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Abstract

Background: Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic
occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow.
This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and
structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We
therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH).

Methods and Findings:Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated
peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h
hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a
venous return. C1 INH treated rats showed significantly less edema in muscle (P,0.001) and lung and improved muscle
viability (P,0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P,0.05)
and VE-cadherin (P,0.01), reduced apoptosis (P,0.001) and fibrin deposition (P,0.01) and decreased plasma levels of pro-
inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused
muscle.

Conclusions: C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle
viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade.
APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together,
C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex
and prolonged surgical interventions requiring tourniquet application.
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Introduction

Lower extremity ischemia/reperfusion injury (IRI), which may

result from thrombotic occlusion, embolism, trauma or surgical

intervention through tourniquet application and subsequent

restoration of blood flow, is of essential clinical importance. The

deprivation of blood and oxygen, termed as ischemia, leads to

time-dependent molecular and structural changes of the affected

tissue. Complex inflammatory cascades are subsequently activated

when blood flow is restored, leading to ischemia/reperfusion

injury (IRI). The hypoxic state of ischemia leads to expression of

non-muscle myosin heavy chain type II or annexin IV on the cell

surface, which function as neo-epitopes for natural antibodies

[1],[2]. This immune complex formation already occurs prior to

tourniquet release and paves the way for activation of the

complement system. Natural antibodies can activate complement

via C1q and the classical pathway or via the lectin pathway by

binding of mannose-binding lectin (MBL) to carbohydrate

structures, particularly on IgM, [3],[4] generating potent ana-

phylatoxins and ultimately resulting in the formation of a pore and

lysis of the cell. The roles of natural antibodies and the

complement system in IRI are well established, but the coagula-

tion- and the kinin systems have been shown to be of equal

importance [5]. The coagulation system plays a pivotal role in IRI

in the intestine, brain, lung and heart [6],[7], [8], [9]. The fact that

the complement system may be activated by thrombin, a protease
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of the coagulation system, highlights the complexity of the

inflammatory response in IRI [10]. In a homeostatic situation,

the inner lining of blood vessels, the endothelium, maintains an

anti-coagulatory and anti-inflammatory environment [11]. This is,

amongst others, upheld by the protective layer of the glycocalyx, a

negatively charged, tight meshwork of proteoglycans, including

heparan sulfate and other glycosaminoglycans and associated

plasma proteins. However, during ischemia the glycocalyx may be

partially lost [12], [13]. This shedding renders the anti-inflamma-

tory and anti-coagulatory state a pro-inflammatory and pro-

coagulatory one and facilitates interaction of leukocytes with the

endothelium [14].

The activation of this multifaceted network of cascades in IRI

manifests itself in edema formation and muscle necrosis. IRI of the

extremities is often accompanied by remote organ damage,

affecting organs like the liver, lung, kidney or intestine and may

lead to the development of multiple organ dysfunction syndrome

[15]. In particular, remote lung damage, which results from the

systemic inflammatory response, is a common issue [16]. It has

been shown that the expression of pro-inflammatory cytokines is

required for remote lung injury, resulting in increased vascular

permeability [17].

APT070, also known as Mirococept, is a highly effective

complement inhibitor. It is a modified fragment of the comple-

ment receptor 1 (CR1) and has binding sites for C3b and also C4b

[18]. APT070 consists of the first 3 consensus domains of the

human CR1 and a membrane-targeted synthetic peptide, which

mediates the binding to phospholipids on the cell surface and

therefore protects the cell against complement activation [19].

Beneficial effects of APT070 were shown in our lab in an in vivo

study of myocardial infarction by using a closed-chest pig model

[20].

C1 esterase inhibitor (C1 INH) is one of the main regulators of

the complement system, as it interacts with all three pathways and

additionally plays a pivotal role in the coagulation- and kinin

systems [21]. Patients deficient in C1 INH suffer from the

potentially life-threatening disorder hereditary angioedema (HAE),

emphasizing the importance of C1 INH in the healthy organism

[22]. HAE patients suffer from edema formation in the upper

airways and gastrointestinal tract, [23] mediated by bradykinin, a

member of the kinin system that enhances capillary permeability.

As C1 INH does not only act on the complement- but also on the

coagulation- and the kinin systems, it represents a promising

therapeutic option to treat IRI. Positive effects were already shown

in IRI of the heart, brain, liver and muscle [24], [25], [26,27]. We

therefore hypothesized, that C1 INH treatment in peripheral IRI

would reduce local edema formation as well as lung damage. The

effect of exogenous human plasma-derived C1 INH on tourniquet-

induced IRI was investigated in a rat hind limb model and the

underlying mechanisms of protection were analyzed.

Materials and Methods

Animals and housing
All experiments were conducted in accordance with the terms of

the Swiss animal protection law and were approved by the animal

experimentation committee of the cantonal veterinary service

(Canton of Bern, Switzerland) [28]. Male Wistar rats (wild type,

bred at the central animal facility, University of Bern) were kept in

groups of three in a clear 1500 cm2 Euro-standard Type IV S cage

(Tecniplast, Buguggiate, Italy) under standard housing conditions

with food and water ad libitum. Cages were individually ventilated

at 2062uC and 45–65% relative humidity with a circadian

rhythm of 12/12 h. During the light cycle animals were exposed

to an intensity of 200 lux. For the experiments, rats weighing

between 250 and 350 g were used.

Reagents
C1 esterase inhibitor (BerinertH) as well as the vehicle (10 mg/

ml glycine, 2.9 mg/ml sodium citrate, 8.5 mg/ml sodium

chloride, pH 7.0) were provided by CSL Behring (CSL Behring

GmbH, Marburg, Germany). APT070 was provided by King’s

College (London, UK) and consists of the first three short

consensus repeats of human complement receptor 1. APT070 is

modified with a membrane-targeting amphiphilic peptide based

on the naturally occurring membrane-bound myristoyl-electro-

static switch peptide [18]. APT070 was provided in a solution of

phosphate-buffered saline (PBS, pH 7.4) containing mannitol

(50 mg/ml) and arginine (17.4 mg/ml).

Experimental groups
Rats were divided into five groups. The experimental group

(n= 6, C1 INH group) received a dose of 50 IU/kg (50 IU/ml) of

human C1 INH. Control group 1 (n= 8, NaCl group) received 1

ml/kg of 0.9% sodium chloride. Control group 2 (n = 7, vehicle

group) received 1 ml/kg C1 INH vehicle prior to ischemia.

Control group 3 (n = 4, APT070 group) received 9 mg/kg (9 mg/

ml) of APT070 before induction of ischemia and control group 4

(n= 4, normal) underwent no intervention.

Anesthesia and analgesia
Anesthesia was induced with 2.5% isoflurane in oxygen in a box

and later maintained by inhalation of 1.5% isoflurane on a nose

mask. Analgesia was provided by 0.05 mg/kg of buprenorphine

(Temgesic, Reckitt Benckiser, Switzerland AG) injected subcuta-

neously 30 minutes prior to surgical intervention. The total

duration of anesthesia was approximately 6 h after which the rats

were allowed to wake up. To provide adequate analgesia for the

24 h reperfusion period buprenorphine injection was repeated

when animals were completely awake. After completion of 24 h

reperfusion, rats were anesthetized again as described above and

sacrificed by exsanguination during organ removal.

Surgical procedure
For assessment of limb perfusion the fur was completely

removed from both hind limbs with an electric shaver. The rats

were kept on a heating pad to maintain the body temperature at

37uC. Approximately 30 minutes after induction of anesthesia, the

femoral artery and vein were exposed via a groin incision and a

tourniquet (standardized weight of 450 g) was placed underneath

the femoral vessels to block collateral circulation [29]. The femoral

artery was then occluded for 3 h with two microvascular clamps

(B1-V, S&T, Neuhausen, Switzerland). Rat hind limbs were not

exsanguinated, but a comparable state was achieved by allowing

venous return during the entire period of ischemia in order to

prevent venous congestion and additional injury through micro-

circulatory impairment, which would not represent the clinical

situation. After 3 h of ischemia the limb was reperfused for 24 h

during which the rats were allowed to wake up with appropriate

analgesia. At the end of the experiments, tissue samples of both the

ischemic as well as the contralateral gastrocnemic muscles as well

as the lungs were taken for subsequent analyses.

Assessment of edema formation
For assessment of edema formation two samples of the

gastrocnemic muscle from both legs were taken and immediately

weighed to obtain the wet weight. The muscle samples were then
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dried for 24 h at 80uC after which a constant dry weight was

achieved. Subsequently, the wet/dry ratio was calculated.

Analysis of muscle viability
IRI severely affects muscle viability, which may ultimately result

in muscle necrosis. In order to investigate the influence of C1 INH

on muscle viability the MTT (3-(4,5-dimethylthiazol-2-yl)22,5-

diphenyltetrazolium bromide, Sigma, St. Louis, USA) assay was

performed. MTT is a yellow-colored tetrazolium salt, which is

converted to purple colored formazan crystals by metabolically

active cells. Muscle samples from the gastrocnemic muscle were

taken, washed in PBS, blotted dry and incubated in 0.1 mg MTT/

ml PBS in a total volume of 3 ml at 37uC, rotating in the dark for

2 h. Thereafter, muscle samples were blotted dry and incubated in

100% isopropanol at 37uC, rotating in the dark overnight to elute

the formazan crystals from the tissue for measurement of the

optical density (OD). 200 ml of thus obtained supernatant was

measured in a microplate (Nunc, 96 well, maxisorp, transparent,

Roskilde, Denmark) with a microplate reader at 560 nm (Ref.

690 nm; Infinite M1000 spectrophotometer, Tecan, Männedorf,

Switzerland). After drying the muscle samples at 80uC for

24 hours the OD per mg dry weight was calculated and compared

with values of contralateral control legs.

Histological assessment of damage
For assessment of hemorrhage, total myocyte damage as well as

infiltration of neutrophil granulocytes, tissue samples from the

gastrocnemic muscle were fixed in 4% formalin for 24–72 h.

Thereafter, all samples were embedded in paraffin, cut into 3 mm
thick sections and stained with hematoxylin and eosin.

Immunofluorescence analyses of tissue samples
Immunofluorescence staining using specific antibodies was used

to quantify the deposition of IgM (3020-08; Southern Biotech, AL,

USA) and IgG (3030-08; Southern Biotech), C1q (A0136, Dako,

Baar, Switzerland), MBL (clone 14C3 kindly provided from Prof.

G. Stahl, Boston, USA), C4b/c (LSB 4228, LifeSpan BioSciences

Inc., Seattle, WA, USA), C3b/c (A0062, Dako) and factor B

(341272, Calbiochem, Darmstadt, Germany). Furthermore, we

analyzed fibrin deposition (F0111; Dako, Baar, Switzerland),

expression of heparan sulfate (HS; 370255, Amsbio, Abingdon,

UK), bradykinin receptor b1 (ABR-011, Alomone Labs, Jerusa-

lem, Israel), bradykinin receptor b2 (ABR-012, Alomone Labs) as

well as VE-cadherin (sc-6458, Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA, USA). Tissue samples from the gastrocnemic

muscle of both legs and the lung were taken, washed in PBS,

blotted dry and embedded in OCT matrix (Tissue-Tek, Sakura

Finetek Europe B.V., Leiden, The Netherlands) on dry ice. The

samples were immediately stored at220uC until cryosections were

cut. Sections were fixed in acetone and rehydrated in Tris-buffered

saline (TBS). Primary antibodies were incubated overnight at 4uC
and secondary antibodies were incubated for 1 h at room

temperature (RT). Subsequently, slides were mounted and cover-

slipped. Pictures were taken with a fluorescent microscope (Leica

DMI 4000B, Leica Microsystems Schweiz AG, Heerbrugg,

Switzerland) and analyzed using Image J (National Institutes of

Health, Bethesda, MD, USA) and GraphPad Prism 5 software

(GraphPad Software, Inc., San Diego, CA, USA). Endothelial

expression of VE-cadherin as well as bradykinin receptor b1 and

b2 was analyzed in lung tissue. For this analysis, the inner lining of

the vessels was selected by hand, the surface area calculated and

the intensity of immunofluorescence measured. Area under the

curve values were obtained and divided by the surface area to

achieve a final value in intensity per square pixel.

Assessment of apoptosis using TUNEL
For assessment of apoptosis in muscle and lung tissue a TdT-

mediated dUTP nick end labeling (TUNEL) assay (in situ Cell

Death Detection Kit, TMR red, Roche, Mannheim, Germany)

was used. In brief, cryosections of muscle and lung tissue were

fixed in acetone for 5 minutes at RT, washed and permeabilized

with 0.1% Triton-X-100 on ice. Sections were incubated with

TUNEL reaction mixture for 1 h at 37uC in the dark. After a

washing step sections were mounted, coverslipped and analyzed

with a fluorescent microscope.

Analysis of infiltration of myeloperoxidase positive cells
in lung tissue
For quantitative analysis of infiltration of myeloperoxidase

(MPO) positive cells in lung tissue, embedded and frozen tissue

was cut into 5 mm thick sections, fixed in acetone and hydrated in

TBS. Tissue sections were stained with an antibody for MPO

(A0398, Dako) as well as DAPI (49,6-diamidino-2-phenylindole) to

stain nuclei. Primary antibody was incubated overnight at 4uC and

the secondary antibody (C2306, Sigma-Aldrich Chemie GmbH,

Buchs, Switzerland) as well as DAPI were incubated for 1 h at RT.

MPO positive cells were counted and divided by total number of

cells.

Cytokine/chemokine/growth factor analysis using
multiplex array
A multiplex immunoassay consisting of magnetic beads

conjugated with a capture antibody specific for a target protein

was used to detect an array of cytokines, chemokines, and growth

factors (Bio-Plex Pro Rat Cytokine Group I panel, Bio-Rad,

Hercules, CA, USA). The assay was performed according to the

manufacturer’s instructions. Briefly, plasma was diluted 1:3 and

incubated with antibody-coupled magnetic beads. A washing step

was followed by incubation with biotinylated detection antibody.

After streptavidin-phycoerythrin incubation cytokine/chemokine/

growth factor concentrations were measured. Recombinant

proteins were used to establish standard curves. Analyte concen-

trations were calculated using the Bio-Plex Manager Software.

Statistical analysis
Data are expressed as mean 6 standard deviation (SD).

Statistical significance was determined by one-way analysis of

variance with Dunnett’s post-test against NaCl control, using

GraphPad Prism 5 software. P values of ,0.05 were considered

statistically significant. Determination of n-numbers per group was

performed without formal power analysis, based on preliminary

experiments with C1 INH.

Results

Effect of C1 INH treatment on edema formation and
muscle viability as well as histological assessment of
muscle damage
Edema formation in tissue samples was analyzed as wet/dry

ratio. Edema was indicated by an increase in wet/dry ratio. C1

INH treatment (ratio 4.660.18, Figure 1B right) led to a

significant (P,0.001) reduction of fluid accumulation in the

gastrocnemic muscle in comparison to NaCl control (5.660.71,

Figure 1B left). When rats were treated with the complement

inhibitor APT070 (5.560.79) no attenuation of edema was found

(Figure 1A). Furthermore, C1 INH treated rats also showed a

significant (P,0.001) reduction in lung edema (4.760.11) as

compared to NaCl controls (5.160.15), whereas APT070 treat-
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ment (5.060.10) did not lead to reduction of edema formation

(Figure 1C). Analysis of muscle viability using the MTT assay

showed that C1 INH treatment (viability 93615.3%) led to a

significant increase (P,0.001) of viability in comparison to NaCl

control (6369.4%). Again, this was not the case for APT070

treatment (6962.0%) (Figure 1D). Histologically, hemorrhage,

edema formation and myocyte destruction were apparent in NaCl-

, vehicle- and APT070 treated rats, whereas C1 INH treated rats

showed only minimal tissue damage (Figure 1E–H).

Deposition of IgM and IgG in reperfused muscle as well
as in lung tissue
Immunofluorescence stainings were performed to investigate the

impact of C1 INH treatment on antibody deposition in muscle and

lung tissue. As compared to normal rats no IgG deposits (Figure 2A)

or IgM deposits (Figure 2G) were found in contralateral legs. In the

reperfused legs high antibody deposition was found for NaCl and

vehicle control groups, whereas C1 INH (P,0.01) as well as

APT070 (P,0.001) treatment significantly reduced antibody

deposition in comparison to NaCl. Representative immunofluores-

cence images showed an intense staining for IgG (Figure 2B) and

IgM (Figure 2H) in reperfused muscles of NaCl treated rats. For C1

INH treated rats reduced deposition was detected (IgG, Figure 2C;

IgM, Figure 2I). In lung tissue no differences between groups could

be detected (Figure 2D–F and J–L).

Assessment of deposition of C3b/c and factor B in muscle
and lung tissue
Deposition of factor C3, a central component of the comple-

ment system, was analyzed using immunofluorescence staining for

the C3b/c. High deposition of C3b/c was found in the

contralateral as well as in the reperfused muscle tissue and the

lung of NaCl as well as vehicle treated rats. C3b/c deposition was

significantly reduced by APT070 treatment in both legs (P,0.01)

and in the lung (P,0.001), and by C1 INH in the contralateral leg

only (P,0.01), but not in the reperfused leg or the lung (Figure 3A–

F). Complement factor B, which is specific for alternative pathway

activation, was highly deposited in the reperfused and in the

contralateral leg as well as in lung of the NaCl control and vehicle

groups. C1 INH (P,0.01) as well as APT070 (P,0.001) treatment

significantly reduced deposition of factor B in the contralateral leg

but not in the lung and reperfused leg (Figure 3G–L).

Assessment of deposition of C1q, MBL and C4b/c in
muscle tissue
To assess deposition of classical- and lectin-pathway specific

complement components, stainings for C1q (classical pathway,

Figure 4A–F), MBL (lectin pathway, Figure 4G–I) and C4b/c

(classical and lectin pathways, Figure 4J–L) were performed. An

increased C1q deposition was found for NaCl controls in the

gastrocnemic muscle of both legs compared to normal rats

(Figure 4A). Enhanced C1q deposition was significantly reduced in

the reperfused leg by APT070 but not by C1 INH treatment,

whereas no significant differences between groups were detected in

the contralateral leg. No inter-group differences were found for

deposition of MBL (Figure 4G) as well as C4b/c (Figure 4J) in both

reperfused and contralateral legs.

Impact of C1 INH treatment on fibrin deposition as well
as heparan sulfate expression in muscle and lung tissue
To analyze the involvement of the coagulation system in

peripheral IRI and distant lung damage, muscle as well as lung

tissue was stained for fibrin deposition (Figure 5A–F). Fibrin

deposits were found in the reperfused muscle in the NaCl, vehicle

and APT070 treated groups and were significantly reduced by C1

INH (P,0.05) (Figure 5A–C). C1 INH also reduced fibrin

deposition in the lung tissue as compared to NaCl control

(P,0.01) (Figure 5D–F). The glycocalyx component heparan

sulfate (HS) was detected by immunofluorescence staining

(Figure 5G–L). Reduced HS expression was found in the

contralateral and reperfused muscle of NaCl controls. C1 INH-

treated rats showed significantly preserved expression of HS in

tissue of the contralateral muscle as compared to the NaCl control

group (P,0.01). However, in the reperfused muscle no differences

could be detected between the C1 INH and NaCl groups

(Figure 5G–I). APT070 treated rats showed significantly preserved

expression of HS in the reperfused muscle in comparison to NaCl

treated rats (P,0.05). No inter-group differences were found for

HS expression in lung tissue (Figure 5J–L).

Effect of C1 INH treatment on apoptosis in muscle and
lung tissue
Apoptosis was measured using the TUNEL assay. The ratio of

TUNEL-positive cells to total cell number was calculated.

Whereas in the contralateral muscle no apoptotic cells were

detected, cells in the reperfused muscle of the NaCl (0.7860.24),

vehicle (0.9660.06) and APT070 (0.7660.29) treated groups

showed a high degree of apoptosis. C1 INH (0.0860.18), but not

APT070, treatment led to a significant reduction of apoptotic cells

(P,0.001) in the reperfused muscle (Figure 6A–G). Similar results

were found for lung tissue, where C1 INH treated rats (0.2460.34)

also showed significantly less apoptosis as compared to the NaCl

(0.9360.05), vehicle (0.7960.18) and APT070 (0.9060.10)

(Figure 6H–N).

Effect of C1 INH treatment on expression of bradykinin
receptor b1 as well as b2 in lung tissue
Lung sections were stained for bradykinin receptor b1 (Figure 7

A–D) as well as b2 (Figure 7E–H). Specificity of bradykinin

receptor staining was verified by competitive inhibition with the

respective b1- or b2-peptides (data not shown). In contrast to

APT070, C1 INH inhibited up-regulation of bradykinin receptor

b1 in lung tissue as compared to control groups (P,0.05 vs. NaCl).

No inter-group differences were found for receptor bradykinin

receptor b2 expression.

Analysis of infiltration of myeloperoxidase positive cells
and expression of VE-cadherin in lung tissue
Infiltration of pro-inflammatory cells such as neutrophil

granulocytes was assessed by immunofluorescence staining for

myeloperoxidase. No significant differences between NaCl con-

trols and the other treatment groups could be observed. However,

C1 INH treated rats showed a trend for reduction of MPO-

positive cells (Figure 8A, B). Analysis of the expression of VE-

cadherin, a protein important for the endothelial barrier function,

in lung tissue showed an up-regulation in the NaCl control group

as compared to normal rats. Up-regulation of VE-cadherin was

prevented in C1 INH treated rats (P,0.01) (Figure 8C–F).

Analysis of plasma levels of cytokines, chemokines and
growth factors after 24 h reperfusion
Multiplex suspension array technology was used to quantify

levels of different cytokines, chemokines and growth factors in

EDTA-plasma taken after 24 h of reperfusion. Analysis revealed

that C1 INH treatment significantly reduced levels of Interleukins

(IL) IL-1a, IL-7, IL-17 and IL-18 as well as IFN-c, MIP-1a
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(macrophage inflammatory protein, CCL3), MIP-3a (CCL20) and

TNF-a (P,0.05). EPO (erythropoietin), CXCL1, RANTES

(regulated and normal T cell expressed and secreted, CCl5),

VEGF (vascular endothelial growth factor), IL-4, IL-5, IL-10,

MCP-1 (monocyte chemotactic protein 1) and M-CSF (macro-

phage colony-stimulating factor) were not affected. Data are

expressed as means 6 SD. IL-1beta, IL-2, IL-6, IL12p70, IL-13,

G-CSF, GM-CSF were below detection level and are not listed

(Table 1).

Discussion

The present study aimed to investigate the effects of C1 INH

treatment on peripheral IRI and related remote lung damage.

Originally, the application of C1 INH was described in the

potentially life-threatening disease hereditary angioedema (HAE)

[30]. Lower extremity IRI is associated with edema formation in

the affected tissue, which is multifactorial and results amongst

others from increased vascular permeability [31]. It is also known

that limb ischemia may cause distant lung damage, including

pulmonary pathology with fibrin-rich microthrombus formation,

vascular congestion and pulmonary edema [32]. In the present

study we show that C1 INH protected from peripheral IRI by

reduction of skeletal muscle edema and maintenance of muscle cell

viability. In addition, lung edema formation was prevented by C1

INH treatment. Edema formation in muscle as well as lung tissue

required reperfusion. Rats subjected to ischemia only did not show

gastrocnemic muscle or lung edema (histologically assessed, data

not shown), suggesting that local, humoral or cellular components

within the reperfused limb were responsible for mediating distant

lung damage [15].

In order to investigate the mechanisms of edema reduction and

improvement ofmuscle viability, we analyzed the involvement of the

complement, coagulation and kinin systems since all three systems

play important roles in IRI pathophysiology [9,20,33]. First, the

effect of C1 INHon binding of natural IgG as well as IgM antibodies

was determined by immunofluorescence. Indeed, as compared to

normal control rats, no significant increase of antibody deposition

was found in contralateral muscle tissue as well as in lung. In

reperfusedmuscle we detected high deposition of IgG as well as IgM

in NaCl and vehicle treated groups, which was significantly reduced

by treatment with C1 INH and APT070. Both are inhibitors of the

complement system, but their evident direct effect on natural

antibody binding has not been described so far.

In order to assess which complement pathways were mainly

affected by C1 INH treatment, deposition of C3b/c (all pathways),

factor B (alternative pathway), MBL (lectin pathway), C1q

(classical pathway) as well as C4b/c (classical and lectin pathway)

were investigated. Previous studies which analyzed the effect of C1

INH treatment on peripheral IRI did not investigate deposition of

complement components at all or only as hemolytic C3 and C4

titers [34]. In our study, we showed that deposition of complement

components C4b/c and MBL was not increased by peripheral

IRI. However, an increased binding of C1q, C3b/c and factor B

was found in the contralateral as well as in the reperfused leg, but

was not significantly reduced by C1 INH treatment in the

reperfused leg. Also in lung tissue C1 INH showed no significant

effects on C3b/c and factor B deposition. In contrast, the specific

complement inhibitor APT070 significantly reduced deposition of

C1q and C3b/c in the reperfused and contralateral legs as well as

C3b/c in the lung, while not preventing edema formation or

increasing tissue viability. This finding was unexpected as

beneficial effects of APT070 were shown earlier for remote and

systemic injury following intestinal ischemia and reperfusion in rats

and myocardial reperfusion injury in pigs [35],[20]. That APT070

indeed prevented complement activation was also confirmed in

vitro by CH50 test as well as cell ELISA and cytotoxicity assay

with porcine cells and human serum (data not shown). Based on

the above mentioned data we conclude that the beneficial effects of

C1 INH treatment were not primarily due to inhibition of the

complement system.

Systemic circulation of activated complement components has

been shown in models of IRI and deposition of such components

on the endothelium of distant organs and tissues may therefore

play a role [36]. Another possibility would be that locally produced

bradykinin may lead to distant edema formation in the lung once

reperfusion starts. In our study, C1 INH treatment led to reduced

fibrin deposition in muscle as well as lung tissue. This finding is in

line with C1 INH being the main inhibitor of coagulation factors

XIa as well as XIIa [21]. Also in a mouse model of stroke it was

recently demonstrated that C1 INH treatment reduced intracere-

bral fibrin formation [37]. An important mechanism for degra-

dation of fibrin into soluble fibrin degradation products is the

fibrinolytic system. It was reported that the fibrinolytic pathway

can be initiated via direct plasminogen activation through tissue

plasminogen activator (tPA), kallikrein (KK) or factor XII, which

results in the generation of plasmin [38,39]. However, as C1 INH

inhibits plasminogen activators like FXII, KK as well as to a lesser

extent tPA and plasmin itself, increased fibrinolysis will probably

not be the main reason for reduced fibrin deposition [40,41].

Rather, C1 INH dependent inhibition of the activation of the

coagulation system may be responsible for the observed significant

reduction of fibrin deposits.

Furthermore, as a marker of the integrity of the glycocalyx, we

analyzed expression of HS in muscle as well as lung tissue. In

muscle, shedding of HS was detected as decreased expression in

the NaCl and the vehicle group in the reperfused as well as the

contralateral leg, but we did not detect any effect of peripheral IRI

on HS expression in the lung. All treatment groups, including

vehicle, showed intermediate HS expression patterns between

NaCl controls (low) and normal rat tissue [42]. Among these,

statistical significance for preservation of HS expression was

reached for C1 INH in the contralateral and for APT070 in the

reperfused leg.

Next to activation of the fibrinolytic system, factor XIIa initiates

the intrinsic pathway of coagulation via FXI activation and also

the kinin cascade by cleaving plasma prekallikrein, leading to the

formation of bradykinin. Active bradykinin binds to its b2 receptor

on the surface of endothelial cells, whereas des-arg-9-bradykinin

acts on b1 receptors, both causing vasodilation and increased

Figure 1. Effect of C1 INH on edema formation, muscle viability and histological assessment of muscle damage. (A) Analysis of edema
in the gastrocnemic muscle of both the contralateral- and reperfused legs. NaCl treated rats were compared with C1 INH, APT070 as well as vehicle
treated and normal rats. C1 INH treatment reduced muscle wet weight/dry ratio for C1 INH as compared to NaCl controls. (B) Representative images
of edema formation after 24 h reperfusion for treatment with NaCl (left) and C1 INH (right). (C) Edema formation in the lung. C1 INH treatment led to
a reduced lung wet/dry weight ratio as compared to NaCl controls. (D) Viability of the gastrocnemic muscle as assessed by MTT. C1 INH treatment
improved muscle viability as compared with NaCl controls. (E–H) Hematoxylin/eosin stained histological samples of reperfused gastrocnemic muscle.
Representative images are shown for NaCl (E) and vehicle (F) controls as well as C1 INH (G) and APT070 (H) treatment. One-way ANOVA followed by
Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate mean 6 SD. *P#0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0072059.g001
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vascular permeability [43]. In contrast to b2 receptors, b1

receptors are not constitutively expressed but are induced by

pro-inflammatory cytokines. We found normal levels of the

constitutively expressed receptor b2 in all groups. However,

compared with normal rats, bradykinin b1 receptor expression was

increased in NaCl controls and this up-regulation was prevented

by treatment with C1 INH but not by APT070. This finding

corresponds with the reduced edema formation in lung tissue

found in C1 INH but not in APT070 treated or control rats and

with an earlier report showing that blocking of the b1 receptor, but

Figure 2. Analysis of deposition of IgM and IgG in muscle as well as in lung tissue. (A, D, G and J) Quantitative analysis of
immunofluorescence stainings. (A) Detection of IgG in muscle and (D) in lung tissue. (G) Detection of IgM in muscle and (J) in lung tissue. (B and C)
Representative immunofluorescence images of IgG deposition in muscle and (E and F) in lung tissue of either an NaCl or C1 INH treated rat. (H and I)
Representative immunofluorescence images of IgM deposition in muscle and (K and L) in lung tissue of either an NaCl or C1 INH treated rat. IgM as
well as IgG detectable in the red channel (CY3), counterstaining with DAPI (blue channel). One-way ANOVA followed by Dunnett’s post hoc test for
significance vs. NaCl controls was used. Error bars indicate mean 6 SD. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0072059.g002
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Figure 3. Deposition of C3b/c and factor B in muscle and lung tissue. (A, D, G and J) Quantification data of C3b/c and factor B deposition in
muscle and lung tissue, respectively. (B and C) Representative immunofluorescence images of C3b/c deposition in muscle tissue. (E and F)
Representative immunofluorescence images of C3b/c deposition in lung tissue. Counterstaining with DAPI (blue channel, only shown for muscle
tissue), C3b/c visible in the red channel (CY3). (H and I) Representative immunofluorescence images of factor B deposition in muscle tissue. (K and L)
Representative immunofluorescence images of factor B deposition in lung tissue. Counterstaining with DAPI (blue channel), factor B visible in the
green channel (Alexa 488). One-way ANOVA followed by Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate mean
6 SD. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0072059.g003
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not b2 receptor, diminished brain edema formation in mice [33].

Similar results were also shown for lung as well as intestinal IRI by

using bradykinin receptor antagonists to prevent or attenuate IRI

[44,45]. However, reduced expression of b1 receptors could also

be attributed to a reduction of pro-inflammatory cytokine levels

Figure 4. Deposition of C1q, MBL and C4b/c in muscle tissue. (A, G and J) Quantification data of C1q, MBL and C4b/c deposition in muscle
tissue. (B–F) Representative immunofluorescence images of C1q deposition depending on treatment. (H and I) Representative immunofluorescence
images of MBL deposition in muscle tissue. Counterstaining with DAPI (blue channel), C1q or MBL visible in the red channel (CY3). (K and L)
Representative immunofluorescence images of C4b/c in muscle tissue, C4b/c visible in the green channel (Alexa 488). One-way ANOVA followed by
Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate mean 6 SD. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0072059.g004
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Figure 5. Fibrin deposition as well as heparan sulfate (HS) expression in muscle and lung tissue. (A, D, G and J) Quantification data from
immunofluorescence stainings. (B and C) Representative immunofluorescence images for fibrin deposition. Counterstaining with DAPI (blue channel),
fibrin visible in the green channel (FITC). E and F, Representative immunofluorescence images for fibrin deposition in lung tissue. (H and I; K and L)
Representative immunofluorescence images of HS expression in muscle and lung, respectively. HS visible in the green channel (FITC). One-way
ANOVA followed by Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate mean 6 SD. *P,0.05; **P,0.01;
***P,0.001.
doi:10.1371/journal.pone.0072059.g005
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via C1 INH, as bradykinin receptor expression can be induced

through pro-inflammatory cytokine release.

Pulmonary damage secondary to local IRI can result from

embolism but also from circulatory distribution of inflammatory

mediators locally produced in the affected tissue [46]. There is no

evidence, that exclusively bradykinin is responsible for edema

formation in lung in the present model. It was reported that locally

produced humoral mediators can cause leukocyte accumulation in

Figure 6. Frequency of apoptotic cells in muscle and lung tissue. (A and H) Quantitative analysis of TUNEL staining in muscle and lung tissue,
respectively. (B–G) and (I–N) Representative immunofluorescence images of TUNEL staining of reperfused muscle and lung, respectively. TUNEL-
positive cells are shown in red (B, D, F, I, K, M), corresponding DAPI staining of all nuclei in blue (C, E, G, J, L, N). One-way ANOVA followed by
Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate mean 6 SD. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0072059.g006
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lung tissue, which results in pulmonary damage by clogging of the

capillaries and release of lysosomal enzymes by leukocytes [15,47].

Furthermore, an important role in edema formation is attributed

to leukotriene B4 and other inflammatory mediators, like serotonin

or histamine [48,49].

Two studies reported that C1 INH, via expression of sialyl Lewisx

tetrasaccharides and binding to E- and P-selectins, prevents

Figure 7. Endothelial expression of bradykinin receptor b1 as well as b2 in lung tissue. (A and E) Quantification data from
immunofluorescence stainings. (B–D) Representative immunofluorescence images of bradykinin receptor b1 as well as (F–H) bradykinin receptor b2
staining in vessels of lung tissue. One-way ANOVA followed by Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate
mean 6 SD. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0072059.g007
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adhesion and migration of leukocytes to the endothelium in vitro as

well as in vivo [50,51]. We analyzed infiltration of MPO-positive

cells in lung tissue and indeed a trend, albeit not significant, was

found for a reduction of MPO positive cells by C1 INH.

We also analyzed the expression of VE-cadherin, which is a

component of adherens junctions of endothelial cells and

contributes to their barrier function [52]. In vessels of lung tissue

we found elevated levels of VE-cadherin in NaCl, vehicle as well as

APT070 treated rats, whereas C1 INH treated rats showed VE-

cadherin expression levels similar to normal rats. Currently, not

much is known about the mechanisms by which VE-cadherin-

mediated cell-cell junctions are regulated. It could be speculated

that in the present study the increase of VE-cadherin expression

could be due to repair mechanisms, whereas C1 INH maintains

endothelial cell integrity and avoids activation of these mecha-

nisms [53]. However, a more detailed analysis of the mechanism of

Figure 8. Infiltration of myeloperoxidase positive cells in lung tissue as well as VE-cadherin expression. (A) Quantitative evaluation and
(B) representative immunofluorescence image of MPO expression in lung tissue. The blue channel shows DAPI staining, the red channel (CY3) shows
MPO positive cells. (C) Quantification data from immunofluorescence stainings of VE-cadherin. (D–F) Representative images of VE-cadherin staining.
One-way ANOVA followed by Dunnett’s post hoc test for significance vs. NaCl controls was used. Error bars indicate mean 6 SD. *P,0.05; **P,0.01;
***P,0.001.
doi:10.1371/journal.pone.0072059.g008
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VE-cadherin regulation in IRI would be necessary to support this

hypothesis, which is beyond the scope of the present study.

In IRI apoptosis plays an important pathophysiological role and

is an event of reperfusion, as it requires energy and is associated

with cell shrinkage and phagocytosis without loss of membrane

integrity [54]. In our study, C1 INH treated rats showed

significantly less apoptosis as compared to the NaCl control

group. These data confirm earlier reports describing that C1 INH

improves the outcome of myocardial IRI via anti-apoptotic

activity independent of its serine protease inhibitory activity by

normalization of ratio of the Bcl-2/Bax expression [55]. Further-

more, it was shown that C1 INH reduced infarction size in a

mouse model of myocardial infarction via inhibition of leukocyte

transmigration into the ischemic tissue, which is also not mediated

through its protease activity [56].

The systemic inflammatory response, which is initiated in IRI is

characterized by the release of pro-inflammatory cytokines, like

TNF-a [57]. Our results demonstrated that C1 INH treatment led

to significantly reduced levels of several pro-inflammatory

cytokines. In a model of myocardial IRI it was shown that IL-

17A plays a pathogenic role by inducing cardiomyocyte apoptosis

and neutrophil infiltration [58]. We found reduced plasma levels

of IL-17A in C1 INH treated rats, which fits with the observed

reduction of apoptosis in muscle and lung tissue by C1 INH

treatment. Also MIP-1a plays an important role in mediating an

acute inflammatory response – another chemokine that was

significantly reduced in C1 INH treated rats in our study [59].

In 2004, Inderbitzin and colleagues presented a study of

transgenic mice overexpressing human C1 INH (plasma levels of

1–2 mg/ml), which were used for a lower torso IRI model. They

found that muscle as well as lung tissue was protected from

endothelial cell damage by measuring the amount of extravasation

of 125I-labelled albumin, reflecting a direct functional measurement

of endothelial integrity [53]. We showed here for the first time in

non-transgenic animals that C1 INH at a low, clinically applicable

dose of 50 IU/kg significantly reduced peripheral IRI inmuscle and,

in particular, that also lung injury was significantly reduced.

In conclusion, C1 INH is a multifaceted protein, which acts on

multiple inflammatory cascades relevant in IRI pathology. Via

inhibition of kallikrein, FXIa, FXIIa as well as the complement

system, it regulates IRI associated inflammatory and thrombotic

processes. Our data support the regulatory effect of C1 INH on

the coagulation- and the kinin system in IRI. A very potent

inhibitory effect of human C1 INH on edema formation and

apoptosis in skeletal muscle as well as in lung was observed. In

addition, the up-regulation of bradykinin receptor b1 was

prevented by C1 INH. These results may be a hint that C1

INH plays an important role in inhibition of the kinin system in

this animal model of hind limb IRI. Furthermore, C1 INH also

prevented fibrin deposition. Analysis of the effect of C1 INH on

the complement cascades revealed that C1 INH reduced

peripheral IRI not primarily by inhibition of the complement

system. This conclusion is supported by APT070 data, which

showed a significant reduction of C1q and C3b/c in the

reperfused leg, but did not reduce edema formation in muscle

and lung tissue. Furthermore, C1 INH reduced plasma levels of

IFN-c, IL-1a, IL-7, IL-17A, IL-18, MIP-1a, MIP-3a and TNF-a.
All in all, C1 INH may provide a promising therapy to reduce

peripheral IRI as well as distant lung injury in complicated and

prolonged surgical interventions requiring tourniquet application.
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