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Epigenetic Control of the Adaptive Immune System

Two pathways of immune responses against foreign invaders 
characterize higher vertebrates: the innate and the adaptive 
immune systems. Innate immunity is the first line defense; it 
is mainly, but not only, mediated by the myeloid lineage of the 
hematopoietic compartment and relies on the direct recognition 
of pathogen associated molecules by specific receptors expressed 
on all innate immune cells. Upon engagement of their receptors, 
innate immune cells are able to directly and quickly neutralize 
the pathogen by different means. Adaptive immunity is the 
second line of defense; it is mainly mediated by the lymphoid 

(T and B) lineage of the hematopoietic compartment and relies 
on the recognition of pathogen-associated antigens by specific 
receptors (T Cell Receptor, TCR, and B cell Receptor, BCR) 
expressed on adaptive immune cells (each one having a different 
antigen specificity). Upon engagement of these receptors, the 
few antigen-specific cells can expand and amplify the signal 
by activating a cascade of subsequent events, which eventually 
eliminate the pathogen.

Adaptive immune cells are highly specialized cells 
characterized by (1) the ability to distinguish a danger (i.e., 
pathogen antigens) from a false alarm (i.e., self or food antigens) 
and react accordingly (response or anergy and/or tolerance), (2) a 
very high level of response/differentiation plasticity (i.e., different 
cell differentiation in response to different threats), and (3) the 
ability to persist after clearance of infection and respond faster 
in case of re-encountering of the same antigen (immunological 
memory) (see Fig. 1 for a schematic of adaptive cell differentiation 
and function). As a further peculiarity, together with the 
strict and temporal control of gene expression needed by all 
differentiation pathways, adaptive immune cell differentiation 
relies on the unique event of genomic DNA rearrangement at 
the antigen receptor loci in order to ensure maturation of clones 
with different antigen specificity. These features of adaptive 
immune cells are ensured at the molecular level by the cross talk 
between external stimuli and intrinsic cues during development 
and activation. In the recent years, epigenetics has been proposed 
as main hub for the integration of these signals.

Epigenetics collectively defines inheritable post-translational 
modifications of the chromatin components (DNA and 
histones) that are not directly dictated by the underlying 
DNA sequence. These modifications result in changes in the 
compaction status and nuclear localization of chromatin, and 
ultimately govern gene expression patterns. Histone acetylation 
is usually associated with transcription permissive chromatin, 
with acetylated lysine 9 and lysine 27 on histone 3 (H3K9Ac and 
H3K27Ac, respectively) among the best characterized permissive 
marks. With some exceptions, methylated histones are instead 
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The ability of adaptive immune system to protect higher 
vertebrates from pathogens resides in the ability of B and T cells 
to express different antigen specific receptors and to respond 
to different threats by activating distinct differentiation 
and/or activation pathways. In the past 10 years, the major 
role of epigenetics in controlling molecular mechanisms 
responsible for these peculiar features and, more in general, 
for lymphocyte development has become evident. KrAB-ZFPs 
is the widest family of mammalian transcriptional repressors, 
which function through the recruitment of the co-factor 
KrAB-Associated Protein 1 (KAP1) that in turn engages histone 
modifiers inducing heterochromatin formation. Although 
most of the studies on KrAB proteins have been performed 
in embryonic cells, more recent reports highlighted a relevant 
role for these proteins also in adult tissues. This article will 
review the role of KrAB-ZFP and KAP1 in the epigenetic control 
of mouse and human adaptive immune cells.
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associated with non-permissive chromatin, such as H3K9me and 
H3K27me.1-3

Control of T and B cell lineage specification has been originally 
ascribed to the activity of the so-called lineage-determining 
factors (i.e., transcription factors whose expression is sufficient 
and necessary for the determination of a given cell fate). Recently, 

the activity of these factors has been coupled to chromatin 
modifiers, and epigenetic modifications have been shown to play 
key roles in the control of hematopoietic cell differentiation and 
function.4 In particular, T cell differentiation in the thymus has 
been linked to progressive chromatin condensation and shown to 
be controlled by the differential expression of master transcription 

Figure 1. epigenetic control of adaptive immune cell differentiation and function. Adaptive immune system consists in the cellular (T cell mediated) and 
humoral (B cell mediated) arm. Differentiation of adaptive immune cells occurs initially in primary lymphoid organs (thymus for T cells and bone marrow, 
BM, for B cells), where each progenitor cell (Pre-T and Pre-B) rearranges its antigen receptor loci at the DNA level in order to express a different receptor. 
In these organs only cells expressing a functional receptor not recognizing self-antigens receive anti-apoptotic stimuli (positive selection) and survive 
from negative selection (depletion of autoreactive clones). Upon rearrangement and differentiation effector and regulatory mature cells (matT helper, 
matTh, or matT cytoxic, matTc, if expressing CD4 or CD8 as TCr co-receptor, respectively, matB and thymic derived CD4+ T regulatory, tTreg) migrate 
to secondary lymphoid organs (mainly spleen and lymphnodes), where naïve (nTh, nTc, nB, and tTreg) cells can encounter an antigen (Ag). Ag-TCr or 
Ag-BCr interaction induces pattern of expressions leading to the generation of activated (and thus functional) immune cells. TCr recognizes Ag only 
if processed and presented by antigen presenting cells (APC) through Major Histocompatibility Class (MHC) molecules, while BCr recognizes free Ag. 
Depending on the type of Ag and/or the MHC presenting it, naïve cells differentiate in different subsets with different functions: (1) nTh differentiate 
mainly in Th1, Th2, Th17 cells that produce different cytokines inducing different B cell- mediated or myeloid response to extracellular pathogens; (2) in 
case of non-harmful Ag, nTh differentiate into T regulatory cells (peripheral, pTreg) that, together with tTreg cells, induce tolerance and dampen immune 
response through different mechanisms; (3) nTc differentiate into Cytotoxic T Lymphocyte (CTL) that mediate killing of the infected target cells; (4) nB 
cells differentiate into activated B (actB) cells and this process requires antibody maturation and differentiation through class switch recombination 
(CSr) and somatic hyper mutation (SHM), respectively; actB cells further differentiate in plasma cells (PC) that are factories for the secretion of antibodies 
(Ab). Most of the expanded activated cells undergo apoptosis after pathogen clearance while a small fraction persists in the body as memory cells 
(mTh, mTc, and mB) and mediate faster secondary response in case of re-encountering of the Ag. The adaptive immune cell processes controlled at the 
epigenetic level are highlighted in stars with relative references.
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factors recruiting histone deacetylases, acetyl transferases, 
methyltransferases, and components of the Polycomb and NuRD 
complexes at specific genomic loci.5 In a very similar manner, B cell 
fate is determined by the interaction of key transcription factors 
with epigenetic modifiers that alters the epigenetic landscape and 
regulates the gene expression pattern of the differentiating cells.6,7 
Furthermore, the specific abilities of adaptive immune cells of 
rearranging DNA at the antigen receptor loci and “remembering” 
a stimulus (memory) are strictly controlled at the epigenetic 
level. Antigen receptor rearrangement (DNA recombination of 
DNA stretches encoding common and variable domains of the 
receptor) relies on both chromatin modifiers for the recruitment 
and activation of the recombinase enzymes, and chromatin 
conformation and nuclear structure to put genetic elements 
distributed along large genomic distances in proximity.8,9 These 
data strongly supported the idea that lymphoid cell differentiation 
is governed by the ability of master transcription factors and 
chromatin modifying enzymes to induce activation of lineage 
specific genes and repression of alternative lineage-related ones. 
As occurring in several differentiation pathways, this might lead 
to an irreversible epigenetic landscape with mutually exclusive 
epigenetic modifications at the lineage-determining transcription 
factor loci (i.e., open chromatin conformation at the specific 
lineage factor and closed conformation at the alternative-lineage 
factors).10 Nevertheless, the development of high-throughput 
sequencing techniques has, at least partially, disproved this 
scenario. By assessing genome-wide chromatin modifications 
and gene expression, chromatin landscape in mature T and B 
cell subsets has been found far more dynamic than previously 
expected, showing “bivalent” states (i.e., loci marked by open and 
closed chromatin marks together) and fast changes in epigenetic 
modifications in response to external stimuli both in human and 
mouse cells.11-13

As expected from the described role of epigenetics in regulating 
virtually all the aspects of the adaptive immune system, defects 
in chromatin modifiers and aberrant epigenetic control have 
been linked to human immune-related diseases. In particular, 
alteration in epigenetic regulation seems to concur with genetic 
predisposition in the pathogenesis of autoimmune disorders, 
such as systemic lupus erythematosus, rheumatoid arthritis, 
systemic sclerosis, and type 1 diabetes.14 Studies performed in 
monozygotic twins non-concordant for the development of the 
disease showed global DNA and/or histone hypomethylation 
together with locus specific DNA hypomethylation of genes 
associated to activation and/or response of adaptive immune cells 
in affected patients.14 Similarly, altered epigenetic regulation at 
key immune genes during development has been proposed as 
functional link between environmental exposures and chronic 
inflammation leading to allergies.15 Although the molecular 
mechanisms underlying this observation are still unclear, several 
mutations in chromatin modifying molecule expressing genes 
have been also associated to leukemia development.16

Overall, all of these studies assessed the pivotal role of 
epigenetics in controlling most of the molecular mechanisms that 
regulate adaptive immune cell features, including their peculiar 
high level of plasticity.

KRAB-ZFP and KAP1

Krüppel-associated box zinc finger proteins (KRAB-ZFPs 
or ZNFs) constitute the widest family of tetrapod-specific 
transcription repressors, which underwent a marked expansion by 
gene and segment duplication during evolution.17-20 KRAB-ZFPs 
are characterized by tandem repeats of C2H2 zinc fingers at the 
C-terminus, which confer them with the ability to bind specific 
polynucleotidic sequences, and one or two KRAB domains at the 
N-terminus, responsible for recruiting KRAB-associated protein 1 
(KAP1) (Fig. 2).21-23 KAP1 is the so far only described co-factor of 
KRAB-ZFPs, is a ubiquitously expressed member of the tripartite 
motif-containing (TRIM) family, and is also known as TRIM28, 
TIF1β, or KRIP1. It encodes a TRIM/RBCC motif (RING finger, 
B box, coiled coil), plant homeodomain finger and bromodomain 
and functions as a strong transcriptional repressor when bound 
to DNA.24-26 It acts as scaffold that recruits chromatin modifiers 
including the SETDB1 histone methyltransferase, the CHD3/
Mi2 component of the NuRD complex and Heterochromatin 
Protein 1 (HP1). These KAP1-mediated complex leads to 
heterochromatin formation by histone 3 tri-methylation on lysine 
9 (H3K9me3) and histone deacetylation (Fig. 2).27-29 The rather 
advanced characterization of the biochemical mechanism of 
KRAB-ZFP/KAP1 action contrasts with our large ignorance of 
the physiological roles of this system, in particular in adult tissues. 
KRAB-ZFP genes are evolutively recent and their expansion in 
the tetrapod genome strongly suggests that new functions for the 
encoded proteins have been generated under the selective pressure 
of newly acquired biological pathways. It is tempting to speculate 
that one of these pathways may well be the adaptive immune 
system, as typical instance of acquisition of new specialized 
functions in higher vertebrates.

Several studies on the KRAB-ZFP/KAP1 system have 
been focused on the mouse embryo and embryonic stem cell 
(ESC) biology. They have shown an essential role for KAP1 in 
embryonic differentiation and morphogenesis, establishment 
and/or maintenance of genomic imprinting and pluripotency 
and/or self-renewal maintenance in embryonic stem cells, where 
it also represses endogenous and exogenous retroviruses.30-37 
The KRAB-ZFPs mediating KAP1 action in these processes 
have been identified as zfp809, zfp568 (chato), and zfp57 for 
the control of exogenous retroviruses, extra-embryonic tissue 
development, and genomic imprinting, respectively.38-41 Zfp819 
has been proposed very recently as player in the control of 
endogenous retroelement in ESC.42 Also gametogenesis seems 
to be controlled by the KRAB-ZFP/KAP1 system, with KAP1 
needed for spermatogenesis and KRAB ZNF899 (Prdm9) playing 
a key role in meiotic recombination and hybrid sterility.43-46

In human adult tissues, consistent studies have demonstrated 
the role of the KRAB-ZFP/KAP1 system in vital cellular 
pathways.47 They have found that during DNA damage 
response, Ataxia Telangiectasia Mutated- (ATM-) mediated 
KAP1 phosphorilation is required for chromatin relaxation 
and recruitment of the DNA repairing complex at the damage 
site.48-50 Also, KRAB-ZFP/KAP1 system plays a double role in 
neoplastic transformation. On one side, the KRAB ZNF350 
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(ZBRK1) partakes in human cancer development by regulating 
the expression of oncogene and/or oncosuppressor genes and 
mediating the DNA damage response controlled by the tumor-
suppressor molecule retinoblastoma.51-54 On the other, KAP1 
controls p21 and p53 pathways by different means and its 
overexpression is associated with several human malignancies.55-58 
Moreover, p53 activity seems to be directly regulated by the 
KRAB-ZFP ZNF420 (APAK).59,60 A very recent study has also 
proposed KRAB ZFP1 as negative regulator of polymerase 
II-mediated transcription.61

Regarding the physiology of specific tissue, KAP1 and 
ZNF746 (PARIS) have been implicated in central nervous system 
disorders in mice and humans, respectively,62,63 while KAP1 and 

the KRAB-ZFP rsl1–2 seem to control mouse liver metabolism 
and sexual dimorphism, respectively.64,65 KRAB zfp157 has 
been proposed as player in controlling proper mammary gland 
development in the mouse.66 Very recently, a prominent role of 
KAP1 in controlling microRNA expression regulating mouse 
erythroid differentiation has also been described.67

KAP1/KRAB-ZFP  
in Mouse Lymphoid Cell Development

The role of KAP1 and KRAB-ZFPs in the mouse and human 
adaptive immune systems is far from being clearly assessed. 

Figure 2. Function(s) of the KrAB proteins. Schematic of the main domains of KAP1 (top) and a prototypic KrAB-ZFP (bottom), and of the main mol-
ecules interacting with each of the two (direct interaction is depicted as dashed line). KAP1 domains (N to C-terminal). rING, really Interesting New 
Gene zinc finger; B1 and B2, B box zinc fingers; CC, coiled coil. rING, B boxes, and CC form together the rBCC domain, needed by KAP1 to interact 
with the KrAB A domain of the KrAB-ZFP. PvXvL, hydrophobic pentapeptide needed for interaction with HP1 (Heterochromatin Protein 1); PHD, plant 
homeo-domain; Br, bromodomain. PHD and Br cooperate in binding the Mi2a/NurD deacetylase complex and the SeTDB1 histone 3 lysine 9 methyl 
transferase. Once recruited by KAP1 these two histone-modifying factors are able to induce heterochromatin formation by modifying histone 3 (H3) tail. 
KrAB-ZFP domains (N to C-terminal). KrAB A, Krüppel-associated box A. It is a transcriptional repressor module present in all KrAB-ZFP and mediates 
KAP1 recruitment. The second KrAB box is facultative and can be B or b depending on the primary structure of the sequence. Zinc fingers are present in 
tandem repeats and can vary from 2 to 36 in the family; they are able to bind specific DNA sequences. KAP1 has not a DNA-binding domain; KrAB-ZFP 
is thus the linkage between specific DNA stretches and KAP1-mediated complexes. Listed in the pop-ups the roles of the depicted protein or histone 
modification as assessed in the mouse (in blue) and in the human (in orange) adaptive immune system; in brackets the relative references
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Nevertheless, the study of mouse models conditionally knocked 
out for the KAP1 gene or genes encoding for its interacting 
partners has put forth a relevant role for this system in several 
aspects of the adaptive immune response.

B cell lineage specific Kap1 KO mice have been developed 
by crossing the CD19Cre/+, in which the recombinase is expressed 
at the pro-B stage, with the kap1fl/fl strain.30,68 A first study by 
Reina-San Martin group has found an interaction between kap1 
and Activation-Induced cytidine Deaminase (AID) in mouse 
B cells and used cells from KO mice to study the molecular 
relevance of this interaction.69 AID is the enzyme required 
for initiating class switch recombination (CSR) and somatic 
hypermutation (SHM) in B cells.70,71 SHM and CSR are two 
processes needed for antibody maturation and diversification 
in activated B cells, and are based on the introduction of point 
mutations and recombination in the immunoglobulin gene, 
respectively.72,73 The epigenetic machinery strictly regulates 
these pathways by controlling accessibility of the loci to AID, 
three-dimensional localization of the recombining regions and 
recruitment of the DNA damage response machinery.74 In the 
above-mentioned study, the authors showed a 50% reduction 
in CSR in kap1 KO when compared with control B cells in 
vitro and no defect in SHM. They proposed a role for kap1 in 
facilitating recruitment of AID to the switch region through 
the formation of a complex containing HP1 and recognizing 
H3K9me3.69 By analyzing the same mouse model, we have found 
normal rates of CSR in vivo, probably because of compensating 
mechanisms masking in vivo the mild defect observed in vitro.75 
Instead, we have observed a significant defect in mature B cell 
development, in particular in the non-conventional subset, 
decreased levels of steady-state antibody production, and faster 
rates of antibody decays after viral immunization. This indicated 
a relevant role for KAP1 in B cell differentiation and maturation. 
By performing gene expression and chromatin precipitation 
studies, we found the PI3K antagonist PTEN to be directly 
regulated by kap1 and proposed altered regulation of this gene—
known to be a main player in B cell biology76—as molecular 
mechanism underlying (at least part of) the phenotypes observed 
in kap1 KO mice. Genome wide, we found that kap1 binding 
sites correlated positively with regions marked by the repressive 
histone modification H3K9me3 and negatively with B cell-
specific regulatory elements bearing active marks (H3K4me1 and 
H3K4me3) or bound by the PU.1 transcription factor.75,77,78 Kap1 
binding sites seemed also to be associated to facultative rather 
than constitutive heterochromatin.75

Three studies have investigated the function of kap1 in mouse 
T cells. By using conditional KO mice based on the expression 
of the cre recombinase under the T cell co-receptor CD4 or the 
T cell specific kinase lck promoter, we and others have reported 
kap1 involvement in controlling T cell-mediated response and 
tolerance.79,80 The two studies performed gene expression analyses 
and proposed different molecular mechanisms as origin of the 
observed defects. Tasuku Honjo’s group proposed that kap1 
regulated transforming growth factor pathway in mature T cells 
and that alteration of this axis led to autoimmune phenotype.79 
We found profound defects in immature T cell differentiation 

and proposed kap1-mediated direct control of the FoxO1 gene—
encoding for the major regulator of thymocyte transcriptional 
network—as the main pathway underlying this phenotype.80 
The same year, another group confirmed the role of kap1 in  
T cell differentiation and extended it to invariant natural killer 
T cells, but attributed the phenotype to a role for this molecule 
in TCR rearrangement.81 We observed association between kap1, 
NuRD, and Ikaros binding sites, as expected.28,82 Nevertheless, 
our chromatin studies showed an unpredicted landscape for 
kap1 binding sites in immature T cells. As for B cells, kap1 
binding sites were highly enriched in repressive (H3K9me3 and 
H3K27me3) and depleted of active promoters and/or enhancer 
associated (H3K4me3, H3K4me1, and H3K9ac) histone marks. 
Differently from what observed in mature B cells and unexpected 
for a predicted transcriptional repressor, markers of open 
chromatin and/or active transcription, such as the histone acetyl-
transferase CBP, ETS1 (a critical transcriptional regulator of  
T cells), TFIIB, and formaldehyde-assisted isolation of regulatory 
elements (FAIRE), were significantly enriched at kap1 binding 
sites. Although we could not rule out the possibility of retrieving 
different complexes containing kap1 in different cells, these 
data suggested that kap1 binds plastic cis-regulatory regions and 
may coexist at these sequences with partially assembled and/
or weakly bound complexes of transcription and chromatin-
remodelling factors in immature T cells. In order to assess if the 
different features of kap1 binding sites in T and B cells are linked 
to the different lineages or to the diverse differentiation stages 
(immature and mature, respectively), further investigation is 
needed. In line with the hypothesis of the formation of different 
KRAB complexes in different cellular contests, in non-lymphoid 
cells several studies have suggested that KRAB proteins may play 
different functions and even acquire activating transcriptional 
ability depending on the interacting partners.83-86

Functional studies about KRAB-ZFPs in the mouse lymphoid 
system are not available. The only existing data are related to 
their level of expression in different hematopoietic lineages. 
Data from ChiP-seq studies also indicated that kap1 binds in 
proximity of KRAB-ZFP genes in mouse adaptive immune 
cells,75,80 suggesting that it could be involved in the regulation 
of expression or maintenance of genomic stability of these highly 
repeated sequences as proposed for human cells.87-91

Further hints about the functional role of kap1 in adaptive 
immune cell development might be extrapolated from studies 
performed on kap1-interacting molecules or associated 
chromatin modifications. In vitro and in vivo data have 
demonstrated kap1 association with the histone deacetylases 
NuRD complex, SETDB1 histone methyltransferase, HP1, and 
H3K9me3.27-29,75,80,87

The role of H3K9me in lymphoid lineage development has 
been studied by taking advantage of mouse models knockout for 
the H3K9 methyltransferases (SUV39H1, G9a, and SETDB1). 
In the first report showing G9a KO mice, no major phenotype 
in the T cell compartment was observed (T helper specific 
functions were not assessed). Interestingly, B cell phenotype 
seemed fully consistent with the one observed in kap1 KO mice, 
as B cells showed a lower proliferation capacity and defects in 
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rearrangement of the Ig locus and plasma cell maturation.92 
Two studies showed the importance of H3K9me in T helper 
differentiation and function. By using G9a KO CD4+ cells, 
Zaph’s group proposed a role for H3K9me2 in controlling 
interleukin 17 gene locus and T helper function.93 A few years 
later, Amigorena’s group used Suv39h1 and HP1 KO CD4+ cells 
and showed SUV39H1-HP1-H3K9me3 controlling interferon 
γ and interleukin 4 gene loci and thus T helper differentiation 
and stability.94 All of these findings suggested that kap1 and 
H3K9me affect a quite restricted set of processes during 
lymphocyte development and activation, and this was rather 
unexpected for molecules with such a broad distribution in the 
genome.75,80 Nevertheless, this behavior has been attributed to 
several histone-modifying factors, such as the MLL/SET H3K4 
and the Polycomb H3K27 methyltransferase complexes and the 
H3K27 demethylase Jmjd3.95-97 Thus, in analogy with other 
transcriptional co-regulators, kap1 and H3K9me3 may fine-
tune expression rather than acting like an on-off switch of gene 
expression, at least in the lymphoid system.

A more pronounced role in lymphoid cell physiology seems 
to be played by the NuRD histone deacetylase complex, whose 
activity in this compartment seems to be mainly dictated by 
its interaction with the zinc finger Ikaros, a key regulator of 
lymphopoiesis.82,98,99 Different reports have shown that NuRD 
and/or the Ikaros-NuRD complex regulates key pathways 
of lymphoid cell biology, including (1) CD8 and CD4 gene 
expression and T cell development, (2) cytokine loci and T cell 
immune response, tolerance and anergy, and (3) B cell specific 
genes and B cell differentiation.100-106 Direct evidence of binding 
of kap1 to Ikaros/NuRD in lymphoid cells is still missing. 
Nevertheless, in vitro interaction with NuRD and in vivo 
overlapping of kap1 and Ikaros-NuRD binding sites might lead 
to contemplate kap1 involvement in the control of, at least some, 
Ikaros-NuRD target genes. Moreover, these data might suggest 
that kap1 can be recruited to target genes through interaction 
with other DNA binding factors and independently by KRAB-
ZFP mechanisms, as also proposed in other contexts (see also 
following paragraph).88

KAP1/KRAB-ZFP in the Human Immune System

Direct and indirect evidences link KRAB proteins to different 
aspects of human adaptive immune cell differentiation and 
function.

The best-characterized function of KRAB-ZFP/KAP1 system 
in human adaptive immune cells is the control of viral replication. 
Apparently contrasting results have been published about the role 
of this system in the control of B cell tropic herpes viruses. These 
viruses are characterized by two different stages of life cycle 
(the latent/silent and the lytic/active) that are strictly regulated 
by activation and/or repression of specific viral gene expression 
patterns. On one side, ZNF251 (KZLP) has been shown to 
activate K1 promoter of Kaposi’s sarcoma-associated herpes virus 
(KSHV) and contrast the LANA KSHV, which is the essential 
transcription factor to establish latency.107 Nevertheless, this 

early report, which was mostly based on biochemical data, did 
not show binding of the ZFP to viral DNA and did not show 
a role for this ZFP in the replication of KSHV DNA. Thus, 
the relevance of this study is not obvious. More consistently, 
KRAB-ZFP and KAP1 have been linked to repression of 
KSHV activation and induction of latency. Although there is no 
evidence for a direct interaction between the two KRAB proteins 
in this context, ZNF426 (K-RBP) has been shown to directly 
repress transcription of the KSHV transactivator RTA gene and 
KAP1 to bind and repress several KSHV lytic genes.108,109 KAP1 
and the KRAB-ZFP ZBRK1 have also been shown to interact 
with Epstein-Barr herpes virus (EBV), although the role of 
this complex on EBV life cycle has not been clearly defined.110 
Moreover, KRAB-ZFP/KAP1 are apparently involved in the 
control of Human Immunodeficiency Virus (HIV) replication at 
different stages. HIV targets CD4+ (T and monocyte) cells and is 
characterized by the ability of integrate into the human genome 
and establish in some, not fully elucidated, circumstances latent 
infection. Two KRAB-ZFPs have been proposed to regulate HIV 
transcription. Early studies have identified ZNF175 (OTK18) 
as gene upregulated upon HIV infection in monocyte-derived 
macrophages and shown its role in controlling several cellular 
genes as well as HIV transcription.111,112 A more recent study has 
reported ZBRK1 to bind and control HIV promoter expression 
by recruiting KAP1.113 In this work, the authors have also shown 
that knocking down of ZBRK1 reduced KAP1 binding to HIV 
promoter by only 25%, supporting the idea that KAP1 binding 
to HIV sequences might be mediated by more than one (KRAB) 
factor. Another group has recently put forward a role for KAP1 
in controlling HIV integration into the cell host genome.114 
This study reported increased integrated viral copies upon 
KAP1 downregulation and proposed a role in post-translational 
modification of the HIV integrase protein, rather than epigenetic 
for KAP1. All of these observations suggest that KRAB proteins 
conserved the antiviral activity (mainly mediated by the control 
of expression of viral genes) from mouse to human, although 
by using different mechanisms in the two systems. Further 
investigating this issue in human adaptive immune cells might 
lead to the discovery of new pathways underlying the still obscure 
process of epigenetic control of viral latency and ameliorate both 
basic scientific knowledge and antiviral therapies.

As aforementioned, in order for the DNA damage response 
(DDR) machinery to be recruited at the DNA break point, 
KAP1 needs to be phosphorylated by ATM to detach and allow 
chromatin relaxation.48-50 The DDR pathway is required for 
proper DNA rearrangement at the TCR and BCR loci and for 
CSR/SHM at the immunoglobulin locus in B cells. Indeed, 
although the recombinase proteins acting at the receptor loci are 
specific for the immature T and B cells, the machinery recruited 
to the DNA break induced by the recombinases is the canonical 
DDR. DDR is mediated by the non-homologous end-joining 
apparatus, which includes the DNA-dependent protein kinase 
catalytic subunit (DNA-PKcs) and ATM in this context.115 
Although neither ATM nor DNA-PK are absolutely required, their 
combined deficiency results in a block in DNA recombination 
suggesting that these two kinases have overlapping activities.116,117 
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The important role of this machinery in the assembly of antigen 
receptor genes is highlighted by the observation that mutations in 
DNA-PK leads to severe combined immune deficiency (SCID), 
while ATM deficiency causes ataxia-telangiectasia (A-T) disease 
in humans.118-120 A-T patients show severe neurodegenerative 
disorder usually associated with immunological dysfunctions, 
such as decreased specific immunoglobulin production and 
CD4+ T cell number, increased radiation susceptibility and 
predisposition to lymphoid cancer.121 A-T immunological 
abnormalities have been associated to defective receptor locus 
recombination, and T and B cell progenitor maturation in mouse 
models.122-127 Further investigation will clarify the function of 
KAP1 in this context confirming or not its relevance put forth 
by the recent data reporting its prominent role in ATM mediated 
response.

The activity of transcription factors playing pivotal roles 
in human lymphocyte biology has also been linked to KRAB 
proteins. c-Rel/NFkB is a family of transcription factors 
regulating immune response and inflammation through their 
control of immune genes, such as interleukins and lineage 
specific transcription factors.128 Upon nuclear translocation 
NFkB transcriptional activity is controlled by post-translational 
modifications that regulate its nuclear retention and interaction 
with co-activators or repressors.129 KAP1 has been proposed as 
negative regulator of NFkB transcriptional activity by interacting 
with the acetyltransferase p300/CBP and inhibiting acetylation 
of NFkB at the interleukin-6 inflammatory gene.130 This KAP1 
activity seemed to be mediated by its interaction with the 
signal transducers and activators of transcription 3 (STAT3).131 
KAP1 seems also to play a role in the interferon-mediated 
inflammatory response by interacting with STAT1.132 These 
data are particularly interesting in light of the importance of 
STAT proteins in shaping immune response. STATs are indeed 
main activators of cytokine genes involved in T helper (Th), T 
cytotoxic, and B cell differentiation and/or activation and exert 
their positive function by recruiting the histone acetyltranferase 
p300/CBP.133-135 In light of this, if confirmed, KAP1 interaction 
and/or regulation of STAT proteins might imply a major role 
for this protein in the regulation of gene expression patterns of 
human adaptive immune cells. KAP1 interaction with STAT3 
seems particularly interesting in light of the role of the latter 
in controlling autoimmune manifestations. It has been clearly 
demonstrated, indeed, the main role of STAT3 in both human 
and mouse in inducing the expression of cytokine genes leading 
to Th17 phenotype, which is the main Th subset involved in 
inflammation during autoimmune manifestations.136-138 On 
the other hand, there seems to be discordance, at least in the 
mouse, about the role of STAT3 in controlling the pattern of 

expression in Treg cells, which is the T subset counteracting 
autoimmune manifestations by dampening immune response 
through different mechanisms.139,140 The master transcription 
factor regulating Treg cell specification is FOXP3, whose gene 
mutation induces a life-threatening autoimmune disorder 
called IPEX.141,142 This forkhead-domain factor acts as either 
activator or repressor of gene expression thanks to its ability to 
bind gene promoters and cooperate with different component 
of the epigenetic machinery.143 Among several other interactors, 
recent data indicated that FOXP3 associates with STAT3144 and 
KAP1145 in human Treg cells. FOXP3-KAP1 interaction seemed 
to be mediated by a human specific KRAB-containing protein 
derived from the alternative splicing of the ZFP90 and called 
FIK, and to be necessary for the repressive activity of FOXP3 at 
target gene loci. Thus, according to these reports and mirroring 
the mouse system, KAP1 seems to be a player in the maintenance 
of human immune tolerance through different means. This role 
of KAP1 in controlling autoimmunity seems highly consistent 
with the altered H3K9me pattern and HP1 recruitment at key 
immune genes found in the lymphocytes of patients suffering 
from several autoimmune diseases.146-149

Concluding Remarks

Although not many reports have studied the role of KRAB 
proteins in controlling gene expression patterns in immune cells, 
several lines of evidence both in the mouse and in humans put 
forth a relevant role for these proteins in key aspects of the biology 
of these peculiar cells. Interestingly, KRAB proteins seem to form 
different complexes depending on the cellular contest (i.e., level of 
expression of common and cell type-specific transcription factors, 
post-translational modification of transcription, and chromatin 
regulators) and this seems to significantly affect the function of 
these proteins and the resulting chromatin modifications. More 
focused studies, including high throughput gene expression 
and chromatin approaches, will clarify the molecular patterns 
mediated by KRAB proteins and improve the understanding 
of the complicated epigenetic landscape controlling adaptive 
immune cell differentiation and function.
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