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Prefrontal cortical plasticity during learning of
cognitive tasks
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Training in working memory tasks is associated with lasting changes in prefrontal cortical

activity. To assess the neural activity changes induced by training, we recorded single units,

multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays

implanted in the prefrontal cortex of two monkeys, throughout the period they were trained

to perform cognitive tasks. Mastering different task phases was associated with distinct

changes in neural activity, which included recruitment of larger numbers of neurons,

increases or decreases of their firing rate, changes in the correlation structure between

neurons, and redistribution of power across LFP frequency bands. In every training phase,

changes induced by the actively learned task were also observed in a control task, which

remained the same across the training period. Our results reveal how learning to perform

cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may

generalize between tasks.
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Working memory, the ability to retain and manipulate
information over a period of seconds, represents a
core component of higher cognitive functions,

including control of attention, non-verbal reasoning, and aca-
demic performance1–3. Working memory ability has been tradi-
tionally thought of as an immutable aptitude, but it is now
understood that it can be improved by training in working
memory tasks4–6. The extent over which performance improve-
ment after working memory training generalizes, or transfers, to
tasks that were not part of the training has been a matter of
debate; some studies have been successful in inducing transfer
from one task to another whereas others have not4–11. Less
contested is the idea that working memory training is beneficial
for patients with clinical conditions, including attention deficit
hyperactivity disorder (ADHD), traumatic brain injury, and
schizophrenia4,12,13.

The neural basis of transfer has been poorly understood.
Human fMRI studies have produced conflicting results about the
effects of cognitive training, suggesting overall increases13–18, or
decreases in activity19–22, or more subtle differences such as
changes in network modularity23,24. Increases are interpreted as
reflecting a higher level of activation or recruitment of a larger
cortical area, decreases as suggestive of improvements in
efficiency25,26. What these correspond to at the level of neural
spiking activity and how lasting changes can transfer between
tasks has been hitherto unexplained.

We were thus motivated to address the neural effects of training
in a spatial working memory task that with neurophysiological
recordings in monkeys. Persistent discharges that continue to
represent stimulus properties are thought to underlie working
memory, though this is a topic of recent debate, as well27,28. We
standardized the training in discrete phases and tracked neuronal
activity with a chronically implanted electrode array throughout
several months of training. We were thus able to address changes
in neuronal activity as training proceeded and test how neural
activity changes were evident across different tasks.

Results
Monkeys acquire different elements of cognitive tasks with
training. Two male Rhesus monkeys (Macaca mulatta) were
initially acclimated with the laboratory and trained to maintain
fixation and not respond to stimuli presented on a computer
screen. The monkeys were then trained to perform a spatial
working memory task, requiring them to maintain fixation,
observe two stimuli appearing in sequence separated by delay
periods, and to indicate if the two stimuli appeared at the same
location or not by selecting one of two choice targets, defined by
their shape (“H” or “Diamond” in Fig. 1a–e). The training to
acquire and master this task consisted of four phases. First, the
monkey was presented with two stimuli in rapid succession and
had to indicate if they appeared at the same or different loca-
tions by selecting one of two choice targets (Fig. 1b). During
this phase, daily sessions involved the presentation of the cue at
the right of the fixation point followed by a sample stimulus
appearing at either a matching location (right) or a non-
matching location (left), on different days. At this stage, the
monkey could simply sample the choice targets, determine
which one was rewarded during the block, and repeatedly select
it in following trials. In the second phase, the monkey was
presented with alternating blocks of match and nonmatch trials,
of decreasing block length, until they were randomly inter-
leaved, requiring the monkey to associate the second stimulus
location with the corresponding choice target (Fig. 1c). In the
third phase, the monkey had to generalize the task to new sti-
mulus locations, appearing at a 3 × 3 grid (Fig. 1d). Finally, an

increasing delay period was imposed, placing more demand on
working memory (Fig. 1e).

Importantly, visual stimuli were also presented to the monkeys
passively, in a control, fixation task every day (Fig. 1a). The
sequence of events in the passive trials mirrored the final phase of
the active task; a stimulus was presented at a random location,
followed by a second stimulus appearing either at a matching or a
nonmatching location, separated by 1.5 s delay periods. The
critical difference was that no choice targets were presented in the
passive task, and the monkey was rewarded at the end of the
second delay period merely for maintaining fixation; no response
of any kind was required. The monkeys performed this passive
fixation task before recordings began, and they continued to
perform it in exactly the same fashion at the beginning of each
daily session before active task training began. Training
proceeded in an adaptive manner, so that the task became
progressively harder as the monkeys mastered each element of the
task so that overall performance remained approximately
constant through the duration of the training (Fig. 1f, g).

Training increases neuronal activation. After initial acclimation
with the laboratory and before Phase I training began, the animals
were implanted with a chronic array of electrodes in their lateral
prefrontal cortex (Fig. 2a). The implant comprised an 8 × 8 grid
of electrodes, with adjacent electrodes spaced 0.75 mm apart from
each other, thus covering an area of 5.25 mm × 5.25 mm. The
electrode array was implanted in the dorsolateral prefrontal
cortex (dlPFC), with electrode tracks descending in both banks of
the principal sulcus (Fig. 2b, c). Local field potentials (LFP) and
multi-unit activity (MUA) were recorded from all electrodes,
which remained fixed after training began. To sample spiking
activity in an unbiased fashion, we set the exact same MUA
threshold criterion for all electrodes and sessions, to 3.5 × root
mean square (RMS) of the noise level. We were thus able to
quantify systematic changes in neural activity as training took
place. We identified MUA units with responsiveness to stimuli as
those exhibiting a significant elevation of firing rate during either
the first stimulus presentation or the delay period following it (see
Methods). A total of 4537 responsive MUA units were identified
in this fashion across all phases of training and across all elec-
trodes, with a sustained yield of responsive units through the last
training phase (Fig. 2d–f). Single neuron recordings were also
obtained, after spike sorting of the MUA records. A total of
1093 single units were recorded from the active task and 1065
from the passive task; of those 49.2% were responsive in the active
task and 27.2% in the passive task, based on the same criteria.

We next addressed the effects of training on neural activity.
Based on experimental and theoretical grounds29, we hypothe-
sized that a greater proportion of neurons would be activated, and
at a higher firing rate. Indeed, training in the active task resulted
in a greater population of prefrontal MUAs becoming responsive
to the stimuli (Fig. 2d, 1-way ANOVA test; orange bars for MUAs
recorded in active task, F3, 1017= 73.32, p= 3.78 × 10−43; cyan
bars for MUAs recorded in passive task, F4, 535= 3.34, p= 0.010),
and in a higher mean firing rate generated by single neurons
(Fig. 3a–c). Comparison of mean firing rates of responsive single
neurons for the best location of each neuron in each training
phase, after subtracting baseline activity, revealed a highly
significant difference between stages (Fig. 3b; 1-way ANOVA
test, F3,531= 72.4, p= 2.87 × 10−39 for the cue period,
F3,531= 21.93, p= 2.12 × 10−13 for the first delay period). These
changes in firing rate were also evident in the context of the
passive fixation task (Fig. 3d–f), though changes were not always
monotonic or as consistent. Firing rates for the best location after
subtracting the baseline was significantly different between phases
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Fig. 1 Behavioral Training. a–e Successive frames illustrate the sequence of events in the tasks used in progressing training phases. a During the pre-
training phase, the monkey only had to fixate while the stimuli were displayed at any one of the nine locations on the screen. b In Phase I, a stimulus was
always presented to the right, followed by a match stimulus in a block of trials and by a nonmatch stimulus in another block of trials. At the end of the trial,
two choice targets appeared, and the monkey had to choose the “Diamond” target in match blocks and the “H” target in nonmatch blocks to get a reward. c
In Phase II, match and nonmatch trials were mixed in a block. d In Phase III, the stimulus location of the first stimulus could vary. e In Phase IV, the duration
of the delay period increased. The passive stimulus set continued to be presented at the beginning of each session throughout training. f, g Performance of
two monkeys at each daily session. Each dot represents one day’s performance. Red lines represent data averaged over 30 days.

Fig. 2 Chronic array recordings. a Schematic diagram of the monkey brain with the approximate location of the recording grid (gray square) indicated
relative to prefrontal landmarks: areas 46 and 8, Principal Sulcus (PS) and Arcuate Sulcus (AS). b Position of the electrode array in the right prefrontal
cortex of monkey MA is indicated relative to the PS and AS. c Position of the electrode array in the left hemisphere of monkey NI. d Relative numbers of
responsive units in each training phase for passive and active tasks. The number of units is shown as a proportion relative to the average unit number of the
passive task in the pre-training phase. Data from two subjects, for MA, n= 1341 in the passive task, n= 1150 in the active task; for NI, n= 816 in the passive
task, n= 1230 in the active task. Error bars represent SEM. Stars indicate significant effects in 1-way ANOVA: *p < 0.05, ***p < 0.001. Number of sessions
for each electrode that showed response to the task, plotted by their location in the array located in monkey MA (e) and NI (f).
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(Fig. 3e; 1-way ANOVA test, F4,285= 4.1, p= 0.003 for the cue
period, F4, 285= 5.41, p= 0.0003 for the first delay period). Even
though stimuli were presented exactly in the same fashion every
day, prefrontal single neurons generated higher levels of activity
after the monkeys had been trained to perform a task. The
increase in firing rate in the passive task after training began in
the active task was observed in both monkeys (Supplementary
Fig. 1), and even though the location of the trained cue in the
active task was ipsilateral to the recording array for one monkey
and contralateral for the other.

The cumulative effect of a greater population of units being
recruited and firing at a higher rate during the passive task as
training in the active task progressed could be appreciated when we
tracked MUA activity from the same channel over repeated days.
Absolute activity in the example channels illustrated in Supple-
mentary Fig. 2 peaked at phase III (when the monkey mastered the
full task, in active training sessions practiced later in the day). This
increase in firing rate was evident already from the baseline fixation
interval, though peak cue and delay period activities also changed
during the course of training. It was also important to realize that
the firing rate changed continually even within each phase, as the
monkey figured out new elements of the task and improved in
performance. This can be appreciated when we plotted the MUA
firing rate on a day-to-day basis, as training progressed (Fig. 4a–c).
This illustration also made evident that a more granular analysis

was necessary to understand the nature of neuronal activity changes
during training and how these manifest themselves across tasks.

Neural effects of acquisition of different task element transfer
between tasks. Training in Phase I required the monkeys for the
first time to observe the choice targets and select one as a saccade
target, creating associations between sensory stimuli and reward
or its omission. We point out that in the pre-training phase, if a
monkey responded to any stimulus, the reward was omitted.
Trials with cue and match presentations alternated with cue and
nonmatch presentations in different sessions. The subject could
perform the task by simply ignoring the two first stimulus pre-
sentations, waiting until the choice targets appeared, and testing
which one of the two was rewarded, then returning to the
rewarded target in all subsequent trials of the session. We
hypothesized that the significance of these task events would be
reflected in neural variables. Indeed, a peak in firing rate (Fig. 3a)
was evident at the time the choice targets appeared. Little phasic
response was evident during the presentation of the cue and
match/nonmatch. However, activity ramped during the time
course of the trial, peaking before the appearance of the choice
targets, from 9.3 spikes/s in the cue period to 12.7 spikes/s at the
onset of targets (Fig. 3a). We also postulated that the active
engagement in the task would result in heightened activation of

Fig. 3 Mean firing rate of single neurons at different training phases. a Population peri-stimulus time histogram (PSTH) of responsive single neurons in
the active task (n= 538). Best stimulus location for each responsive neuron is used, aligned to the cue presentation. Shaded areas represent the stimulus
presentation periods; vertical line, the onset of the choice targets. The delay period was variable in phase IV; only the first 250ms are indicated (activity
followed the second stimulus is plotted in dotted line); the rest of the plot is aligned to the onset of the choice targets. b Neuronal activity averaged over
the cue and first delay periods after subtracting the baseline is plotted for each of the training phases. Each box indicates the median, first and third quartile,
and 1.5x interquartile range of this firing rate relative to baseline. c Baseline fixation for the active task. n= 17/85/191/170/92 for each phase for the
evoked cue, evoked delay1 and fixation baseline. d Population PSTH of all responsive units in the passive task (n= 290). e, f Data plotted as in panels b and
c, for the passive task. n= 17/41/67/97/68 for each phase for the evoked cue, evoked delay1 and fixation baseline. Error bars represent SEM. Stars
indicate significant effects in 1-way ANOVA; **p < 0.01, ***p < 0.001, n. s. not significant.
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the prefrontal cortex in the baseline period and during the pre-
sentation of the visual stimuli, now in the context of a task. This
expectation was also confirmed. During the course of learning the
association between choice targets and reward, long-lasting
changes in the prefrontal network were observed, which also
transferred during the passive task: firing rate during the

execution of the active task increased during the course of
training (Fig. 4d, two-sided t-test, t (134)= 3.07, p= 0.003). The
same rate change was also observed in the passive task (Fig. 4h,
two-sided t-test, t (39)= 2.22, p= 0.032).

In Phase II, presentations of both match and nonmatch trials
occurred during the same session. At the initial training sessions,

Fig. 4 Daily responses in the active and passive tasks as the active training progressed. Activity of MUA units responsive to the active task (a) and the
passive task (b, c). Color plot represents the mean firing rate of all responsive MUA units available on that day. Only days with responsive MUA units in
both the active and passive tasks were identified are shown. Data are plotted for the best cue location (a, b) and the best delay period (c) activity of the
MUA units under study. d–g Population PSTH of responsive neurons in the active task (n= 44/41, 104/87, 85/85, 47/45 for early and late phases in
Fig. 4d–g). h–k Population PSTH of responsive neurons in the passive task (n= 24/17, 34/33, 39/58, 32/36 for early and late phases in Fig. 4h–k). Shaded
zones represent mean ± SEM. The black asterisks indicate a significant difference between the early and late training phases (two-sided t-test, p < 0.05).
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match trials were presented until the subject completed 50 correct
responses, and these were followed by nonmatch trials. In this
stage, too, the subject could perform the task by ignoring the cue
and match/nonmatch stimulus and relying on reversal learning of
the rewarded choice target. However, as the blocks of match and
nonmatch trials became shorter, and eventually fully randomized,
the subject could only perform the task by becoming aware that
the “Diamond” choice target was associated with the match
stimulus and the “H” choice target with the nonmatch. We note
that throughout phase II, the monkeys could still perform the task
by essentially ignoring the cue (first stimulus), since it always
appeared at the same location. The significance of these task
events was also reflected in neural variables. Little response was
present during the cue period (Fig. 3a, b), but firing rate further
accelerated during the second stimulus presentation prior to the
saccade, reaching 15.4 spikes/s at the onset of choice targets
(Fig. 3a). Based on experimental results in the sensory cortex, we
hypothesized that this training would induce a transient, non-
selective increase in responsiveness30, which we expected would
be reflected in baseline and stimulus-driven firing rate. We indeed
observed changes in the prefrontal network, which also
transferred during the passive task: firing rate during the
execution of the active task initially increased relative to Phase
I, but then decreased again during the course of training (Fig. 4e,
two-sided t-test, t (298)= 2.12, p= 0.035). A parallel pattern of
rate changes was not observed in the passive task (Fig. 4i, two-
sided t-test, t (65)= 0.49, p= 0.624). These effects were evident in
the day-to-day changes (Fig. 4a–c). We note that different
neurons were responsive in the active and passive task; these
changes reflected overall changes in responsiveness across the
prefrontal network, rather than sampling of neurons with lower
or higher activity at different recording dates.

Training in Phase III required the subjects to generalize across
multiple cue locations. In order to perform the task, the monkeys
now needed to observe and remember the location of the cue and
compare it with the location of the second stimulus in order to
determine if that was a match or not and plan the appropriate
response. We anticipated that expanding the range of stimulus
locations would produce further changes in neural recruitment.
Indeed, responses to the cue stimulus, which now became
essential for the task, increased greatly (Fig. 3a). However, by
virtue of presenting the cue at multiple locations, more neurons
had a chance of being activated, whereas no such change occurred
in the presentation of stimuli in the passive task. Progression of
training in this phase was characterized by stability in other
aspects of neural activity; no change in baseline firing rate was
evident between early and late training phases (Fig. 4f, two-sided
t-test, t (234)= 0.73, p= 0. 468) and these negative findings were
also shared in the passive tasks (Fig. 4j, two-sided t-test, t
(95)= 0.02, p= 0. 987).

Phase IV amplified the working memory demand of the task,
as the duration of each of the two delay periods in the trial
progressively increased from 0.25 s to 1.25 s. The most salient
change in neural activity was the increase in firing rate during the
first delay period relative to the baseline (Fig. 3b). As the timing
of task events changed for the first time during training, the
ramping of activity after the cue presentation also disappeared
(Fig. 3a). This change occurred rapidly, as soon as the delay
period began increasing in the active task (Supplementary Fig. 3).
The elimination of ramping activity has been reported in working
memory tasks that randomize the delay period compared to
versions of the task with a fixed delay period31. As was the case in
phase III, some of these changes were transient. The absolute level
of activity declined later in the phase (this is evident in Fig. 4a as
well). We have recently reported an analogous phenomenon of
working memory activity becoming more distributed across a

larger population of neurons, while individual activity decreases,
in an experiment relying on single-neuron recordings at early and
late phases of a working memory task with multiple stimuli26.
Increasing the delay period of the active task also induced long-
lasting changes in the prefrontal network, which were evident in
recordings during the passive task: Increased delay period relative
to baseline was now evident in passive recordings, the only phase
in which this occurred (Fig. 3e, two-sided t-test, t (67)= 7.17,
p= 7.49 × 10−10). A decrease in the baseline firing rate was also
observed in the passive task (Fig. 3f). The common trajectories of
changes in the activity of passive and active tasks could also be
appreciated in the day-to-day firing rate changes (Supplementary
Fig. 4).

In addition to analyzing responses to the best location of each
neuron in the passive task based on the phases of task learning, it
was also important to examine how responses to the same
location changed as a function of experiencing these stimuli in the
context of the task. The first two phases of the active task involved
training with stimuli always presented at the same two locations,
in the left and right of the screen, followed by choice targets at
orthogonal locations, at the top and bottom. Responses to stimuli
at other locations in the passive task were altered during this
period even though the monkey had not actively been trained
with them yet. Such an example is shown for Supplementary
Fig. 5, always tracking responses recorded in the passive task,
following cue presentation at the same (lower right) location. A
1-way ANOVA test indicated a significantly different firing rate at
the four training phases (Supplementary Fig. 5; F3,223= 5.89,
p= 6.97 × 10−4 for the cue period, F3,223= 7.49, p= 8.43 × 10−5

for the first delay period). In the middle of phase III, the lower-
right location became the site of one of the two choice targets in
the active task, when the cue and match stimuli were first
presented in the locations diagonal to it, in the upper-right or
lower-right location. This was also associated with a large increase
in firing rate for the presentation of the cue stimulus in the lower-
right location in the passive task. Finally, when the monkey was
exposed to stimuli appearing at the lower right location as cues
that needed to be remembered in phases III and IV, responses to
stimuli at that location actually declined in the passive task. These
results suggest that changes in response were not tethered to the
specific stimulus being used in the context of the active task but
were more general, as the network was altered during training.

Decoding of task variables improves as stimulus decoding
remains stable. To understand how training affected the type of
information represented in neural populations, we performed a
decoding analysis at different phases, relying on Multi-Unit Activity
records. The decoder readily extracted the location of the first and
second stimulus from the passive and active tasks (Fig. 5a–c). On
the other hand, the match or nonmatch status of the second sti-
mulus could barely be decoded from the passive task with above
chance accuracy at any phase of training; mean decoding accuracy
during sample period was 0.51, 0.51, 0.53, 0.51, and 0.50, for pre-
training phase and the four training phases respectively (Fig. 5d).
This was in stark contrast with match-nonmatch information being
readily decoded from the active task; mean decoding accuracy in the
sample period was 0.58, 0.67, and 0.58 for phases II, III, and IV
respectively – though we should note that in early phases match and
nonmatch stimuli were presented in blocks and differential
responses might represent anticipated responses in some extent
(Fig. 5e, f). To ensure that this selectivity for the matching or
nonmatching status of a stimulus was not driven entirely from the
initial, left-right, set of locations, we also performed this analysis
separately for each pair of match-nonmatch locations (Supple-
mentary Fig. 6). Robust decoding was present for all locations
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introduced during phase III of training (Supplementary Fig. 6b–d).
As an alternative means of quantifying changing selectivity for
stimulus information across tasks, we performed an ANOVA test
for location and matching status of a stimulus (Supplementary
Fig. 7). This largely confirmed the decoding results: selectivity for
the matching or nonmatching status of the stimulus was much
greater in the active than the passive task. These negative findings
provide assurance that the changes we did observe in the passive
task represent neural effects that generalize across tasks, rather than
implicit execution of the active working memory task even during
passive fixation.

To formally identify the types of information represented in the
activity of the passive task, we used demixed Principal Component
Analysis, which decomposes the matrix of neural activity across
neurons based on task and stimulus information32. The representa-
tion of stimulus locations, match or nonmatch status of a trial, and
invariant components remained fairly unchanged in the activity of
neurons during the execution of the passive task across the training
phases (Supplementary Fig. 8). Most importantly, decision
components, which represent information about the match and
nonmatch status of the second stimulus were virtually absent in the
passive task across all training phases.

Training in some task elements decreases noise correlation. In
order to understand the changes in the connectivity structure of
the network as training took place, we computed spike-count

correlation (also known as noise correlation) between pairs of
single neurons recorded simultaneously in the same sessions33. A
total of 2685 pairs of single neurons were used in this analysis.
We relied on spikes recorded during the baseline fixation interval
of the task, which was identical across tasks and training phases.
Across all conditions tested, there was a strong dependence of
noise correlation on the lateral distance between the electrodes
from which the neurons were recorded (Fig. 6), in agreement with
prior studies34. Additionally, the noise correlation computed
during the passive task was consistently higher than in the active
task, also in agreement with prior studies suggesting that factors
such as attention and arousal decrease noise correlation35.
Importantly, noise correlation differed systematically between
training phases. The predominant effect of training was a
decrease in noise correlation, which confirmed prior studies
comparing naïve with fully trained monkeys36. However, this
change occurred mostly in training phases III and IV (Fig. 6). An
Analysis of Covariance comparing noise correlation at different
training phases of the active task indicated a significant difference
between phases, after accounting for distance, which was used as
a covariate (F3,2598= 10.83, p= 4.5 × 10−7). Essentially the same
effect was present when we repeated the same analysis in noise
correlation computed in the passive task (F3,2555= 9.37,
p= 3.7 × 10−6). Focusing exclusively on noise correlation com-
puted from neurons recorded from the same electrode, where the
largest samples were available, confirmed these findings (Fig. 6i).

Fig. 5 Decoder analysis. a, b Accuracy of decoding stimulus locations based on multi-unit activity pooled from the passive task (c), and the active task (d),
separately for each training phase. Only phase IV is included in the active task, as only in this the monkey has been trained to distinguish all locations. d, e
Accuracy of decoding the match or nonmatch status of the second stimulus based on multi-unit activity pooled from the passive task (a) the active task
(b), plotted separately for each training phase. Only phases II-IV are included in the active task, as only in these the monkey has been trained to distinguish
between match and nonmatch choices. The colored asterisks indicate a significant difference (two-sided Z-test; p < 0.05) between the corresponding area
and the shuffled data. Dash lines represent the mean decoding accuracy of shuffled data. Shaded zones represent mean ± SD. Pseudo-populations of 200
randomly selected MUAs were used in each stage in Fig. a, b, d, e; results were averaged from 100 resample, n= 100. c, f Decoding of stimulus location
information and match-nonmatch information from the exact same neurons (n= 72) in the passive and active tasks, without resampling. The asterisks
indicate a significant difference (two-sided Z-test; p < 0.05) between the passive and active tasks, across cross-validations.
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A 2-way ANOVA using training phase and passive or active task
as factors indicated highly significant effects of both phase
(Fig. 6i; F3,963= 21.51, p= 1.7 × 10−13) and task (Fig. 6i;
F1,963= 28.39, p= 1.4 × 10−17). These results suggest that some
elements of task training produce lasting changes in the under-
lying neural circuitry, which are reflected in the correlated firing
of prefrontal neurons, and these changes too transfer between the
active and passive tasks.

Training reduces LFP beta power. Lastly, we examined changes in
LFP power spectra as a result of training. Theoretical and experi-
mental studies suggest that improved working memory maintenance
is associated with decreased power in the beta-frequency band and
increased power in the gamma band37–40. We, therefore, wished to
test the hypothesis that training would produce overall decreases in
beta power and increases in gamma. To compare results from dif-
ferent electrodes and sessions, we first normalized the power of each
trial to the baseline, fixation period prior to the cue. We then
compared power changes during the trial, relative to this baseline. In
partial agreement with our hypothesis, training-induced systematic
changes in power, the most salient of which was a progressive
decrease in power in the beta/low-gamma frequency zone of
20–45Hz (hereafter referred to as beta, for simplicity) during the cue
presentation period in successive active training phases (Fig. 7a).
Averaging beta power over the entire cue period revealed a highly
significant difference between phases (1-way ANOVA comparing
beta power in daily sessions grouped in four training phases,
F3,889= 113.8, p= 2.27 × 10−62). A concomitant increase in alpha-
frequency power (8–14Hz) was also observed (F3,889= 94.0,
p= 7.47 × 10−53). High gamma (46–70Hz) power was less diag-
nostic of the training progression but generally decreased, contrary
to our initial hypothesis. Importantly, those global changes in beta
and alpha power were also present in the passive-fixation task
(Fig. 7b), which the monkeys continued to be exposed daily, at the
beginning of each session before training in the active task began.
Although the passive task stimuli never changed, we observed a
significant decrease in beta power across successive phases, con-
sidering the pre-training phase as well (1-way ANOVA,
F4,446= 33.8, p= 1.28 × 10−24), and a relative increase in alpha
power (F4,446= 18.0, p= 1.02 × 10−13). The decrease of beta power/

increase of alpha power across training phases that transferred into
the passive task was observed in both monkeys (Supplementary
Fig. 9). The effects were essentially identical when we performed LFP
analysis only in electrodes from which single neurons were recorded,
to ensure that changes detected were not the result of some elec-
trodes becoming inactive (Supplementary Fig. 10); this possibility
was remote, in any case, since the dominant effect seen in neuro-
physiological recordings was an increase in activity.

Discussion
It has been recently recognized that working memory ability is
malleable and can be increased by using computerized
training4–6. After such training, some performance improvements
generalize between tasks by improving not only for the trained
tasks but also for tasks that were not part of the
training5,8–10,41–44. Our study tracked the changes in neural
activity that occurred after training in the task being trained and
in a control task that remained the same (passive task). This
approach allowed us a window on the changes of the prefrontal
circuitry as the result of such training-induced plasticity. Across
four learning phases that required mastery of different conceptual
elements and induced qualitatively distinct changes in neural
activity, we consistently observed that neural changes in the
prefrontal network through training in the active task were also
evident in the passive task. Changes of neuronal activation in the
active task included increases in the percentage of units that were
responsive to any aspects of the task and stimuli, increases in the
mean firing rate of responsive neurons, decreases in noise cor-
relation, and increases in high beta/low gamma LFP power, in
agreement with changes previously documented in single-
electrode studies comparing different populations of neurons, in
naïve and fully trained animals26,45–48, or during the course of a
daily training session, when a specific stimulus is associated with
reward49,50. Both increases and decreases in activity observed in
the active task transferred to the passive task, as did null results
(e.g., no baseline activity change during the course of Phase III).
Artificial neural networks have provided a framework for
understanding transfer learning: a network trained on one task
produces changes in connection weights in the hidden layers of
the network, which when probed with a different task generate

Fig. 6 Noise correlation. a–d Box plot of spike-count correlation values (noise correlation) for pairs of neurons (n= 2576) recorded in the passive task, as a
function of distance between electrodes, at different training phases. Each box indicates the median, first and third quartile, and 1.5x interquartile range of
noise correlation values computed from pairs of neurons at the distance indicated in the abscissa. e–h. As in a–d, for spike-count correlation values
(n= 2603) in the active task. i The average correlation values of the pairs of neurons recorded in the same electrodes (n= 477 and 474 for passive and
active tasks). Error bars represent SEM. Stars indicate significant effects 2-way ANOVA; ***p < 0.001 for tasks and phases.
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training-dependent output51. We now document the neural
equivalent of this process, as learning takes place. However, not
all changes that we observed in the active task after training were
also present in the passive task. Most importantly, information
about whether the second stimulus was a match or a nonmatch
was much more pronounced in the active task, throughout
training. The results suggest that learning induced long-lasting
changes that can be probed with the passive task, however
execution of a cognitive task is also characterized by unique
information that neurons represent dynamically in the course of a
trial, in agreement with previous studies that have shown context-
dependent information representation52.

Recordings from a chronic array of electrodes in the prefrontal
cortex throughout training enabled us to monitor changes in
neuronal activity in the active task itself. Prefrontal activity is well
known to exhibit rapid plasticity in the context of a trained task,
for example, during the course of a daily training session, when a
specific stimulus is associated with reward49, or during reversal
learning50. Previous studies comparing activity sampled from
different sites, before training began and after it was completed,
emphasized increased activity and recruitment of more neurons
after subjects are trained in working memory tasks46–48. Learning
the rules of the task, but also increased effort and arousal asso-
ciated with executing the task itself are thought to modulate
neuronal activity46,53. Our results confirmed these observations,
and determined that the number of units activated after task
training may have even been underestimated in single electrode
studies. On the other hand, we found that many changes asso-
ciated with different elements of task acquisition were transient or
moved in opposite directions at different training phases (Figs. 4
and 5).

Working memory is thought to be mediated by persistent
activity generated during the delay interval of working memory
tasks, though this has been a matter of debate in recent
years27,28,54–57. The persistent-activity model of spatial working
memory posits that the appearance of a stimulus generates
activity that is maintained during the delay period, but may drift
with time58,59. The location recalled by the subject is precisely
determined by the drift of the delay period activity. In this con-
text, working memory training is thought to rely on strength-
ening network connections between neurons that generate

persistent activity, by virtue of recruiting more neurons during
the delay period of the task; by achieving greater discharge rates
during the delay period; and by realizing lower variability in firing
rate from trial to trial46,47,60. Such changes in discharge patterns
suggest enduring changes in the prefrontal circuitry after training,
which would suggest that the excitability of prefrontal neurons
and the ability to generate persistent activity is lastingly altered
following training. Our present results are consistent with this
interpretation. When probed with passively presented stimuli,
larger populations of prefrontal neurons were shown to be active
and to achieve higher firing rates even though it was not neces-
sary to process or maintain these stimuli in memory for the
requirements of the passive task. Such changes would also be
expected to strengthen neuronal responses to other tasks that rely
on working memory and maintenance of spatial information in
mind. Our results provide a framework for probing such changes
in future studies.

Evidence from EEG studies in humans most often associates
working memory maintenance with increased gamma power61

and recent models of working memory emphasize increase of
gamma power at times of active memory maintenance37–39.
However, an increase of power in high beta and low gamma
frequency, e.g., in the 24–60 Hz range has also been reported in
working memory tasks62–64, referred to as “beta2”64. Guided by
these models, we tested for systematic changes in LFP power, and
we indeed found consistent decreases in high beta – low gamma
power at successive phases of training. High gamma power
generally declined, although we should note that working mem-
ory demands were maximized only at the very last stages of
training. Regardless of the underlying mechanisms that brought
about these changes at the level of beta-frequency LFP power,
these also transferred to the passive task.

An important consideration for the interpretation of the
findings is whether the effects observed in the passive task were
the consequence of monkeys mentally “performing” the active
task even when presented with stimuli passively, which would
also imply increased attention and arousal during the passive
task. This possibility is unlikely for multiple reasons: Blocks of
trials of the passive task were presented in exactly the same
routine fashion, at the beginning of the session every day. The
passive task did not involve target stimuli at the end of the trial,

Fig. 7 LFP analysis. a Time course of power at discrete frequency bands and different training phases of the active task: alpha (8–14 Hz), beta (20–45 Hz),
gamma (46–70 Hz). b Time course of power in the same frequency bands for the passive task, as training progressed in the passive task. Shaded areas
represent the stimulus presentation periods. Shaded zones represent mean ± SEM.
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allowing the monkeys to realize that no choice was required, from
the first trial of the block. The timing of stimulus presentation
differed between passive and active tasks, at least through the first
three phases of training (until the duration of the delay period
was increased), again making the two tasks appear very different.
The first two phases of the active task involved training with
stimuli always presented at the same two locations, in the left and
right of the screen. Yet, responses in the passive task were altered
during this period, even for stimuli that the monkey had not
actively been trained with yet. Nor was the monkey able to easily
generalize performance of the active task with stimuli appearing
at other locations; the entire duration of phase III training was
devoted precisely to this purpose. Information about the match or
nonmatch status of stimuli, on which decisions are based, and
which differs in correct and error trials of active working memory
tasks65,66, was also minimal in the passive task. This instance of
negative control notwithstanding, increases in neural activity that
were present in both the active and passive task would also be
expected to strengthen neuronal responses to other tasks that rely
on processing of visual spatial information and maintenance in
working memory. Our results provide a framework for probing
such changes in future studies.

Methods
Subjects. Two male, rhesus monkeys (Macaca mulatta) weighing 8–9 kg were used
in this study. All experimental procedures followed guidelines by the U.S. Public
Health Service Policy on Humane Care and Use of Laboratory Animals and the
National Research Council’s Guide for the Care and Use of Laboratory Animals and
were reviewed and approved by the Wake Forest University Institutional Animal
Care and Use Committee.

Surgery and neurophysiology. The monkeys were initially acclimated with the
laboratory and trained to maintain fixation on a white dot while visual stimuli
appeared on the screen. After this initial stage of training was complete, the
monkeys were implanted with a chronic array of electrodes in their lateral pre-
frontal cortex. The chronic implant was designed in-house67 and encompassed 64
parylene-c insulated, Iridium electrodes. The implant comprised an 8 × 8 grid of
electrodes, with adjacent electrodes spaced 0.75 mm apart from each other, thus
covering an area of 5.25 mm × 5.25 mm. The electrode array targeted the dlPFC,
with electrode tracks descending in both banks of the principal sulcus (Fig. 2a). The
position of the array was determined based on magnetic resonance imaging (MRI)
and verified during the implantation surgery. The electrodes could be advanced
into the cortex independently of each other and electrode depths were repeatedly
adjusted to optimize placements, up to 5 mm (in the banks of suci), over a period of
several weeks. Once electrode positioning was finalized, task training and neuro-
physiological recordings from the array commenced. Neuronal data from each
electrode were recorded throughout the training. Multi-unit data were collected
from each electrode from areas 8a and 46 of the dlPFC, using an unbiased spike
selection procedure. The threshold for spike acquisition was set at 3.5 × RMS of the
baseline signal, for each electrode, each day. The electrical signal from each elec-
trode was amplified, bandpass filtered between 500 Hz and 8 kHz, and recorded
and sampled at 30 kHz using a Cerberus system (Blackrock Microsystems, Salt
Lake City, UT).

Behavioral tasks. The monkeys faced a computer monitor 60 cm away in a dark
room with their head fixed. Monkeys were trained to hold their gaze on a 0.2°
fixation target displayed on a computer monitor. Visual stimuli were then pre-
sented on the screen while eye position was monitored via an infrared eye tracking
system (model RK-716; ISCAN, Burlington, MA). Eye position was sampled at
240 Hz, digitized, and recorded. The stimuli where 2° squares that appeared ran-
domly in one of 9 locations arranged on a 3 × 3 grid with 10° spacing between
stimuli. Correct completion of a trial resulted in delivery of a liquid reward.
Behavioral control was implemented with a custom-designed software system.
Visual stimuli display, monitoring of eye position, and the synchronization of
stimuli with neurophysiological data were performed with in-house software68

implemented in the MATLAB environment (Mathworks, Natick, MA), and uti-
lizing the psychophysics toolbox69.

The monkeys were trained in a Match/Nonmatch task involving four phases.
The monkeys were then trained to perform a spatial working memory task,
requiring them to maintain fixation, observe two stimuli appearing in sequence
separated by delay periods, and to indicate if the two stimuli appeared at the same
location or not by making an eye movement to one of two choice targets (Fig. 1).
The training could be broken down into four phases. The first phase of training
involved training the monkeys to make an eye movement to one of two choice

targets and determining that only one of them is rewarded (Fig. 1b). The phase
began with the monkeys being exposed to match trials, requiring an eye movement
to the “Diamond” choice target. The first stimulus appeared always at the same
location (to the right of fixation), followed by a very brief delay period (0.25 s) and
a second presentation of the stimulus at the same location. After the second delay
period, the two choice targets appeared with the fixation point turning off, either
above or below the fixation point, but randomly switching between trials. In the
absence of the fixation target, the monkeys quickly foveated one of the choice
targets, and they learned through trial and error that the “Diamond” choice target
was rewarded. On a subsequent training day, nonmatch trials were introduced.
Now the first stimulus appeared again at the right location, but it was followed by a
nonmatch stimulus. When the choice targets appeared at the end of the trial, it was
the “H” shape that was rewarded. The monkeys quickly reversed and saccaded to
the “H” choice target. Phase I of training involved delivering match and nonmatch
trials in blocks with decreasing numbers of trials before alternating.

Phase II involved randomly interleaving match and nonmatch trials (Fig. 1c).
Through this process, the monkeys eventually associated the concept of “match”
with the “Diamond” and “nonmatch” with the “H” shape. Phase II concluded when
the monkeys were able to perform the task at 75% correct. This was the most
challenging phase of training.

So far in training, the cue stimulus always appeared at the same location. Phase
III involved the generalization of stimulus location (Fig. 1d). The first stimulus
appeared at a new location, followed by a second stimulus at the same or a different
location (diametric, except for the center cue which was followed by nonmatch at
an adjacent location). Choice targets appeared orthogonal to the axis defined by
these possible stimulus locations. We used the upper-right location as cue first,
followed by a match in the same location or a nonmatch at the lower-left location.
Once the monkey could do the task with this cue, then the upper-left location was
introduced. The monkeys were exposed to the rest of the locations in sequence,
with the central location of the grid used as cue last. To facilitate learning,
whenever a new location was introduced, we relied again on blocks of match and
nonmatch trials. To ensure that the monkeys did not “forget” the previous location,
they continued to practice these, and every time a new location was added,
randomized trials involving all trained locations were interleaved together. The
monkeys were able to progress much faster through this stage, though they did not
automatically generalize when a new location was introduced. Some practice was
necessary to determine what the appropriate choice was for match and nonmatch
stimuli appearing at these novel locations.

The final phase of training, Phase IV, involved progressively increasing the
delay period duration. Both delays period between the first and second stimulus,
and between the second stimulus and choice targets increased in tandem.
Durations varied from 0.25 s to 1.5 s.

At the onset of the working memory task training, the monkeys were already
able to maintain fixation, and had already been exposed to the visual stimuli that
would eventually be incorporated in the task (white squares, appearing at one of
nine locations). The timing of the stimulus presentation mirrored the final phase of
the task (Fig. 1a). The only difference was that the choice stimuli were presented at
the end of the trial, and the monkeys were rewarded for maintaining fixation after
the second delay period. An initial set of recordings was obtained from the chronic
array at this phase, providing a baseline of neuronal activity prior to the task
training. Additionally, the passive presentation of stimuli continued throughout
training; the first block of trials presented every day involved the exact same passive
stimulus presentation. Thus, monkeys were aware that they did not need to
perform a working memory task.

LFP analysis. We used the FieldTrip toolbox70 for preprocessing analysis and the
Chronux package71 for time-frequency analysis. A bandpass filter (0.5–200 Hz) was
first used. We removed line power (60 Hz) from each electrode and trial, if present.
We used a generalized linear model to identify electrodes with variance outliers,
and we omitted from the analysis. Therefore, the number of electrodes that were
averaged varied from 45–60 in each trial. We then used a multi-taper method to
perform a power spectrum analysis of LFP. Power spectra were constructed from
all trials and electrodes in each session and then averaged across sessions after
subtracting the mean power of the baseline fixation period at each frequency. We
then compared the LFP power at each frequency between the control and simu-
lation conditions. We also analyzed the LFP power at different frequency bands
defined as alpha (8–14 Hz), beta (20–45 Hz) and gamma (46–70 Hz). Line-plots
were constructed based on average and standard deviation across sessions (treating
one session as one observation). One-way ANOVA was used to compare LFP
power between phases, at each frequency band.

Spiking data analysis. All data analysis was implemented with the MATLAB
computational environment (Mathworks 2019, Natick, MA). We identified MUAs
that were responsive to the task and informative about the stimuli as those whose
mean firing rate to the different stimulus conditions were significantly different
from each other, determined by 1-way ANOVA (p < 0.05). The ANOVA was
performed for the firing rate averaged across the entire cue period, and the first
delay period and compared across available cue locations (typically 9). For task
conditions that involved only one cue location (active task, Phase I and II),
responsive neurons were identified as those with firing significantly exceeding the
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fixation period firing rate (paired t-test, p < 0.05) between either the first stimulus
presentation or the first delay period. We additionally required a minimum 10%
firing rate increase during the stimulus presentation over the fixation interval to
avoid false positives. Responsive single neurons were determined in the same way
as MUA, but without requiring the 10% proportional increase of activity. Firing
rate analyses presented here relied on data from correct trials. For each neuron, we
identified the cue location that elicited the best response during the cue pre-
sentation period, and during the first delay period, determined independently.
Activity of the best location in each day, which was defined by the maximum
activity in the cue or first delay periods, was shown in heat maps. Daily responses
were evaluated by calculating the average firing rate among all selective sites
recorded. To compare active and passive conditions, data from responsive neurons
recorded in the active and passive conditions were plotted.

Spike count correlation (also known as noise correlation) was computed for
pairs of neurons recorded simultaneously. For the analysis presented here, we
relied exclusively on the 1 s fixation period that preceded the stimulus appearance,
in either the active or passive task. Noise correlation is the Pearson correlation
coefficient between these firing rate values36.

Decoding analysis was carried on the stimulus direction and decision type (i.e.,
match or nonmatch) factors. We only relied on the eight peripheral locations for this
analysis, since the center location never appeared as a nonmatch. Therefore, chance
performance for stimulus location decoding was 12.5% and for decision (match or
nonmatch) decoding was 50%. The analysis was carried out using the Neural
Decoding Toolbox72,73. The decoding accuracy of each neuron population was
evaluated in 500ms bins, advanced in 50ms increments. In each training phase, for
both passive and active tasks, pseudo-populations of 200 randomly selected MUAs
were used. Trials from these pseudo-populations were randomly split into training
and test sets using 10-fold cross-validation. The procedure was repeated 5 times using
a different test split each time. For each cross-validation split, all neuron’s firing rates
were z-score normalized based on the means and standard deviations calculated using
data from the training set. This procedure was repeated over 100 resample runs,
where different random pseudo-populations and training and test splits were created
on each run, resulting in a total of 500 samples for each comparison. A z-test was
applied to test significant differences between the actual results and the shuffled
results. The shuffled results were calculated with the same neurons and trials used in
the actual data, but with the trial order shuffled across different conditions. If the
mean of the decoding value achieved by the actual data was located outside the 95%
confidence interval of the shuffled data, the neuron population was considered to
exhibit significant decoding ability for the condition under study.

We performed Demixed Principal Component Analysis (dPCA)32, which
decomposes population activity into the stimulus components (8 peripheral
stimulus locations, excluding the foveal location) and the decision components
(match or nonmatch). The method treats the responses of each neuron to one type
of stimulus condition as one dimension and then performs dimensionality
reduction to determine components that correspond to stimulus and task variables.

A sliding window 3-way ANOVA was performed to examine the encoding of
task variables74, with 200 ms bins and 50 ms steps. Factors, including the location
of first and second stimuli, and decision type (match or nonmatch) were used in
the model. The two-sided binomial test was applied to test whether the fraction of
responsive neurons, on each time point, is significantly above chance level (5%).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from https://
data.mendeley.com/datasets/fhx5s7zxg7/2. Citation: Tang, Hua; Constantinidis, Christos
(2021), “Dataset for studying prefrontal plasticity during learning”, Mendeley Data, V2,
https://doi.org/10.17632/fhx5s7zxg7.2. Source data are provided with this paper.

Code availability
Code for the data acquisition system has been made available in Github: https://
github.com/ChristosLab/Wave. All code for analysis will be made available upon
reasonable request
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