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Huntington’s disease iPSC models—using human patient cells to 
understand the pathology caused by expanded CAG repeats
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Abstract

A major advance in the study of Huntington’s disease (HD) has been the development of human disease models employing  
induced pluripotent stem cells (iPSCs) derived from patients with HD. Because iPSCs provide an unlimited source of cells and 
can be obtained from large numbers of HD patients, they are a uniquely valuable tool for investigating disease mechanisms and 
for discovering potential disease-modifying therapeutics. Here, we summarize some of the important findings in HD  
pathophysiology that have emerged from studies of patient-derived iPSC lines. Because they retain the genome and actual disease 
mutations of the patient, they provide a cell source to investigate genetic contributions to the disease. iPSCs provide advantages 
over

 

other disease models. While iPSC-based technology erases some epigenetic marks, newly developed transdifferentiation 
methods now let us investigate epigenetic factors that control expression of mutant huntingtin (mHTT). Human HD iPSC lines 
allow us to

 

investigate how endogenous levels of mHTT affect cell health, in contrast to other models that often rely on 
overexpressing the protein. iPSCs can be differentiated into neurons and other disease-related cells such as astrocytes from 
different brain regions to study brain regional differences in the disease process, as well as the cell-cell dependencies involved in 
HD-associated 

 
neurodegeneration. They also serve as a tissue source to investigate factors that impact CAG repeat instability, 

which is involved in regional differences in neurodegeneration in the HD brain. Human iPSC models can serve as a powerful 
model system to 

 
identify genetic modifiers that may impact disease onset, progression, and symptomatology, providing novel 

molecular targets for drug discovery.
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Introduction
Huntington’s disease (HD) is caused by the expansion of a CAG 
repeat in the Huntingtin gene (HTT), leading to the expression 
of a mutant protein (mHTT) with an expanded polyglutamine  
domain near its N-terminus. Progress towards a cure has been 
slow, in part because the function of the normal HTT protein 
is unclear and because the expanded gene and protein appear  
to impinge on multiple biological processes. The disease 
manifests as progressive degeneration of striatal neurons and 
has been modelled in a variety of systems, including animal  
models and animal or human cell in vitro systems.

A major advance for in vitro cell modeling of HD was the  
development of induced pluripotent stem cell (iPSC) technology  
by groups led by Yamanaka1 and Thomson2. This technology  
allows somatic cells to be reprogrammed into a pluripotent state 
and subsequently differentiated into cell types of interest1,2.  
Unlike other cell models to study HD, human iPSCs retain the 
genome of their patient source, making them a valuable tool to 
investigate the genetic contributions to disease. Because iPSCs 
can be propagated indefinitely, they provide a nearly inex-
haustible source of patient-derived material to study disease  
mechanisms and for use in drug discovery.

The methods to efficiently generate iPSCs have evolved over 
time and have been extensively reviewed3,4. The initial meth-
ods used viruses expressing reprogramming factors1,2,5. This 
approach has drawbacks in that the virus would randomly  
integrate across the genome, thereby causing genomic insults 
to the DNA that could alter gene expression in unwanted and 

unknown ways. More advanced methods have been developed 
that reprogram cells without leaving a genomic fingerprint4,6. 
These include using non-integrating episomes7, mRNA8, or small  
molecules9,10. Most of the iPSC models with expanded CAG 
repeats reviewed here were made with non-integrating episomal  
vectors (Table 1).

In 2008, the Daley lab was the first to develop human  
iPSC-derived HD models and to demonstrate that the fibroblasts 
of patients with HD could be reprogrammed into pluripotent 
stem cells11. The first HD patient iPSC line harbored 72 CAG  
repeats12 and was subsequently differentiated into GABAergic, 
DARPP32-positive neurons13, demonstrating that iPSCs could be 
patterned towards striatal neurons, a cell type that is vulnerable  
to degeneration in HD. Others have also generated iPSCs  
from patients with HD and differentiated them into neurons that 
can be patterned into striatal cultures or neural progenitor cells 
to interrogate HD-related phenotypes14–19. The use of HD iPSC 
models has made it possible to study the links between mHTT, 
the activity of multiple biological pathways, and pathogenesis20.  
Work in other HD models has found that mHTT disrupts  
mitochondrial function21–23. In addition, neurons depend on pro-
teasome activity24–26 and autophagy flux27 to remove misfolded  
proteins like mHTT. Cells that express mHTT show impairment 
of these clearance pathways leading to mHTT buildup, which 
accelerates neurodegeneration28–30. In the next section, we dis-
cuss how the use of human HD iPSC models has aided in our 
understanding of disease mechanisms, thus providing insights  
into the development of effective therapies for HD.

Table 1. Induced pluripotent stem cell lines to study Huntington’s disease pathogenesis.

iPSC line* CAG repeat 
size** Summary of cellular phenotypes in HD i-tissues compared with controls***

CS97iHD-180nX 
(GM09197)18 180

•     Gene expression changes: ↑&↓ in ECM signaling, synapse assembly, axon guidance, 
neurotrophic signaling, and the BDNF pathway in cortical i-neurons31, ↑ in TGF  pathway 
and other developmental pathways in i-NSCs32, ↑&↓ in neuronal development pathways, 
cell cycle, proliferation, axon guidance, and nervous system function pathways in  
i-NSCs18

    Functional phenotypes:

•    ↑&↓ in fatty acid metabolism and PPAR signaling in i-NSCs32 
•    ↑ H3K9 methylation in iPSCs33 
•    ↑ ATM and P53 protein levels in iPSCs34 
•    ↑ P53 phosphorylation in iPSCs34 
•    ↑ γH2AX phosphorylation in iPSCs34

•     ↑ cell death18 and ↑ susceptibility to cell death after growth factor withdrawal32,35 as well 
as ↑ susceptibility to cell death after exposure to stressors such as glutamate, 3-MA, H2O2 
in i-neurons18

•     Proteasome inhibition by MG132 or autophagy inhibition by bafilomycin induces mHTT 
aggregates in iPSCs14,36

•    Neuronal patterning and rosette formation32 is delayed 
•    OCT4 remains high after neuronal induction in i-NPCs37 
•    ↓ intracellular ATP levels in i-NSCs18,19 
•    ↑ levels of caspase-3/7 activity in i-NSCs18 
•    ↑ number of TUNEL-positive staining iPSCs18

-β
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iPSC line* CAG repeat 
size** Summary of cellular phenotypes in HD i-tissues compared with controls***

CS109iHD-109nX 
/HD109i.1(ND39258)18,38 109

•     Gene expression changes: ↓ P53 expression in i-NSCs39,40, ↑&↓ in neurodevelopmental 
pathways in i-neurons17, ↑ in TGF  pathway i-neurons17,38,41, ↑&↓  in ECM signaling  
in i-neurons17 and i-NPCs18, ↑&↓ in synapse assembly, axon guidance, neurotrophic 
signaling, and BDNF pathway in i-neurons17, ↑&↓ in ECM organization, synapse assembly, 
axon guidance, neurotrophic signaling, and the BDNF pathway in cortical i-neurons31, ↑&↓ 
in neurodevelopmental pathways, DNA damage, and apoptosis in iPSCs38 and others.

    Functional phenotypes:

•    ↑ nuclear envelope abnormalities in i-NPCs42 
•     Mis-localization of nuclear pore proteins and alterations of nucleocytoplasmic transport in 

i-neurons43

•    ↑ susceptibility to cell death after growth factor withdrawal in i-neurons35 
•    ↑&↓ epigenetic alterations in i-neurons17 
•     Alterations in neuronal patterning and rosette formation is delayed and OCT4 remains 

high after neuronal induction in i-NPCs32,37

•    Delay of mature electrophysiological currents in i-neurons31 
•    ↑&↓ neurite length in i-neurons17,31 
•    ↓ intracellular ATP levels iPSCs and i-neurons18,19,44 
•    ↓ bioenergetics and ↓ glycolytic capacity in i-neurons and i-NSCs18,19,44

•     CAG repeat instability in iPSCs and i-NPCs18 over passage as well as over time during 
differentiation45.

CS77iHD-77nX31 77

•     Gene expression changes: ↑&↓ in ECM organization, synapse assembly, axon 
guidance, neurotrophic signaling, and the BDNF pathway in cortical i-neurons31.

    Functional phenotypes: 
•    Delay of mature electrophysiological currents in i-neurons31 
•    ↓ neurite length in cortical i-neurons31

HD7646
•    ↑ SOCE calcium currents i-neurons46 
•    ↑ mHTT protein expression in i-neurons46 
•    ↑ VGCC currents in i-neurons46

HD-iPS412, HD and HD215 
HD-iPSC(Q71)12

72 (Some 
studies33 
report this 
line as having 
71 CAG 
repeats)

•     Gene expression changes: ↑ in DNA damage pathways15, ↑ in oxidative stress15, ↓ 
in cytoskeletal genes in i-neurons15, ↑ ATM gene expression15, ↑ in TGF  pathway in 
i-NSCs16,47, ↓ in cadherin pathway in i-NSCs16, ↑&↓ in ECM functions, cell adhesion and 
cell surface signaling, transmembrane support, and axon guidance in i-NSCs16, ↑&↓ in 
ECM organization, synapse assembly, axon guidance, neurotrophic signaling, and the 
BDNF pathway48, ↑&↓ in developmental pathways and cell adhesion in NPCs33 and ↓ in 
ECM organization, development, and differentiation and neurodevelopmental pathways in 
NPCs33 and others

    Functional phenotypes: 
•    ↑ H3K9 methylation in iPCS33 
•     Proteasome inhibition by MG132 or autophagy inhibition by bafilomycin induces mHTT 

aggregates i-tissues14,36

•    Neural rosette formation and neural patterning is delayed14 
•    ↓ neurite length in cortical i-neurons31 
•    ↑ levels of caspase-3/7 activity in i-NPCs13 
•    ↑ number of TUNEL-positive staining iPSCs15 i-NSCs16 and in differentiated i-neurons32 
•    ↑ P53 and ATM expression and phosphorylation in iPSCs16

•     ↓ mitochondrial respiration and ATP levels as well as other differences in mitochondrial 
dynamics i-NSCs49

CS77iHD-71nX38 71 •     Gene expression changes: ↑&↓ in neurodevelopmental pathways, TGF  pathway, Wnt 
signaling, DNA damage and apoptosis in iPSCs38

HD70 (GM21756)34 70
•    ↑ P53 phosphorylation i-tissues?15,16,34 
•    ↑ ATM and P53 protein levels iPSCs34 
•    ↑ γH2AX phosphorylation34 in iPSCs.

-β

-β
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iPSC line* CAG repeat 
size** Summary of cellular phenotypes in HD i-tissues compared with controls***

CS21iHD-60nX18 60

•     Gene expression changes: ↑ in TGF  pathway in i-neurons17, ↑&↓  in ECM functions  
in i-neurons17 and i-NPCs17,18, ↑&↓ in synapse assembly, axon guidance, neurotrophic 
signaling, and BDNF pathway, and key developmental pathways in i-neurons17 and 
cortical i-neurons31

    Functional phenotypes:

•    ↑&↓ epigenetic alterations in i-neruons17 
•    ↑ levels of TUNEL-positive staining in iPSCs18 
•    ↑ cell death in i-neruons18 
•     Alterations in neuronal patterning and OCT4 remains high after neuronal induction in 

i-NPCs37

•    ↓ intracellular ATP levels in i-NSCs17, iPSCs11 and i-neurons18,19,44 
•    ↓ bioenergetics and ↓ glycolytic capacity in i-tissues18,19,44 
•    ↑ glutamate sensitivity in i-neurons18 
•    ↑ caspase-3/7 activity in i-neurons18 
•    ↑ P53 phosphorylation in i-tissues15,16,34

CS03iHD-53nX17,43 53

Gene expression changes: ↑ in cell cycle and Wnt/ -Catenin signaling in MSN i-neurons50  
    Functional phenotypes:

•     Mis-localization of nuclear pore proteins and alterations of the nucleocytoplasmic 
transport in i-neurons43

•    ↑ cell death in MSN i-neurons17 
•    ↑ neurite length in MSN i-neurons17 
•    ↑ neurite length in cortical i-neurons51

•     ↓ population of enduring mitotically active and resistant-to-differentiation subset of 
proliferating cells amongst MSN i-tissues50

iPSHD11, iPSHD22, and 
iPSHD3452

40, 47, 
and 42, 
respectively

•    ↑ nuclear envelope abnormalities in i-neurons52 
•    ↑ lysosomes and autophagosomes in i-neurons52 
•    ↑ susceptibility to cell death by proteasome inhibition in i-neurons52 
•    ↓ mitochondrial density (only in iPSHD11 iPSHD22)53 
•    ↑ SOCE calcium currents in HD i-neurons52,54

CS04iHD-46nX17 46

•     Gene expression changes: ↑ in cell cycle and Wnt/ -Catenin signaling in MSN i-neurons50

    Functional phenotypes: 
•    ↑ cell death in i-neurons17 
•    ↑ neurite length in MSN i-neurons17

•     ↑ population of enduring mitotically active and resistant-to-differentiation subset of 
proliferating cells amongst MSN i-tissues50

HD1 (GM04022) and 
HD2 (GM02191)55

44 and 42 
repeats

•    ↑ 5-hydroxymethylation in i-NSCs 
•    ↑ DNMT family gene expression in i-NPCs55 
•    ↑ DNA repair gene expression in NSCs and iPSCs55

ChiPS31-HD-hiPS56 42/44 
homozygous

•    DNA hypermethylation in iPSCs57 
•    ↑ lysosomes and LC3 BII expression in iPSCs and i-NSCs 
•    ↑ lysosomes and LC3 BII expression56

Summary of phenotypes associated with HD i-tissues. ↑ = increased compared with controls, ↓ = decreased compared with controls, ↑&↓ = components or 
steps of this pathway may be either increased or decreased relative to controls. Gene expression changes are italicized. Blue font indicates phenotypes found 
across at least two lines with different CAG repeat lengths.

* Line  may  have  a  slightly  different  name  depending  on   study or publication. ** The CAG repeat size listed here is an estimate of the number of contiguous 
CAG triplets and does not include CAA interruptions, which are likely to occur and have been identified in human58,59 and mouse models60. *** To generate this 
list, we focused on the most prominent phenotypes reported between 2012 and 2022. We acknowledge that this list may not be exhaustive, as we may have 
missed some reports or new phenotypes may have been described since. Note: Not all HD lines that have been generated and studied are listed here. Please 
refer to the Coriell database (https://www.coriell.org/) for the complete list from the HD iPSC Consortium and for other lists that are publicly available. BDNF, 
brain-derived neurotrophic factor; ECM, extracellular matrix; HD, Huntington’s disease; i-NPC, neural precursor cell developed from induced pluripotent stem 
cells; i-NSC, neural stem cell developed from induced pluripotent stem cells; i-neuron, neuron developed from induced pluripotent stem cells; iPSC, induced 
pluripotent stem cell; i-tissue, tissue developed from induced pluripotent stem cells; mHTT, mutant huntingtin; PPAR, peroxisome proliferator-activated receptor
; SOCE, store-operated calcium entry; TGF-β, transforming growth factor beta; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; VGCC, 
voltage-gated Ca2+ channel.

the 
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For simplicity, we refer to neurons, neural stem cells, neural  
progenitor cells, and tissues developed from iPSCs as  
i-neurons, i-NSCs, i-NPCs, and i-tissues, respectively. (See  
Table 1 and Figure 1 for a summary of data on HD iPSC lines.)

Somatic instability and DNA handling in HD
It is generally believed that symptomatic HD is found in 
patients with CAG repeat lengths greater than 40. The number 
of CAG repeats in HTT is not permanently fixed and instead  
undergoes somatic expansion in some human tissues, particularly
in the striatum and cortex61–64. The cerebellar cortex appears to dis-
play the lowest degree of CAG repeat instability61, while other  bra-
in  tissues  display  a  high  degree  of  CAG  repeat mosaicism61,62,65.
Somatic instability in the cortex in  HD brains is a predictor of  age   
of onset and  increases with age66. Recently, it has been  observed  
that  individuals who lack  a  CAA interruption in the  CAG  repeat  
have a significantly earlier age of onset in HD as well as increased 
somatic instability58,59,60,67. Somatic instability is often linked 
to an altered DNA damage response. Indeed, genome-wide  
association studies (GWAS) have identified numerous variants 
significantly associated with DNA damage control pathways 
that modify HD age of onset, including FAN1, LIG1, MLH1,  
MSH3, PMS1, and PMS268–73. Moreover, reducing expression of 
a subset of these genes in mice caused changes in somatic insta-
bility across different tissues, including iPSCs71,72. Together, 
these data suggest that the DNA repair machinery is tightly  

connected with the somatic instability of the CAG repeats in  
HTT and may play a major role in HD onset and progression.

The number of CAG repeats is generally stable during repro-
gramming of patient fibroblasts into iPSCs, and, as a general 
rule, neither iPSC passaging, when some cells in a culture are 
used to generate a new cell population, nor differentiation into 
brain cells seems to alter the CAG repeat length significantly5,18,56.  
There are exceptions such as iPSCs from patients with very  
long CAG repeats (e.g., the HD109 line), where additional expan-
sion of the CAG repeat length can occur with passaging for 
both iPSCs45 and i-NPCs18 as well as during differentiation to  
medium size spiny neurons (MSNs)45.

Interestingly, in lines with large CAG expansions such as the 
HD109 and HD72 lines, knocking down one of the GWAS  
modifiers of DNA damage control, FAN1, exacerbated CAG 
expansions45,72, suggesting that FAN1 is needed to limit somatic 
expansion. In fact, perturbations in DNA handling genes and 
the DNA damage response occur in HD74,75. For example,  
p53 signaling is increased in HD models35,76, and HD iPSCs 
exhibit elevated p53 levels and phosphorylation15,34, as well 
as ATM expression15 and phosphorylation15,34 and γH2AX  
phosphorylation15,34. All of these proteins are widely used as  
markers of DNA damage15,34,77,78. Surprisingly, p53 expression 
was found to be decreased in iPSCs and i-NSCs with very long 

Figure 1. Cartoon summarizing the most prominent phenotypes identified in Huntington’s disease tissues developed from induced 
pluripotent stem cells. DFL, dermal fibroblast; ECM, extracellular matrix; i-NPC, neural precursor cell developed from induced pluripotent 
stem cells; i-NSC, neural stem cell developed from induced pluripotent stem cells; i-neuron, neuron developed from induced pluripotent stem 
cells; TGF-β, transforming growth factor beta.

63  
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CAG expansions from patients with juvenile-onset HD39,40. The 
reasons for this perplexing finding are currently unclear. In  
studies employing a number of HD i-neurons with a range of 
CAG repeat lengths of 66, 71, and 109, Morozko et al. (2021)79 
reported that the SUMO E3 ligase PIAS1 is involved in DNA 
damage control and that its reduction in HD iPSC neurons  
normalized HD transcriptional dysregulation associated with 
DNA damage repair. This served to increase genomic integ-
rity in HD iPSC-derived neurons, supporting a role for  
SUMOylation in DNA damage repair in HD. Nevertheless, many 
genes involved in the DNA damage response pathway were 
found to be altered in HD i-neurons, iPSCs, and i-NSCs com-
pared with controls15,34,38,55, further confirming the importance  
of the DNA damage pathway in the pathology of HD neurons.

Nuclear pore alterations in HD
The nuclear pore serves as a master regulator for nuclear import 
and export and thereby controls numerous cellular processes  
involved in gene transcription and translation80. Nuclear pore 
dynamics may be impaired in neurons vulnerable to HD since 
the RanGTP gradient, a critical regulator of nuclear pore 
dynamics, is compromised in HD, and numerous nuclear pore  
proteins such as NUP62 and RanGAP1 are mislocalized in 
HD i-neurons compared with controls43. Altered nuclear pore  
functions may be responsible for aberrations of nuclear mor-
phology in HD i-neurons52, and alterations in nuclear envelope 
morphology have been shown in human HD brain tissue as well  
as i-NSCs42. The shape and size of the nucleus are also altered 
in HD i-neurons53, although how this affects nuclear dynam-
ics or function is not understood. As mHTT alters chromatin and 
gene expression, it is perhaps not surprising that gatekeepers of  
transport in and out of the nucleus are also disrupted in HD.

mHTT-induced gene expression changes
Shortly after iPSC technology was introduced1,2, the effort to 
create patient-derived lines was of great interest to the HD 
field. The National Institutes of Health formed a consortium of  
HD researchers, called the “HD iPSC Consortium”, to investi-
gate both the transcriptomic changes and functional and struc-
tural degeneration associated with HD. This team reported gene 
expression differences between i-NSCs derived from controls 
and individuals with juvenile- and adult-onset HD, harboring  
180 and 60 CAG repeats, respectively. Their microarray studies 
identified differential expression of genes in numerous pathways 
involved in development, cell cycle, proliferation, and nervous 
system function, and they found a subset of gene expression 
changes  that  were  unique  to  the  juvenile  onset  cells   (CAG  180  
 

 
   Later,   the   HD   iPSC   Consortium   performed   RNA  

 (RNA-seq)  analysis  on  a  subset  of  the  same  lines    
boring   60  and    109   CAG  expansions  with        

multiple  clones  of each) and again found a dysregulation of   key
developmental pathways and master regulators of neurogenesis17

.
 

More than half of the genes altered were involved in nervous syst-  
em function, cellular and tissue development, and axon guidance17.

One of the mechanisms by which mHTT is suspected to cause 
neurodegeneration is by altering gene transcription. This is 
supported by the findings of the Ellerby group16, who used  

i-NSCs generated from HD iPSCs that harbored 72 CAG repeats 
and compared their gene expression profiles with gene-corrected 
control lines11 by using microarray analysis. They found that 
the transforming growth factor beta (TGF-β) signaling pathway 
was significantly upregulated as a consequence of CAG repeat  
expansion16. The TGF-β signaling pathway supports numerous 
cellular activities involved in development and growth, including 
proliferation, differentiation, patterning81, apoptosis, and tumor  
suppression82. This finding has been corroborated: dysregu-
lation of the TGF  pathway has been observed in i-NSCs  
harboring 72 CAG repeats16,47,48, 180 CAG repeats32, and 60 and  
109 CAG repeats17. In addition, SMAD transcription factors, the 
downstream  effectors  of  TGF  signaling,  have  been implicated  
as central players in the regulation of HTT itself41.

Another major cellular pathway dysregulated in HD i-tissues is 
the extracellular matrix (ECM). The ECM provides structural 
support to cells and modulates the signaling events and force  
generation required for cell communication, migration, polar-
ity, and movement83,84. Genes related to ECM functions such as 
cell adhesion and cell surface signaling, transmembrane support, 
and axon guidance are altered in HD i-NSCs and i-neurons16–18.  
In particular, cadherins, calcium-dependent molecules that 
regulate cell adhesion and connection85, were among the most 
prominent downregulated genes in HD i-NSCs with 72 CAG  
repeats16.

RNA-seq of i-neurons derived from this same HD line48 and 
its gene-corrected counterpart as well as from other HD lines  
harboring 60 and 109 CAG repeats17 revealed more complex gene 
dysregulation in numerous pathways, such as synapse assembly, 
axon guidance, neurotrophic signaling, and the brain-derived  
neurotrophic factor (BDNF) pathway17,48. RNA-seq on  
cortical-patterned i-neurons harboring 77 and 109 CAG repeats 
compared with controls showed similar patterns of transcrip-
tional dysregulation in nervous system development, ECM, and 
axon guidance molecules31. The changes in synaptic assembly  
and axon guidance may underlie the synapse degeneration 
and dysfunction of neuronal circuitry, while loss of supportive  
neurotropic signaling may contribute to neuronal death over time.

Many of the genes downregulated in HD i-neurons are tran-
scriptional regulators related to neuronal development. This 
includes REST, which represses genes involved in neuronal fate  
in non-neuronal cells86 and prevents neuronal differentiation 
in stem cells87, and NEUROD117, a key regulator of neuronal  
differentiation. Of interest, activation of NEUROD1 by either 
its overexpression or stimulation by a small molecule has 
been shown to ameliorate disease phenotypes in HD neurons.  
Other studies have reported similar gene expression changes 
in developmental pathways31,32,38. Together, these findings 
suggest that cellular activities involved in neuronal matura-
tion are dysregulated in HD, which is consistent with other  
developmental phenotypes observed in HD i-tissues.

Epigenetic changes in HD
One of the mechanisms controlling gene expression involves 
epigenetic modulators, and epigenetic changes underlie many 

line)18.
.
(HD   i-neurons  har
sequencing 

-β
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of the transcriptional alterations in HD88–90. Studies have shown  
altered epigenetics in HD iPSCs, including changes in histone  
methylation and acetylation. Transcriptional changes identi-
fied by RNA-seq were highly correlated with alterations in 
the H3K4me3 and H3K27ac epigenetic marks17. In i-NSCs 
derived from HD patients harboring 71 CAG repeats, H3K9  
methylation was increased compared with controls, and this 
change was associated with altered expression of genes involved 
in proliferation, development, differentiation, ECM, and axon  
guidance33. Changes in histone H3K9 methylation have also  
been observed in postmortem HD brains91.

ATF7IP, which regulates H3K9 methylation, interacts with  
wild-type HTT, but this interaction is lost in iPSCs harbor-
ing 71 CAG repeats33. mHTT directly alters the deposition of 
H3K27me3 at active sites of mouse embryonic stem cells (ESCs) 
and neural precursor cells (NPCs), suggesting that mHTT may 
directly regulate histone methylation92. Sequence motif analysis 
revealed that the largest changes in H3K27ac marks occur near  
transcription factor binding sites at genes involved in  
neurodevelopmental pathways17.

Another study examining a rare homozygous CAG expanded 
line harboring 42/44 CAG repeats reported DNA hypermeth-
ylation in promoter regions, and the extent of hypermethyla-
tion increased as the cells matured and patterned57. Methylation  
was observed at the promoter region of WDR5, a chromatin 
remodeler that itself regulates methylation of genes involved 
in pluripotency57. Finally, there was a global increase of  
5-hydroxymethylation in HD i-NSCs that harbor 43 and 44 
CAG repeats compared with controls55. These data suggest that 
CAG expansion in HTT or the resulting glutamine expansion 
in mHTT (or both) may alter the fate of neuronal development  
by exerting effects at the epigenome level.

Inclusion bodies and proteostasis
An important use of HD i-neurons is that they allow for the 
study of the role of endogenous levels of mHTT on cell health 
rather than requiring overexpression of the protein, as in most  
other cell models of the disease. mHTT is misfolded and forms 
inclusion bodies (IBs) in cells of the HD brain. Pathologi-
cal mHTT inclusions have long been associated with HD and  
are found in the brains of murine models of HD, as shown prima-
rily by immunohistochemical staining using antibodies against 
mHTT, such as EM48 or MW893–97. Some investigators have 
reported that HD i-tissues in culture do not develop EM48- or  
MW8-positive aggregates or intranuclear inclusions14,18. However,  
HD i-NSCs grafted into murine brains at postnatal day 2 
exhibited EM48-positive aggregates after about 33 weeks14,  
suggesting that aging and the brain microenvironment may 
be required for pathological mHTT IB formation. Nekrasov  
et al.52 also reported the presence of EM48-positive inclusions 
in 6-month-old i-neuron cultures. However, no quantification 
was performed, so the extent of aggregation in this context is  
unclear52.

The increased levels of mHTT, and its aggregation, are due in 
part to impairment of the proteostasis system30,98,99. Proteostasis 

entails the breakdown of misfolded proteins. The breakdown  
of misfolded proteins in cells normally occurs by two main  
pathways: the ubiquitin-proteasome system and autophagy. HD 
iPSCs and i-NSCs with moderate-length CAG repeat expansions 
(42–45 CAG repeats) display increased lysotracker staining,  
indicating altered lysosome activity compared with controls56.  
Another study employing cells with moderate-length CAG repeat 
expansions found increased lysosomes and autophagosomes 
in HD i-neurons as well as increased mitophagy52. Likewise,  
early-stage HD i-NSCs exhibit increased markers of autophagy 
compared with control i-NSCs56. These findings are consistent  
with observations in HD mouse models100,101 and suggest that  
proteostasis is activated in these pluripotent cells, possibly  
reflecting the cells’ attempt to clear toxic mHTT.

However, the consequences of this activation are not understood. 
Numerous studies report that mHTT causes significant dysfunc-
tion of the proteostasis system, leading to neurodegeneration98,102.  
Treatment with the autophagy inhibitor 3-MA or the proteasome 
inhibitor MG132 increases cell death in HD i-neurons18,52, con-
firming that HD i-tissues may be more sensitive to perturbations  
of protein homeostasis.

Indeed, treatment with the proteasome inhibitor MG132 or 
the autophagy inhibitor bafilomycin increases the accumula-
tion of mHTT aggregates in HD iPSCs harboring 71 and 180 
CAG repeats14,36. Similarly, knocking down one of the most 
highly expressed E3 ubiquitin ligases, UBR5, in iPSCs results 
in the generation of mHTT aggregates and increased levels of  
mHTT36. Oxidative stress induced by menadione also results in 
EM48-positive aggregates in HD i-neurons harboring 99 CAG 
repeats103. Furthermore, mHTT may stress proteasomal path-
ways, as it has been shown that HD i-NSCs harboring 46, 70, and 
99 CAG repeats have an increase in ubiquitinated proteins and  
delayed degradation of proteasome substrates103.

To study the mechanisms by which mHTT may impact prote-
ostasis, our group has used a longitudinal single-cell imaging  
technology, robotic microscopy (RM)104,105, that can observe  
i-neurons from HD patients over long periods of time. The 
high sensitivity of RM allows it to detect disease phenotypes 
in HD i-neurons without the need for cellular stressors. Using 
RM, we found that i-neurons from patients with HD harboring  
46, 53, 60, or 180 CAGs displayed signs of degeneration such 
as the retraction of neurites and loss of soma, resulting in a  
higher cumulative risk of death than controls17,18.

RM analyses also showed that the formation of mHTT IBs 
in neurons does not cause degeneration but rather serves as a  
coping mechanism to slow neurodegeneration104,105. To directly  
study the impact of mHTT on mechanisms of protein clear-
ance, an optical pulse labeling (OPL) technology using  
photoswitchable probes was developed. OPL allows us to 
monitor turnover of mHTT and autophagic flux or proteasome  
activity in single cells30,106. Using OPL and employing Bayesian 
regression modeling, we found that the mean lifetime of mHTT 
in single neurons was a greater predictor of neurodegeneration  
than absolute levels of mHTT30. Autophagy was determined as 
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the prime cellular mechanism of clearance of mHTT, and small-
molecule drugs that increase autophagy increased clearance  
of mHTT and reduced mHTT toxicity and the risk of death in a 
primary neuron HD model106, supporting the potential utility 
of small-molecule autophagy inducers to slow the progression  
of HD.

RM and OPL analyses were used to discover that deubiquiti-
nase Usp12 protects against mHTT-induced neurotoxicity in 
a primary rodent model of HD and in HD i-neurons from a  
patient with 109 CAG repeats107. Interestingly, the catalytic activ-
ity of Usp12 was not needed for neuroprotection. Usp12 was 
found to protect against mHTT toxicity by inducing autophagic 
flux in neurons, and the enzyme was proposed to be an  
important regulator of neuronal proteostasis in HD107.

Neuronal development
HD i-neurons show a number of aberrations in neuronal  
patterning17,32,37,108 as well as a persistence of mitotic  
populations50. Global changes in neurodevelopmental gene  
expression have been described in HD and are likely linked to  
the changes in neuronal differentiation and connectivity.

Nestin is an intermediate filament protein and has been 
widely used as a marker of NSCs109. Genetic deletion of  
nestin reduces neuronal self-renewal and increases apoptosis110, 
whereas overexpression increases proliferation and results in 
larger brain and heart size111. In HD iPSC lines harboring 60,  
109, and 180 CAG repeats, there is an increased number of  
nestin-positive cells as well as overall increased nestin expres-
sion compared with controls108,112. The expression of numerous  
cell cycle-related genes dramatically increases in HD iPSC 
lines harboring 46 and 53 CAG repeats, which likely explains 
the observation of a population of mitotically active cells that 
are resistant to differentiation50. These changes appear to be 
directly related to increased Wnt/ -Ca signaling as they are  
rescued by inhibition of this pathway50.

The developmental impairment in HD i-tissues can occur 
early in differentiation, even before neural patterning begins. 
Upon exposure to SMAD inhibition, a typical neural induction  
methodology113, the pluripotency marker OCT4 is normally 
downregulated114. In iPSCs that harbor large CAG repeat expan-
sions of HTT, the downregulation of OCT4 and conversion to 
neural markers such as PAX6 are significantly delayed37. Neural  
rosette formation, a step in i-NSC differentiation, is also  
deficient in HD-iNSCs14,32,37. Gene correction of the CAG expan-
sion normalizes rosette formation32. The delay in development 
appears to persist well into later stages, as striatal markers, such 
as CTIP2 and DARPP32, and pan neuronal markers MAP-2  
and β III-tubulin are reduced in HD i-neurons compared with 
controls37. These developmental aberrations were restored 
when HTT expression was reduced by a synthetic zinc finger  
protein repressor37. When HD iPSCs were patterned to a  
cortical fate, the neurons harboring 77 and 109 CAG repeats  
exhibited gene expression and electrophysiological phenotypes  
that were consistent with delayed maturation31.

To gain insight into how mHTT alters neuronal morphology, 
several groups have examined neurite length in HD i-neurons  
because neurite length may be an indicator of synapse forma-
tion as well as synapse pruning. In i-neurons patterned towards 
an MSN fate, neurite length is increased in HD lines harboring  
46, 53, or 109 CAG repeats, consistent with previous reports 
of ESCs that harbor CAG expansions and observations in the 
brains of patients with HD115–117 and with the finding that numer-
ous axon guidance molecules are altered in HD17. Another study 
reported that when patterned towards cortical neurons, i-neurons  
with 5351, 77, 109, or 180 CAG repeats had significantly shorter 
neurites than the controls did31,51. Notably, in this later study, 
measurements were made much later in differentiation; thus, 
morphological changes may vary depending on the stage of  
differentiation and the cell type.

Altered bioenergetics
In mouse models of HD, CAG repeat expansions are associ-
ated with mitochondrial pathologies such as altered respiration, 
energy generation, and metabolic rate118–121. Similar findings 
have been observed in HD i-tissues. For example, HD i-NSCs 
with various CAG expansions exhibit decreased ATP levels  
compared with controls18,19,44,49, suggesting impaired energy pro-
duction. HD i-NSCs and HD iPSCs from lines harboring 72 
CAG repeats display numerous changes associated with mito-
chondrial dysfunction, biogenesis, dynamics, and morphology, 
and many of these phenotypes were restored after removal of  
the CAG repeat49. A quantitative proteomics analysis performed 
on i-neurons harboring 60 and 109 CAG repeats revealed a 
unique set of differentially expressed proteins in metabolic path-
ways and bioenergetic processes that could not be explained 
by gene expression changes17,19. This suggested that the  
metabolic defects may be due to post-translational events rather 
than transcriptional dysregulation. HD i-NSCs have also been 
shown to have compromised glycolysis19, and HD i-neurons  
harboring 42–44 repeats have lower mitochondrial density than  
controls do53. However, in an exhaustive examination of numer-
ous aspects of mitochondrial function, such as mitochondrial  
membrane potential, ATP levels, respiration, and oxygen  
consumption rates, Hamilton et al. observed no differences 
between control and HD i-neurons containing 46, 53, or 72 CAG  
repeats122.

The reason for the differences in these studies is unclear. They 
may reflect differences in differentiation methods. Hamilton  
et al. (2020)122, who observed no apparent bioenergetic changes 
in HD i-neurons, used a method that generated embryoid  
bodies before generating neural rosettes, which were then  
harvested by rosette selection medium before differentiation. By  
contrast, most of the studies that showed changes in mitochon-
drial function used different methods for the neuronal differ-
entiation, which may have led to cultures with a very different 
cellular composition. It may also be that the harvested i-NSCs  
are sub-stratified to generate a slightly different neuronal popu-
lation of MSNs. Differentiation of MSN cultures is primarily  
validated by the staining of the MSN marker, DARPP32.  
However, in our experience (unpublished results), existing  

β
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antibodies against DARPP32 are problematic and have exhib-
ited variations in sensitivity and specificity, thereby rendering  
them unreliable in characterizing the outcomes of a particular  
differentiation. In other words, without better markers for the  
different differentiation outcomes, it remains difficult to compare  
findings from different groups and to ascertain whether and at  
what stages bioenergetics may differ between HD and control  
neuron populations differentiated in vitro.

Mechanisms of cell death in HD
Patients with HD exhibit a gradual degeneration of striatal  
MSNs that contributes to movement abnormalities123–126. Cere-
bral cortical cells also degenerate over time and likely contribute 
to cognitive deficits as well as motor abnormalities in HD124,127.  
Numerous cellular signals may contribute to cell death in HD, 
including altered calcium signaling128, loss of the supportive 
trophic factor BDNF129,130, proteolytic cleavage of mHTT131–133, 
and activation of the cell death pathways such as apoptosis and  
necrosis134.

HD i-neurons and i-tissues have been used to further refine 
our understanding of the mechanisms involved in neurodegen-
eration and cell death in HD. For example, apoptosis is known  
to activate caspases, which initiate a cascade of downstream 
signaling events leading to cell death135. Several studies have 
found activation of caspases in HD i-tissues. The Ellerby group 
has shown that, after growth factor withdrawal, HD i-NSCs  
have increased levels of caspase-3/7 activity13, and these findings  
have been confirmed by other groups and in different lines18,136. 
Gene correction of the 72 CAG expansion prevented the 
increase in caspase-3/7 activity, suggesting that activation of  
the caspase-mediated pathway is related to CAG expansion in 
HTT16. However, in an independent study of an HD iPSC line 
with just 42–44 CAG repeats, no elevation of caspase-3 activity 
was observed, suggesting that activation of this enzyme may be  
dependent on the length of the CAG repeat56.

Growth factors such as BDNF are critical for the survival 
of brain neurons, and levels of BDNF are diminished in HD 
brains. The reduction in BDNF is due to both decreased  
expression129,130,137,138 and altered BDNF transport in corti-
cal neurons, which reduces BDNF release in the corticostriatal  
synapse139,140. HD i-tissues have increased sensitivity to loss of 
trophic factors, and after growth factor withdrawal, increased 
numbers of terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL)-positive cells have been observed in  
HD i-NSCs16 and in differentiated HD i-neurons32. Specifically,  
reducing the level of BDNF in the media was shown to increase 
the number of TUNEL-positive HD i-neurons18,35,44,108 as well 
as the cell death rate and caspase-3/7 activity18. Overexpression  
of BDNF prevented the increased cell death rate in HD  
i-neurons18, as did treatment with an agonist of TrkB, a receptor  
that mediates the actions of BDNF, suggesting that impaired 
TrkB signaling due to loss of BDNF makes HD i-neurons sus-
ceptible to cell death108. Interestingly, the population of cells most 
susceptible to BDNF withdrawal appears to be nestin-positive  
progenitors108, suggesting that underdeveloped neurons are more 
sensitive to the insults of mHTT than mature cells.

The primary excitatory neurotransmitter in the brain is gluta-
mate, and excess glutamatergic transmission is known to cause  
neurodegeneration in HD. Like HD brain tissues, HD i-tissues 
are more sensitive to glutamate, which induces calcium dys-
regulation and increased numbers of TUNEL-positive cells18.  
Furthermore, mHTT increases glutamate release from i-neurons, 
which in turn hyperactivates the glutamate N-methyl-d-aspartate  
receptors (NMDARs)141, resulting in excess calcium signaling.  
It also leads to downstream changes such as recruitment of  
extrasynaptic NMDARs, decreased CREB-mediated transcrip-
tion, and induction of apoptosis128. Aberrant calcium signaling 
through store-operated calcium entry (SOCE) has also been  
observed in HD i-neurons, as inward calcium currents are 
about two-fold higher in HD i-neurons (notably in numerous 
patient lines that came from typical and juvenile-onset HD and  
contained 40–47 and 76 CAG repeats, respectively) compared 
with controls46,52,54. Calcium dysregulation in HD has long been 
studied, and aberrant SOCE signaling is likely a major player  
in this observation142.

CAG expanded lines are also uniquely sensitive to cellular  
stressors, particularly to oxidative stressors such as H
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HD i-neurons, H
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 was also shown to increase expression of 

the DNA damage marker γH2AX143. Exposure to the endoplas-
mic reticulum stress inducers thapsigargin and dithiothreitol  
increased nuclear  indentations in HD i-neurons with 42 and 
44 CAG repeats significantly more than in control i-neurons. 
However, the molecular nature of this pathology is unclear53.  
Studies by Machiela et al.144 reported a role for aging in accel-
erating the sensitivity of HD i-neurons to cellular stressors. 
In a study of HD iPSCs differentiated towards the astrocytic  
lineage, both cells with the juvenile-onset 109 CAG repeats and  
the adult-onset 50 CAG repeats exhibited cytoplasmic vacuoles  
not present in control cells. These vacuoles were exacerbated  
by the cellular stressor chloroquine145. This is a curious obser-
vation as cytoplasmic vacuolization is thought to occur 
after cytotoxic stimuli such as bacterial pathogens or expo-
sure to toxic compounds and precedes activation of cell death  
pathways146.

Isogenic embryonic stem cell lines to study CAG 
expansions
When iPSCs were first used to study HD, it remained  controversial 
whether  there  were  major  differences  compared with  ESCs, and 
whether they were better or worse for disease modeling147. It 
has been reported that they are functionally similar in terms of  
gene expression148 and differentiation potential149,150. Human 
ESCs have been used in numerous studies to study the effect 
of CAG expansions. Unlike iPSCs derived from patients,  
ESCs are unlikely to carry a CAG expansion unless derived 
from patients with HD. Normal ESCs have been engineered to 
develop allelic series of isogenic lines with varying numbers 
of CAG repeats151,152, which is a powerful way to avoid differ-
ences in genetic backgrounds when comparing different lines, as 
described in the next section. One allelic series was generated in  
the RUES2 line153 using clustered regularly interspaced short 
palindromic repeats (CRISPR) technology and includes lines 
with 45, 50, 56–58, 67, and 72–74 CAG repeats151. These lines 
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displayed developmental abnormalities154, such as yielding  
an increased number of progenitor cells154 and forming aber-
rant rosettes151,154. Other novel phenotypes such as disruptions in 
cytokinesis and chromosomal instability151 were detected, and 
changes in gene expression in developmental pathways previously  
detected in iPSCs were also found151,154.

Another isogenic CAG allelic series, coined IsoHD lines152, was 
developed in the long-established H9 ESC background151,155. 
The CAG repeats were engineered using transcription  
activator-like effector nuclease (TALEN) technology, and the 
series consists of lines with 30, 45, 65, and 81 CAG repeats. The 
authors investigated numerous phenotypes; notably, many of 
them were sensitive to CAG repeat length, including defects in  
mitochondrial respiration, increased reactive oxygen species, 
and increased sensitivity to DNA damage152. Furthermore, the 
authors took an especially powerful approach to elucidate cell-
specific phenotypes by generating different lineages and cap-
tured both cell-specific and CAG repeat-specific changes in  
gene expression at both the RNA and proteomic level152. Another 
study differentiated a subset of these lines into microglia and 
also found increased activation of reactive oxygen species as 
well as susceptibility to stressors and increased cytokine produc-
tion in the cells with CAG expansions compared with isogenic  
controls156. Such allelic series of CAG lengths are powerful 
tools to dissect the contribution of the CAG expansion with-
out the confounding effects of other genomic or epigenomic  
differences compared with control lines.

Transdifferentiation of HD fibroblasts directly to 
neurons
Recently, researchers have investigated the potential of directly 
converting fibroblasts into specific cell types rather than  
passing through a pluripotent cell stage157,158. This inventive  
method    is    believed    to     retain    many    of    the    epigenetic  
marks embedded within the chromatin, including marks  
associated with aging, which may be especially important in 
the context of neurodegenerative disease modeling, as disease  
onset is typically late in life159. In one study157, the authors 
expressed the brain-enriched microRNAs miR-9/9* and miR-124  
in HD patient fibroblasts and induced expression of MSN 
markers. Most importantly, these MSN-like cells displayed 
aggregates of mHTT and IB formation, which is remarkable 
given that the parental fibroblasts showed no signs of mHTT  
aggregation157. In addition, the transdifferentiated HD cells 
exhibited phenotypes associated with neurodegeneration, such 
as increased oxidative damage, aberrant mitochondrial func-
tion, and increased cell death, and these differences correlated  
with the disease stage of the patients157. Because these cells  
harbor numerous neurodegenerative marks associated with HD, 
this approach has great potential. However, there still are several 
caveats to their use. First, the source material is limited. Unlike 
iPSCs, fibroblasts tolerate only a finite number of passages.  
Another is that each experiment requires a fresh batch of fibrob-
lasts, which again becomes limiting. Transdifferentiation is 
long, complex, and difficult, so batch issues become chal-
lenging, which reduces the sensitivity, rigor, and reproduc-
ibility of the system. The last caveat is that one cannot make  

gene-corrected controls, which can confound the interpretation  
of phenotypes found associated with CAG expanded lines.

The pros and cons of using iPSC technology to 
study HD
Most of this review has focused on emphasizing the contribu-
tions of human iPSC technology to the study of HD and the  
advantages of this approach. An additional advantage is that 
iPSCs provide a relatively unlimited source of HD i-neurons 
that can be employed in high-throughput screens to iden-
tify potential therapeutics to treat the disease. Because of the  
availability of a large number of HD lines from patients with 
varying numbers of CAG repeats12,15,17,18,31,34,38,52,55,56, one can test 
potential therapeutics for efficacy in a range of genetic back-
grounds and disease severity160. This is important because for  
most neurodegenerative diseases, the models employed, includ-
ing human iPSC lines, are from patients with rare, inherited forms 
of the diseases that may not be reflective of the general patient 
population, where disease etiology is unknown. This is not the 
case in HD, which is unquestionably caused by the expansion  
of CAG repeats in the HTT gene. Nevertheless, it has become 
clear that variants in genes other than HTT contribute to  
HD69. Using the human HD iPSC lines, it is possible to under-
stand the role of these other variants in the disease since these 
variants may not be expressed or may not affect disease in the  
same way in animal models.

That said, there are limitations to the iPSC technology. iPSC 
lines can come from individuals with diverse genetic back-
grounds, and this heterogeneity can confound the interpretation of  
findings161–165. This problem has been addressed with great 
success thanks to the use of gene-editing strategies such as  
CRISPR166 or TALENs167. These technologies allow research-
ers to either correct or introduce mutations of interest in a given 
line or genetic background (or both)168–170. Using gene correc-
tion  to  make  isogenic  control  lines  is  a   powerful   strategy  to 
confirm that disease-related phenotypes are due to the mutation  
of interest and not to clonal variation, cellular heterogeneity,  
or another mutation or variant in the genetic background. How-
ever, generating gene-corrected lines may not entirely solve 
these problems as genetic background can still influence cell  
phenotypes165. Nevertheless, CAG expanded lines have proven 
to display robust cellular changes compared with their respective  
isogenic control lines13,16,32,49. Additional heterogeneity and 
confounding factors come from differences in methodologies 
between experiments and labs, which can produce different sub-
sets of cell types and complicate comparisons between lines6,171.  
Methods of cell differentiation can be inefficient and complex  
and result in cultures with heterogeneous cell populations. The 
longer and more complex the protocol, the more opportunity  
for batch variation from experiment to experiment, which can 
confound interpretation of phenotypes. Using linear mixed 
models or more sophisticated statistical measures to account  
for all of the batch variation is much needed in the field.

Another challenge with iPSCs is that the reprogramming  
process changes the epigenetic marks, many of which may influ-
ence disease-related phenotypes172. While studies have been  
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performed to investigate epigenetic differences in HD using 
iPSC lines, the process of generation of iPSC lines can  
vary173–176, which can confound the interpretation of the effect of  
patient-specific epigenetic marks. While epigenetic studies can 
be done directly on the patient fibroblasts, the use of these cells  
provides limited insight into the role of epigenetics in creating 
vulnerability to selective neuronal populations in HD. The use 
of transdifferentiation technology, as described in the previous  
section, to study HD157 may overcome these limitations as  
neurons can be generated directly. However, transdifferentiation  
is still in its early stages, and as fibroblasts have only limited  
self-renewal potential in culture, transdifferentiation from 
fibroblasts may never generate the number of cells necessary  
for high-throughput assays.

Critical view of the topic
Most of the iPSC models of HD are derived from patient cells, 
and as such, they harbor the actual human disease mutations 
and genetic background contributing to disease. While most of 
our discussion so far has emphasized MSNs as the main target  
of HD, iPSCs can be differentiated into other types of i-neurons  
as well as into other cell types, including astrocytes and  
microglia, the immune cells of the brain. Scientists can therefore  
use human iPSC models to reproduce some of the cell-cell  
dependencies that underlie neuronal dysfunction, degeneration,  
and death and to investigate the role of inflammation in  
neurodegeneration. This can provide insights into potential 
molecular targets in humans that might be useful for developing  
disease-modifying therapeutics. Furthermore, it is possible to  
generate the human i-neurons most vulnerable to HD (MSNs 
and cortical neurons)177 from large numbers of different patients 
with HD to identify common disease mechanisms. Since not 
all aspects of pathogenesis are dependent on CAG repeat  
length, the in vitro human cell models also provide an approach 
to screen for potential genetic modifiers that may impact  
disease onset, progression, and symptomology, which also could  
be molecular targets for drug discovery.

Some have suggested that findings from the human HD  
i-neurons and i-tissues may be more reflective of disease  

processes in patients than animal models since these cell popu-
lations express the same genetic mutations and, in the case of 
transdifferentiated cells, may also maintain the epigenetic status of 
the patients. However, we can learn only so much from in vitro  
studies, and findings from in vitro systems may or may not cor-
relate with the disease pathology and behaviors of patients with 
HD. Both types of models may be necessary to better under-
stand the pathogenesis of HD and to develop novel approaches  
for disease treatment.

Future perspectives
New artificial intelligence technology and especially deep  
learning (DL) methods are providing unique ways to use  
imaging to make predictions on cell fate without invasive  
procedures of biosensors178,179. This is important because  
neurodegeneration is heterogeneous in HD, as it is in all  
neurodegenerative diseases. This heterogeneity is visible at the  
level of cell models as well, as cultures of human i-neurons  
carrying the same HD mutation can harbor cells that resist 
degeneration adjacent to cells that die rapidly. DL technology,  
with its ability to record and analyze large numbers of indi-
vidual cells and correlate cell biology to cell fate, can help us  
unravel the basis of this heterogeneity.

Furthermore, the development of HD i-neurons grown in 
three-dimensional organoids can provide new approaches to 
study the degeneration of HD i-neurons under conditions that  
better maintain their cytoarchitecture than two-dimensional  
monolayers can. These technologies can also begin to provide  
the basis for studying dysfunction of neuronal circuitry across 
distances in the brain, such as cortical-striatal-thalamic circuits,  
that may contribute to the degeneration of specific cell  
populations in the brain.
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