (https://sourceforge.

net/projects/estimateproject/). Here, the values of each
sample’s StromalScore, ImmuneScore, and ESTIMATE-
Score were calculated via the algorithm of the ESTIMATE
[6]. After that, the Kruskal–Wallis test was carried out for
the goal of analyzing the subgroups’ dissimilarities and
similarities.

Twenty-eight immune cell indicators were collected
from an earlier work [19], evaluated here with ssGSEA, and
the Kruskal–Wallis analysis was carried out to investigate the
differences in the score that occurred between the various
subtypes of immune cells.

CIBERSORT [20], which was based on the official genes
provided for 22 different immune cell types, was used for
sample analysis to determine if they included immunological
infiltration. After that, the Kruskal–Wallis test was carried
out in order to compare the scores of immune cell in-
filtration that were obtained from the various subtypes.

In addition, immunological checkpoints [21, 22] were
selected on the basis of previous research and then evaluated
using the Kruskal–Wallis test for distinguishing subtypes
more clearly.

2.5. Comparison to the Standard of Molecular Typing.
TCGA was previously segmented into six distinct immune
subtypes, which were designated as follows: IC1 (wound
healing), IC2 (INF-c predominant), IC3 (inflammation),
IC4 (lymphocyte depletion), and IC5 (immunologically si-
lent) and IC6 (TGF-beta dominant) [23]. After that,
a comparison of the molecular subtypes discovered in this
research with those previously confirmed in other research
studies in the past was conducted.

2.6. Tumor Immune Dysfunction and Exclusion. TIDE
[24, 25] is an abbreviation that stands for “Tumor Immune
Dysfunction and Exclusion.” It is a computational frame-
work that has been designed to evaluate the possibility of
immune evasion by malignancies based on the gene ex-
pression profiles of cancer samples. TIDE is an acronym for
“Tumor Immune Dysfunction and Exclusion.” TIDE gene
expression patterns derived from cancer samples have
served as the foundation in our analysis. )e TIDE score,
which is calculated for every tumor sample, could function
as a surrogate biomarker to estimate the response to immune
checkpoint blockade treatments such as anti-PD1 and anti-
CTLA4 when applied to melanoma and NSCLC at an early
stage for each tumor sample. TIDE was utilized to predict
sample responses inside the RNAseq and GSE datasets. In
addition, it was introduced to analyze the proportion of
treatment responses among various subtypes and TIDE
scores.

2.7. Prediction of Patients’ Benefits to be Gained from Im-
munotherapy and Targeted �erapy. Gene pattern [26]
category mapping, also known as SubMap, is a technique for
comparing similarities between different molecular classes
based on the expression profiles of different patient cohorts.
)is technique was used to determine similarities between

Table 2: Clinical information of TCGA and GSE.

Feature TCGA GSE
Event
Alive 493 373
Dead 265 236

Gender
Female 304
Male 454

Age
425

≤65 319
Unknown 14

T stage
T1 250
T2 445
T3 63

N stage
N0 578
N1 169
N2 1
NX 10

M stage
M0 577
MX 181

Stage
I 488 449
II 270 160

Smoking
1 63
2 195
3 170
4 305
5 7
7 18

Table 1: )e information of GSE.

GSE Num Platform
GSE50081 181 GPL570
GSE29013 38 GPL570
GSE37745 164 GPL570
GSE31210 226 GPL570
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the immunotherapy data and the subclasses identified in the
previously mentioned dataset.

By anticipating the similarities of differentially expressed
genes between immunotherapy-treated participants and
untreated participants, researchers could be able to in-
directly estimate the efficacy of subimmunotherapy [27, 28]
according to the melanoma patients’ data with past treat-
ment of immunotherapy.

In addition, pRRophetic [29] was used to predict the
IC50 sensitivity of medications such as cisplatin, paclitaxel,
sorafenib, erlotinib, and crizotinib in different molecular
subtypes.

3. Results

3.1. Principal Component Analysis. )e workflow chart is
showed in Figure S1. )e ComBat functionality of the sva
package was utilized to execute the TCGA-LUAD and
TCGA-LUSC datasets and merge them into a single dataset
(RNAseq). In addition, the GSE29013, GSE31210,
GSE37745, and GSE50081 datasets were merged into a single
dataset.)is was carried out for the purpose of excluding the
potential presence of the batch effect in a number of different
datasets (GSE). PCA allows a clear differentiation between
the data obtained from RNAseq (Figures 1(a) and 1(b)) and
the GSE dataset (Figures 1(c) and 1(d)) before the batch
effect had been removed. However, the data in the dataset
were indistinguishable with the existence of the batch effect;
in other words, both datasets would be the same.

3.2. Using Information from Immunological Profiles, the
Identification of Two Distinct Genetic Subtypes of Nonsmall
Cell LungCancer at aPreliminary Phase. )e coxph function
of R survival was utilized to carry out a univariate cox
analysis of genes on the basis of 1,793 immune genes. )e
coxph function was introduced here in this study for related
analysis (V3.1-12). )e P filtering threshold was set less than
0.05 for the probability value. )e RNAseq dataset had 139
genes associated with prognosis, while the GSE dataset had
302 genes associated with prognosis. Following that, cluster
analysis of the subsequent 37 immune-associated prognostic
genes was performed using the intersection data of these two
sets of data (Figure 2(a)).

After that, the R packet ConsensusClusterPlus was used
for molecular typing for the samples in the RNAseq dataset
and the GSE dataset. )e results showed that there were two
molecular subclasses, named C1 and C2, in the early-stage
NSCLC samples of the RNAseq dataset and the GSE dataset.
)ese molecular subclasses were found in the RNAseq
dataset and the GSE dataset.

According to the results of the KM survival analysis, C2
had a less favorable prognosis for survival in comparison to
C1 in both the RNAseq and GSE datasets (Figures 2(b) and
2(c)). t-SNE was also utilized to lower the dimension of
features in order to confirm the subclass assignment.
According to the findings, the subtype names of RNAseq
and GSE were, for the most part, similar with two-
dimensional t-SNE density variation (Figures 2(d) and 2(e)).

3.3. �e Relationship Pf Clinical Characteristics of the Two
Subtypes. Following this step, the status of survival, age and
gender of the individual, T phase, N phase, M phase,
smoking history, and stage distributions in the RNAseq
dataset were compared between the two molecular subtypes
(Figure 3(a)). According to the findings, the ratios of T
phase, N phase, and phase were distinct across the two
different molecular subtypes (Figures 3(c)–3(e)), although
there were no significant variations in survival status,
gender, age, or smoking (Figures 3(a) and 3(e)–3(h)).

3.4.Molecular Subtype Immune Infiltration ScoreComparison
(Immune Microenvironment). Using MCP-counter, ESTI-
MATE, ssGSEA, and CIBERSORT, the immune infiltration
of the RNAseq dataset samples was analyzed, and the dif-
ferences in immune cell scores between the two molecular
subtypes were compared. )e subtype C2, which manifested
a relatively poor prognosis and was included in the RNAseq
dataset, scored higher in immune infiltration (Figure 4(a)).

In addition, immune checkpoint genes were identified in
earlier research [21, 22, 30], and comparisons were made
between the twomolecular subtypes regarding the variations
in the expression levels of these immune checkpoint genes.
)e findings showed that forty of the forty-seven immu-
nological checkpoints in RNAseq subtypes exhibited sig-
nificantly variable expression levels. )is constituted 85.1
percent of the total (Figure 4(b)). Eighty percent of the forty-
five immune checkpoint genes included in the GSE dataset
revealed substantial changes in expression among the sub-
types (Figure 4(c)). When compared to subtype C1, the
expression levels of T cell depletion-related genes CTLA4,
PDCD1, and LAG3 were significantly higher in subtype C2
(Figures 4(b) and 4(c)). )ese findings may potentially
explain the phenomena of T cell depletion in subtype C2 as
well as the reason why subtype C2 was associated with a high
immunological score but had an unfavorable prognosis.

3.5. ssGSEA Analysis. As part of the GSVA method, 16
human signature- [17] related signals were selected and
quantified with the help of ssGSEA, which also facilitates
a further examination on the properties of subclasses. )ese
16 markers showed significant changes between subtypes as
well (Figure 5), and these differences were the same in both
the RNAseq and the GSE datasets.

3.6. Analysis of Similarities and Differences with Previously
Identified Immunological Molecular Subtypes. )ere have
been found to be six different kinds of immune invasion in
human tumors as a response to tumor-promoting tumor
suppressors: IC1 (wound healing), IC2 (INF-R dominant),
IC3 (inflammation), IC4 (lymphocyte depletion), IC5 (im-
munologically silenced), and IC6 (TGF-beta dominant) [23].
Specifically, IC1 refers to the immune system’s ability to heal
wounds, whereas IC3 refers to inflammation. According to
the findings of RNAseq, patients with early-stage NSCLC
had the immunological subtypes IC1, IC2, and IC3
(Figure 6(a)). Only 10% of immune subtype IC3 in subtype
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C2 was linked to a poor prognosis in comparison to 29% of
immune subtype IC3 in subtype C1, which was associated
with a positive prognosis (Figure 6(b)). )e examination of
survival curves for these immune subtypes revealed signif-
icant differences in OS time between subtypes (Figure 6(c)),

with the IC3 immune subtype showing the most favorable
prognosis in general.

Additional terms included wound healing, IFN gamma
response, TGF beta response, proliferation, and SNV neo-
antigens. Leukocytes include macrophage, reglementation,
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Figure 1: )e principal component analysis is shown in this figure (a) A PCA analysis was performed on the RNAseq dataset before the
batch effect was removed. (b) PCA analysis of the RNAseq dataset following the elimination of the batch effect. (c) A PCA analysis was
performed on the GSE dataset before the batch effect was removed. (d) PCA analysis of the data obtained from the GSE, after the batch effect
has been removed.
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and TIL regional. Existing studies also contributed to the
current RNAseq data collection [23], based on which the
researchers examined the differences that existed between
the two subtypes. In addition to SNV neoantigens and
proliferation, it has been discovered that there were
a number of other traits differing significantly between the
two subtypes (Figures 6(d)–6(k)).

3.7. TIDE Prediction Response Analysis. Early-stage NSCLC
via TIDE projected sample responses in the RNAseq and
GSE datasets and could be used in comparing the proportion
of treatment responses and TIDE scores for two subgroups
of the disease.

)e RNASeq dataset contained anticipated response
samples that had a better prognosis (Figure 7(a)), and there
were statistically significant variations between the various
subtypes of responders’ response results (Figure 7(b)). In
addition, the TIDE score as well as the dysfunction score of

the C2 subtype were shown to be higher than those of the C1
subtype (Figure 7(c)). )e results obtained from the GSE
dataset were the same (Figures 7(d)–7(f)).

3.8. Immunotherapy’s Effect on the Human Body. An ana-
lytical method known as subclass mapping was introduced
here to study the differences between the expression patterns
of the two NSCLC subtypes (C1 and C2) in a dataset
published in the past and contained patients who had been
treated with NIVOLUMAB and PEMBROLIDA (GSE93157
[31]). )ere was a substantial link between the C1 group and
the PEMBROLIZUMAB response group, as shown by the
results from RNAseq. Such a result suggested that patients in
the C1 group demonstrated a more positive reaction to the
therapy with PEMBROLIZUMAB (Figure 8(a)). )e GSE
dataset presented the exact same occurrence (Figure 8(b)).

In addition, the half-lives, or IC50s, of five different
drugs, namely, cisplatin, paclitaxel, sorafenib, erlotinib, and
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Figure 2: reveals the presence of two distinct molecular subtypes. (a) Venn diagrams comparing the prognostic value of RNAseq and GSE
genes. (b) )e KM curves for two different subtypes that were taken from the RNAseq dataset. (c) )e KM curves for the two different
subtypes that are contained inside the GSE dataset. (d) )e results of the t-SNE analysis provided support for the hypothesis that RNAseq
samples may be divided into two distinct subclasses. (e) )e results of the t-SNE analysis provided support for the hypothesis that GSE
samples may be divided into two distinct subclasses.
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crizotinib, were calculated and compared among the sub-
types. )ese five medical drugs showed substantial differ-
ences between the RNAseq dataset (with the exception of
sorafenib) and the GSE dataset (Figures 8(c) and 8(d)), and
noticeably, the C2 subtype responded more favorably to the
therapy than the patients with other subtypes.

4. Discussion

Evidence strongly supported that immune cells in the tumor
microenvironment have a critical role in the progression of
tumors. Tumor-resistant immune cells that are present in the
tumor microenvironment have a propensity to hunt and

combat cancer cells during the early stages of the devel-
opment of the tumor. On the other hand, cancer cells are still
capable of avoiding immune surveillance and even blocking
the function of tumor-resistant immune cells through
a variety of different methods for their own survival. )is
could happen despite the fact that tumor-resistant immune
cells in the tumor microenvironment have a tendency to
target and kill cancer cells in the early stages of the devel-
opment of cancer. However, such an unfavorable phe-
nomenon also paves the way for novel cancer therapeutic
approaches, such as the use of immune cells to combat
cancer cells in the human body. )e capacity of cancer to
avoid detection of the immune system is a novel sign, and
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Figure 3: Relationship between immunological subtypes and clinical characteristics (a), such as survival status (b), T stage (c), N stage (d),
stages I to IV (e), smoking (f), age (g), and gender (h).
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the disease’s ability to unlock such detection was not an-
ticipated. Immune checkpoint modulators, such as anti-
CTLA4 and anti-PD antibodies, and cultured immune
cells such as CAR-T, have shown unexpected antitumor
effects across a broad spectrum of cancer types in recent
years [32–34]. )is has welcomed a new era in the treatment
of cancer. However, due to the fact that every cancer pa-
tient’s tumor microenvironment is unique, anti-PD-1 and
anti-PD-L1 therapy is only helpful in the treatment of a small
fraction of people with the disease. Discovery of a reliable
molecular typing system is the most essential because of its
ability to characterize the state of immune cells in the context
of making accurate prediction of immunotherapy outcomes.
Even though prior research studies [35] were able to identify
molecular subtypes for NSCLC in its early stages, immune
gene-based molecular typing is still relatively uncommon. In
this study, immune-related genes were utilized to classify
early-stage NSCLC samples from the RNAseq and GSE
datasets into two subgroups (C1 and C2). )e C2 subtype
was shown to exhibit more immune infiltration and a poorer
prognosis than the C1 subtype.

A promising immunotherapy technique for patients
with metastatic cancer is the inhibition of immunological
checkpoints, such as the PD-1/PD-L1 axis [36]. )is strategy
involves the suppression of immune checkpoints. T cell
fatigue and death can be created when the protein PD-1
generated by T cells interacts with the ligand PD-L1
expressed by immune cells or tumor cells in the tumor
microenvironment [37]. It is also possible that the presence
of tumor cells is what started such a connection. Our studies
have shown that the majority of genes involved in immu-
nological checkpoints appear to have distinct expression
patterns between the two subtypes. )e markers of T cell
exhaustion CTLA4, PDCD1, and LAG3 are all expressed at
a high level in C2 cells. Secondly, the results of the TIDE
study showed that C2 had the highest scores for T cell
dysfunction and exclusion. )is suggested that the T cells
were malfunctioning as well as had a poor prognosis. In
other words, there may be a connection between a high C2
immune escape score and both the inability of T cells to
function and the activation of PD-1/PD-L. As a result, we
proceeded to investigate the assumption that treatment with

StromalScore
ImmuneScore
ESTIMATEScore
T cells
CD8 T cells
Cytotoxic lymphocytes
B lineage
NK cells
Monocytic lineage
Myeloid dendritic cells
Neutrophils
Endothelial cells
Fibroblasts
Activated B cell
Activated CD4 T cell
Activated CD8 T cell
Activated dendritic cell
CD56bright natural killer cell
CD56dim natural killer cell
Central memory CD4 T cell
Central memory CD8 T cell
Effector memeory CD4 T cell
Effector memeory CD8 T cell
Eosinophil
Gamma delta T cell
Immature B cell
Immature dendritic cell
Macrophage
Mast cell
MDSC
Memory B cell
Monocyte
Natural killer cell
Natural killer T cell
Neutrophil
Plasmacytoid dendritic cell
Regulatory T cell
T follicular helper cell
Type 1 T helper cell
Type 17 T helper cell
Type 2 T helper cell
B cells nai ve
B cells memory
Plasma cells
T cells CD8
T cells CD4 nai ve
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta
NK cells resting
NK cells activated
Monocytes
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

Cluster Cluster

C1

C2

Methods

CIBERSORT

ESTIMATE

MCPcounter

ssGSEA

−1

−0.5

0

0.5

1

(a)

******** ns ****ns **** ns ************************ ns * ************************ * **** *** ******************** * **** ******** ******** *** ns ns **************** ** ns **** ** **

0.0

A
D

O
RA

2A
BT

LA
BT

N
L2

CD
16

0
CD

20
0

CD
20

0R
1

CD
24

4
CD

27
CD

27
4

CD
27

6
CD

28
CD

40
CD

40
LG

CD
44

CD
48

CD
70

CD
80

CD
86

CT
LA

4
H

A
V

CR
2

H
H

LA
2

IC
O

S
IC

O
SL

G
ID

O
1

ID
O

2
KI

R3
D

L1
LA

G
3

LA
IR

1
LG

A
LS

9
N

RP
1

PD
CD

1
PD

CD
1L

G
2

TI
G

IT
TM

IG
D

2
TN

FR
SF

14
TN

FR
SF

18
TN

FR
SF

25
TN

FR
SF

4
TN

FR
SF

8
TN

FR
SF

9
TN

FS
F1

4
TN

FS
F1

5
TN

FS
F1

8
TN

FS
F4

TN
FS

F9
V

SI
R

V
TC

N
1

2.5

5.0

7.5

10.0

12.5

lo
g2

 (T
PM

)

Cluster

C1

C2

(b)

BT
LA

BT
N
L2

CD
16
0

CD
20
0

CD
20
0R

1

CD
24
4

CD
27

CD
27
4

CD
27
6

CD
28

CD
40

CD
40
LG

CD
44

CD
48

CD
70

CD
80

CD
86

CT
LA

4

H
A
V
CR

2

H
H
LA

2

IC
O
S

IC
O
SL

G

ID
O
1

ID
O
2

KI
R3

D
L1

LA
G
3

LA
IR
1

LG
A
LS

9

N
RP

1

PD
CD

1

PD
CD

1L
G
2

TI
G
IT

TM
IG

D
2

TN
FR

SF
14

TN
FR

SF
18

TN
FR

SF
25

TN
FR

SF
4

TN
FR

SF
8

TN
FR

SF
9

TN
FS

F1
4

TN
FS

F1
5

TN
FS

F1
8

TN
FS

F4

TN
FS

F9

V
TC

N
1

Cluster

C1

C2

**** * ns **** * *** ************ *** **** ns ** ** ******************** ns ************ ns **************** * ****** **** ns ns **** ns ************ ns **** ns **** ** **

2.5

5.0

7.5

10.0

12.5

EX
P

(c)

Figure 4: Infiltration of the immune system by two different immunological kinds (Figure 4). (a) A heatmap displaying the immune cell
infiltration scores on RNAseq molecular subtypes as assessed by four different applications for immune assessment. (b) A distinction in the
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anti-PD-1/PD-L1 antibody therapy was successful for C2. It
was hypothesized that C2 would benefit greatly from anti-
PD-1 inhibitors based on the findings of the subgraph

analyses between early-stage NSCLC patient samples and
patients treated with NIVOLUMAB and PEM-
BROLIZUMAB (Figures 8(a) and 8(b)), which was
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Figure 5: A ssGSEA study of sixteen different human signatures is presented in Figure 5. (a) )e difference in ssGSEA scores for 16 human
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Figure 6: Continued.
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consistent with the findings and hypotheses presented
earlier. )erefore, our method of immunological typing may
be able to help patients in the early stages of NSCLC and
would suggest them to receive individualized treatment for
their condition.

)e cell cycle, T_CELL_RECEPTOR, B_CELL_RE-
CEPTOR signaling pathways as well as the CHEMOKINE
and IMMUNODEFICIENCY signaling pathways are
uniquely enriched in one immunological subtype compared
to the other. A poor survival among cancer patients is
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Figure 8:)ere are three distinct immune subgroups, each of which reacts differently to immunotherapy and chemotherapy.)eGSE93157
and RNAseq dataset was analyzed for a submap (a), and the GSE93157 and GSE cohort was analyzed for a submap (b). (c) Estimated
concentrations of IC50 for cisplatin, paclitaxel, sorafenib, erlotinib, and crizotinib found in the RNAseq dataset. IC50 values estimated for
cisplatin, paclitaxel, sorafenib, erlotinib, and crizotinib in the GSE cohort. Ns indicates that there was no statistical significance. ∗∗p less than
0.01, ∗∗∗p less than 0.001, and ∗∗∗∗p less than 0.0001.
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strongly correlated with the activation of immune-related
and tumor-related pathways [38–40]. )e substantial en-
richment of cytokine-cytokine receptor interaction signaling
pathways in early-stage NSCLC samples, notably C2, may be
able to offer a viable therapeutic target for patients who are
in the early stages of NSCLC. In addition, the classification
system offered direction for the application of chemother-
apeutics in clinical settings. C2 is most sensitive to cisplatin,
paclitaxel, sorafenib, and erlotinib among patients in all the
subtypes.

Despite the fact that we have used bio-informatics
methods on a large sample size to identify two genetic
subgroups of early-stage NSCLC with significant prognostic
differences, the limitations of our work should be equally
noted. In the future, we plan to place a greater emphasis on
research that is both fundamentally experimental and
functionally in-depth, such as the application of clinical
pathological analysis and immunohistochemical expression.
Some other considerations were not taken into account
because the samples lacked essential clinical follow-up in-
formation, most notably diagnostic specifics, for instance,
whether the patients had other health conditions in our
differentiation of the molecular subtypes.

5. Conclusions

In conclusion, we generated two immune subgroups based
on genes associated with immune cells to guide tailored
therapy for NSCLC patients who were in the early stages of
the cancer. Different immune responses were shown by two
different immune subgroups in response to chemotherapy
and immunotherapy.
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