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Abstract: Mass spectrometry coupled with chromatography separation techniques provides
a powerful platform for untargeted metabolomics. Determining the chemical identities of detected
compounds however remains a major challenge. Here, we present a novel computational workflow,
termed extended metabolic model filtering (EMMF), that aims to engineer a candidate set, a listing of
putative chemical identities to be used during annotation, through an extended metabolic model
(EMM). An EMM includes not only canonical substrates and products of enzymes already cataloged
in a database through a reference metabolic model, but also metabolites that can form due to substrate
promiscuity. EMMF aims to strike a balance between discovering previously uncharacterized
metabolites and the computational burden of annotation. EMMF was applied to untargeted LC–MS
data collected from cultures of Chinese hamster ovary (CHO) cells and murine cecal microbiota.
EMM metabolites matched, on average, to 23.92% of measured masses, providing a > 7-fold increase
in the candidate set size when compared to a reference metabolic model. Many metabolites suggested
by EMMF are not catalogued in PubChem. For the CHO cell, we experimentally confirmed the
presence of 4-hydroxyphenyllactate, a metabolite predicted by EMMF that has not been previously
documented as part of the CHO cell metabolic model.

Keywords: metabolomics; metabolite annotation; enzyme promiscuity; extended metabolic models

1. Introduction

Metabolomics is an expanding field of research that involves the characterization of small molecules
in cells, tissues, and other biological systems. Metabolites are direct products of enzymatic reactions that
provide a functional readout of cellular state [1,2]. Compared to genes and proteins that are regulated
and post-translationally modified, respectively, metabolites are most predictive of the phenotype [3].
Metabolomics now plays a critical role in many fields including drug discovery and precision medicine,
nutritional analysis, and in examining environmental responses. Importantly, the ability to collect
measurements on the metabolome using untargeted metabolomics, where thousands of features within
the sample under study are measured and annotated with chemical identities, promises to broadly
profile the metabolome and revolutionize phenotyping and biological discoveries.

Mass spectrometry (MS) techniques coupled with liquid or gas chromatography separation
techniques, LC–MS or GC–MS, respectively, have become standard analytical platforms for untargeted
metabolomics [4]. The LC or GC step aims to separate compounds within the sample, whereas the
MS step ionizes, fragments, and detects a fragmentation pattern. There are now techniques for data
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processing (e.g., peak picking, missing value imputation, and adduct and degenerative feature removal).
These tools convert raw MS data into features. Each feature corresponds to an ionized chemical
compound, and is characterized using a spectral signature, comprising a chromatographic retention
time (RT) paired with mass-to-charge ratio (m/z) and relative intensities for the parent compound and
its fragments.

Interpretation of metabolomics data is facilitated by assigning putative chemical identities to
the features. Relying on the mass of the ionized parent compound for annotation is problematic,
as a particular mass may be associated with many chemical formulas (e.g., there are 10,132 known
molecular structures in PubChem [5] that are associated with C20H22N2O4) [6]. The spectra of detected
compounds can be matched against those within an in-house library generated using the same
instrument and method as the samples. However, this is impractical due to the large number of
compounds detected in an untargeted MS experiment. Instead, feature annotation typically relies
on libraries in reference databases. The two largest spectral databases in terms of number of unique
compounds, METLIN [7] and NIST [8], cover only a small number of compounds when compared
to the millions of compounds catalogued in PubChem. Due to these limitations, the annotation rate,
which we define as the fraction of features annotated with a putative chemical identity, using in-house
or spectral databases is typically low. The maximum annotation rate across several metabolomics
studies that we surveyed was 16%, but averaged only 7.26% [9–15].

In recent years, computational tools have become available to recommend a ranked list of chemical
structures that best explain a spectral signature. This ranked list is selected amongst a pre-specified
candidate set, a listing of metabolites with formula weights that match the measured masses of
parent compounds in the sample. Earlier tools used rule-based approaches to generate fragmentation
patterns of candidate metabolites, e.g., [16]. Subsequent efforts introduced combinatorial enumeration
methods [17–19] and machine-learning algorithms. For example, CFM-ID [20] uses the candidate
set to create a probabilistic model of collision-induced fragmentation process. The model is then
used to predict a fragmentation pattern for a given compound. CSI:FingerID [21] first predicts
a fragmentation tree based on a spectral signature [22]. CSI:FingerID then uses multiple-kernel
learning [23] and support vector machines to predict fragmentation tree properties, which are searched
against fragmentation tree properties of compounds in a molecular structure database. CSI:FingerID,
as well as subsequent updates within SIRIUS 4 [24], outperforms other tools [17,20,25–27] in terms of
accuracy. Despite progress, however, annotation runtimes are costly [21], and are dependent on the
size of the candidate set. Hence, evaluating candidate sets from large compound databases such as
PubChem and ChemSpider remain problematic.

We propose a novel annotation workflow for untargeted metabolomics that addresses current
limitations regarding spectral database coverage and computational cost of annotation. The goal of
this workflow is to engineer a candidate set that can be used for putative identification using database
searches or other annotation tools. The key step is to filter the detected masses through a metabolic
model that we call an extended metabolic model (EMM). An EMM includes not only the defined
substrates and products of enzymes cataloged for the organism(s) associated with the sample, but also
additional metabolites reflecting the potential for promiscuous enzymatic activities. The central premise
is that an EMM can be used to define a candidate set that is more comprehensive than a standard
genome-scale metabolic model, but still enforces a degree of specificity for the system of interest.
Our workflow, termed EMMF (EMM-based filtering), broadens the search space for annotation beyond
compounds in a reference metabolic model assembled from catalog definitions of enzymatic reactions,
thus enhancing discovery while avoiding the computational cost of analyzing every compound in large
chemical structural databases. We demonstrated the utility of EMMF on untargeted LC–MS data from
cultures of Chinese hamster ovary (CHO) cells and bacterial isolates from murine cecum. We compared
the candidate sets from reference metabolic models, EMMs, and a large structural database (PubChem).
EMMF suggested biologically relevant chemical identities for almost a quarter of measured features,
providing a > 7-fold increase in the candidate set size when compared to using a reference metabolic
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model. Importantly, EMMF allowed the discovery of novel relevant putative identities that are not
currently catalogued in PubChem. Targeted LC–MS experiments confirmed the presence of a predicted
CHO cell metabolite that had previously not been cataloged as a Chinese hamster enzyme substrate
or product.

2. Methods

To describe and evaluate the EMMF workflow, we presented it alongside two other annotation
workflows (Figure 1). In describing the workflows, “annotation” refers to the use of any computational
annotation tools. A model-based annotation workflow (Figure 1A) consists of filtering masses
of measured metabolites against those expected in the sample on the basis of a metabolic model
that is built from a reference genome (or set of reference genomes). Model metabolites with exact
masses that match, within a small error, to measured masses are designated as the candidate set.
The candidate set is then annotated, where candidates that best explain the experimentally observed
spectra are ranked. This workflow provides two advantages. Metabolites within the candidate set
are all biologically relevant. Consequently, all computing times will be used to evaluate biologically
relevant candidates. Although there is now a growing collection of annotated genome sequences (e.g.,
KEGG database [28], MetaCyc [29], and BiGG [30]) and tools for the reconstruction of genome-scale
metabolic models (GEMs) [31,32], the completeness of these models is not guaranteed. GEM models
are typically constructed using sequencing and annotation [33,34]. Significant experimental and
computational efforts are required to augment the models on the basis of gene expression, proteomics,
and metabolomics data [35]. Current models do not account for enzyme promiscuity, where an enzyme
transforms alternate substrates in addition to its natural substrate, as defined by a reference metabolic
model and as catalogued in organism databases [36–39]. As a result, defining the candidate set only on
the basis of metabolites within the metabolic models naturally limits annotation.
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Figure 1. Comparison between annotation workflows. The candidate set for annotation is derived
by filtering the measured masses based on: (A) the metabolic model, (B) databases, and (C) extended
metabolic model (EMM). The candidate sets in (A) and (C) are biologically relevant, while candidates
in (B) prior to filtering may not all be biologically relevant.
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Selecting the candidate set from a large database can potentially enhance annotation by increasing
the number of measured masses that have a match in the candidate set (Figure 1B). This database-based
workflow first identifies candidate metabolites by querying one or more specified compound databases
for all molecules whose exact masses match the experimentally measured masses detected in the
sample. The resulting candidate set is then annotated and ranked as in the workflow, as shown
in Figure 1A. As the size of the candidate set is large in comparison to the one in the model-based
workflow, the annotation runtime increases, and so does the chance of annotation. As annotation
accuracy is low, some measurements, however, may be annotated with biologically irrelevant identities,
such as phytochemicals or drug compounds that cannot possibly accumulate in a mammalian cell
culture. The end user could then sift through the ranked candidate metabolites to select biologically
relevant candidates. This manual curation is time-consuming and relies on the user’s judgment.
Using a metabolic model to filter the ranked candidate metabolites can facilitate this process. However,
this results in the same discovery-related limitations as the workflow shown in Figure 1A, while also
incurring a large computational cost. Importantly, not all the computational cost is necessary. It is
highly unlikely that every compound in candidate sets derived from a large database is biologically
relevant. Using manually curated metabolite databases such as KEGG to derive the candidate set is
an attractive option, as the size of the candidate set is reduced when compared to using a large structural
database. However, not all biologically relevant compounds are catalogued in such databases.

Our novel annotation workflow (Figure 1C), EMMF, applies an EMM-based filter to identify the
candidate set. To create this model, we adopted a previously described method, PROXIMAL [40]
(Supplementary Methods). Although originally developed to analyze the products of xenobiotic
transformation reactions catalyzed by possible via cytochrome P450 (CYP) enzymes, PROXIMAL
was shown to be also effective in predicting promiscuous enzyme products for Escherichia coli [41].
From reactant-product pair(s) (RPAIR) of an enzymatic reaction [42], PROXIMAL identifies a molecular
pattern that transforms the reactant into product. Each pattern is associated with a reaction center
and its first and second-level neighboring atoms. If a substrate of interest matches a pattern, then the
corresponding operator is applied to generate a product, which we call a “derivative” metabolite.
The EMM for a system of interest is generated using PROXIMAL by applying the operators generated
from the enzymatic reactions encoded in the system’s genome(s) to all of metabolites already associated
with the system on the basis of the enzymes’ reaction definitions. This step generates a set of derivative
metabolites. The calculated exact masses of derivative metabolites are then used to filter the measured
masses. If a derivative has a mass that matches a measured mass, then the SMILES string [43] of
this derivative is searched against a chemical structure database (PubChem) to determine if it has
been cataloged with a chemical name and identifier. The masses of metabolites in the reference
metabolic model are also matched against the measured masses (as in Figure 1A). The union of
matched derivatives and reference model metabolites constitute a biologically relevant candidate set.
This candidate set is then used for annotation and the candidates are ranked, as in prior workflows.
Pseudo-code for the EMMF workflow is provided in the Supplementary Methods.

3. Results

3.1. Datasets, Reference Metabolic Models, and EMMs

We compared the annotation workflows in Figure 1 by analyzing untargeted LC–MS data collected
on samples from two different biological systems (Table 1, column group A). One set of LC–MS
experiments were performed on samples from Chinese hamster ovary (CHO) cell cultures grown
in a chemically defined medium. The second set of experiments was performed on samples from
anaerobic cultures of bacteria collected from murine cecum. Each set of LC–MS experiments comprised
two or more different methods. By treating the datasets independently, we were able to explore the
influence of sample source and instrument method on EMMF’s performance. Details for the culture
and LC–MS experiments are provided in the Supplementary Methods. The processed data were
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arranged into feature tables, where each feature was specified by a chromatographic retention time
(RT), measured mass (m/z), and a set of associated product ion (fragment) masses and their relative
intensities, that is, the MS/MS signature. The reference metabolic models for CHO cell and murine
cecal microbiota were derived from genomes in the KEGG database. For the CHO cell, we obtained
lists of metabolites and reactions cataloged in KEGG that are associated with the organism code cge.
The cecal culture is a consortium of many species. We assembled a community-level model based on
the taxonomic groups detected in the culture using a previously described procedure [44]. The numbers
of reactions, metabolites, and unique masses in the two reference models are listed in Table 1 (column
groups B).

The EMM for each sample was generated using biotransformation operators derived from each
model (Table 1, column group C). EMMs augment a metabolic model to include molecules that are not
originally part of the metabolic model. This augmentation increases the number of unique masses
within the model. The number of biologically relevant molecules in the candidate set thus significantly
increased (Table 1, column group D) when compared to the number of metabolites in the reference
metabolic model (57× and 72× for CHO cell and the gut microbiota, respectively). Similarly, the number
of unique masses in EMM was increased over the number of unique masses in the reference metabolic
model (23× and 30x for the CHO cell and the gut microbiota, respectively). EMMs thus promise to
provide a large annotation space when compared to the reference metabolic model.



Metabolites 2020, 10, 160 6 of 19

Table 1. Size of experimental data sets and models. (A) Three experimental datasets under different conditions were collected for the CHO cell, and two for the
gut microbiota sample. (B) The size of the metabolic model: number of reactions, metabolites, and unique masses. (C) The size of the expanded metabolic model:
number of operators derived using PROXIMAL, unique derivatives generated by PROXIMAL, unique derivative masses due to PROXIMAL. For comparison purposes,
the numbers of derivatives and derivative masses exclude those in the metabolic model. (D) Fold increase in number of metabolites and masses when comparing the
size of these sets for EMM against the metabolic model.

(A)
Experimental Data

(B)
Metabolic Model

(C)
Expanded Metabolic Model Using

PROXIMAL

(D)
Fold Change for EMM

Relative to Metabolic Model

Biological
Sample Dataset MS Mode

Number of
Measured

Masses

Number of
Reactions

Number of
Metabolites

Number of
Unique
Masses

Number of
Unique

Operators

Number of
Unique

Derivatives

Number of
Unique

Derivative
Masses

Number of
Metabolites

Number of
Unique
Masses

CHO cell
HilNeg negative 2502 1619 1353 775 2392 76745 17930 56.72 23.14

HilPos positive 3856

SynNeg negative 5336

gut
microbiota

Neg negative 1651 1381 1307 779 2756 94186 23356 72.06 29.98

Pos positive 1657
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3.2. Annotation Opportunities

Compared to using the reference metabolic model for a biological sample, using an EMM as
the search space during metabolite annotation increased the size of the candidate set for annotation
in terms of (a) matching to a larger number of measured masses, and (b) suggesting a larger set
of putative chemical identities. Using these two metrics, we compared the size of the “biologically
relevant candidate sets” in the model- and EMMF-based workflows and compared that with the size
of the candidate set using PubChem (Table 2). A small percentage of the measured masses were
matched to masses of metabolites in the metabolic model. On average, 3.31% of measured masses
could be potentially annotated using the metabolic model only. When using the EMMs, this number
increased to 23.92%, a 7.6-fold increase. When restricting the EMM derivatives to those that had
a catalog entry in PubChem, the annotation rate dropped to 5.12%, as there are many compounds
that are not yet catalogued in PubChem, currently the largest structural database. Using PubChem,
the number of mass matches are in the millions. Not all such metabolites are biologically relevant.
The use of reference metabolic models or large databases such as PubChem therefore provide some
limitations in annotation when compared to using EMMs. Using EMMF allows for novel biological
discovery by suggesting biologically relevant compounds not in PubChem, and reduces the annotation
space considerably.

The quality of the EMMF candidates with known PubChem or KEGG identities (Supplementary
Listing) were evaluated by using CFM-ID. The number of EMMF candidates that were associated with
a KEGG or PubChem identities and the percentage of candidates that were associated with non-zero
CFM-ID scores are shown in Table 3. On average across all datasets, 50% of annotations suggested by
EMMF had a non-zero CFM-ID score. A considerable number of candidates received high CFM-ID
scores, with an average CFM-ID score of 0.475 and 0.396 for KEGG and PubChem matches, respectively.
The mean CFM-ID scores for the PubChem matches were lower than those for the KEGG matches.
The distribution of the CFM-ID scores for the matches in PubChem and in KEGG varied (Figure 2).
Lower scores may have indicated substructure matches corresponding to specific peaks.

As the KEGG database is largely a small subset of PubChem, using all of the KEGG compounds as
a candidate set for annotation may not be as computationally prohibitive as using PubChem. Further,
using only a biological database such as KEGG for annotation guarantees biological relevance of
candidate metabolites. A question that often arises regards the benefits of utilizing a general database
for annotation compared to when employing a database that mostly comprises biomolecules. Using the
EMMF workflow as a reference and restricting derivatives to those with chemical identities in PubChem,
we were able to explore and quantify the benefits. Specifically, we utilized the EMMF workflow to
identify candidate sets for our datasets. We then compared the EMM candidates against those obtained
using the database-based workflows using KEGG and PubChem (Table 4). Many candidate molecules
identified by EMMF that are catalogued in KEGG (e.g., for CHO cell HilNeg data, 93 out of 174 candidate
compounds). However, there were also EMMF candidate compounds found in PubChem that were not
catalogued in KEGG. For our datasets and using EMM metabolites as a reference, there was at least 2x
or more additional biologically relevant candidates in PubChem for each candidate identified in KEGG.
The twofold increase over KEGG is a lower bound on the number of biologically relevant metabolites
in PubChem. Using a large database such as PubChem thus significantly increases biologically relevant
annotation opportunities when compared to KEGG. Relying only on small biological databases limits
annotation. EMMF provides an alternative candidate set that provides different tradeoffs between
annotation opportunities and speed.
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Table 2. Candidate set size using different workflows. (A) Candidate set size when using the model: number of measured masses that match to metabolites
in the model, the equivalent percentage of the number of measured masses reported for experimental data in Table 1, and corresponding number of chemical
identities. (B) Candidate set size when using extended metabolic model (EMM)-based filtering: number of measured masses that match to metabolites in the EMM,
equivalent percentage in reference to the number of measured masses reported for experimental data in Table 1, and corresponding number of chemical identities.
(C) Further filtering of the EMM derivatives reported in column group (B) to include only mass measurements that match to previously known chemical IDs as reported
in PubChem, and reporting the number of matched masses, the relative percentage of these masses to the number of measured masses reported for experimental data
in Table 1, and the corresponding number of chemical IDs. (D) Size of the candidate set when filtering using PubChem.

Biological Sample (A)
Metabolites in Metabolic Model

(B)
All EMM Derivatives

(C)
EMM Derivatives with Previously Known

Chemical IDs

(D)
Using PubChem-based

Filtering

Number of
Measured

Masses
Matched to

Those in
Metabolic

Model

Percentage of
Measured

Masses
Matched to

Those in
Metabolic

Model

Number of
Chemical Ids
Associated

with
Measured

Masses

Number
of Masses
Matched
to Those
in EMM

Percentage
of Masses
Matched
to Those
in EMM

Number of
Unique

Mass-Matched
Derivatives in
EMM But Not
in The Model

Number
of Masses
Matched
to Those

with
Previously

Known
Chemical

IDs

Percentage of
Masses

Matched to
Those with
Previously

Known
Chemical IDs

Number of
Previously

Known
Chemical IDs

for EMM
Derivatives that
Mass-Match to
Measurements

Number of
Unique
Mass

Matches in
PubChem

Number of
Corresponding
Chemical IDs

Associated
with

Measured
Masses

CHO cell
HilNeg 118 4.72% 178 678 27.10% 2,725 174 6.95% 386 3,951,635 7,657,564

HilPos 75 1.95% 93 715 18.54% 2,729 132 3.42% 226 3,362,305 6,406,877

SynNeg 198 3.71% 229 1,490 27.92% 4,944 293 5.49% 527 7,058,696 14,133,885

gut
microbiota

Neg 51 3.09% 131 445 26.95% 2,470 77 4.66% 207 2,448,238 5,192,205

Pos 36 2.17% 43 316 19.07% 1,236 84 5.07% 149 2,774,074 5,572,587

Averages 96 3.13% 135 729 23.92% 2,821 152 5.12% 299 3,918,990 7,792,624
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Table 3. Percentage of EMMF candidates with non-zero CFM-ID scores and their average scores.

Biological Sample KEGG PubChem

Number
of EMMF
Derivatives

Percentage of
EMMF

Derivatives
with Nonzero

CFM-ID scores

Average
CFM-ID

Score

Number
of EMMF
Derivatives

Percentage of
EMMF

Derivatives
with Nonzero

CFM-ID scores

Average
CFM-ID

Score

CHO cell
HilNeg 65 65% 0.557 280 55% 0.415

HilPos 48 63% 0.395 286 49% 0.316

SynNeg 114 64% 0.501 446 51% 0.370

gut microbiota Neg 252 16% 0.631 197 53% 0.484

Pos 56 55% 0.292 428 29% 0.270

Average 53% 0.475 47% 0.396
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Figure 2. Distribution of CFM-ID scores for EMMF derivatives. (A) Chinese hamster ovary (CHO) cell
derivatives that had a match in PubChem. (B) CHO cell derivatives that had a match in KEGG. (C) Gut
microbiota derivatives that had a match in PubChem. (D) Gut microbiota derivatives that had a match
in KEGG.

Table 4. Using EMMs to compare the annotation opportunities of PubChem against the KEGG
database.(A) Experimental data for different datasets (repeated for convenience). (B) Number of
matched masses and candidate chemicals found using EMMF that are reported in KEGG. (C) Number
of matched masses and candidate chemicals found using EMMF reported in PubChem but not in KEGG.
(D) Lower-bounds on discovery of biologically relevant matched masses and candidate chemicals when
using PubChem over KEGG.

Biological
Sample

(A)
Experimental Data

(B)
In EMM And in KEGG

(C)
In EMM And PubChem,

And Not in KEGG

(D)
Lower-Bound Fold Increase

of Pubchem over KEGG

Dataset
Number of
Measured

Masses

Number of
Matched
Masses

Number of
Candidate
Chemical

IDs

Number of
Matched
Masses

Number of
Candidate
Chemical

IDs

Number of
Matched
Masses

Number of
Candidate
Chemical

IDs

CHO cell
HilNeg 2502 56 93 118 200 2.11 2.15

HilPos 3856 26 39 106 148 4.08 3.79

SynNeg 5336 88 122 205 283 2.33 2.32

gut
microbiota

Neg 1651 25 47 52 113 2.08 2.40

Pos 1657 23 28 61 93 2.65 3.32

Average 2.65 2.80
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The table reports the number of EMMF derivatives, percentage of EMMF derivatives that had
non-zero CFM-ID scores, and the average score. These results are reported for EMMF candidates that
had a matching identity in the KEGG and for PubChem databases.

3.3. Computational Time Required for Annotation

To generate the candidate set as the input to in silico annotation analysis in database-based
workflow (Figure 1B), we identified metabolites in the KEGG and PubChem databases that
mass-matched within 10 ppm to the masses in our experimental data for each dataset. We investigated
the computational time required to annotate the candidate sets from EMMs and from the combined
PubChem and KEGG databases. Annotation of each candidate set identified by EMMF required
a handful of hours, averaging 2.5 h per dataset (Table S1, group A). The number of candidate
metabolites from databases PubChem and KEGG for each of our datasets exceeded 5 million candidates,
with an average dataset size of 7.8 million candidates (Table S1, group B). It was computationally
prohibitive to annotate all mass-matched metabolites from the databases. To calculate the required
runtime, we estimated it using annotation runtimes based on the EMMF workflow (Table S1, group A).
Dividing the runtime by number of metabolites in the candidate set, on average, annotation requires
0.0085 h per match. Using this average, the estimated runtime for annotation of database-based
workflow was computed for each dataset. The average required runtime per dataset was over 65,000 h
(Table S1, group B).

3.4. Experimental Validation of EMMF

We next investigated whether any of the derivatives predicted by EMMF and matched to a detected
MS feature based on mass and MS/MS signature could be experimentally confirmed with a chemical
standard. We selected eight predicted derivatives that matched an LC–MS feature for CHO cell samples
(Table 5, group A). The selection was based on two factors: the rank assigned by the in silico annotation
tool and availability from a vendor. The selected derivatives were salicylaldehyde, one of the three
isomers of hydroxybenzaldehyde; 4-hydroxyphenyllactate, a tyrosine metabolite; acetoacetamide,
a monocarboxylic acid amide of acetoacetic acid; 5-aminopentanoate, a lysine degradation product;
glutarate, produced in lysine and tryptophan metabolism; 3-methoxyanthranilate, an ester of anthranilic
acid; 2-hydroxyphenylacetic acid, associated with styrene degradation pathway; and 4-pyridoxate,
a product of vitamin B6. When using KEGG as a database for annotation, CFM-ID ranked six of
the eight derivatives as the highest ranked candidates, whereas two of the derivatives were not in
KEGG (Table 5, group B). Further, a small number of candidate matches were found for each mass
measurement. When using PubChem as a database for annotation, all derivatives ranked among the
three top candidates (Table 5, group C). As expected, the number of putative matches increased when
compared to the number of matches using KEGG. The CFM-ID score for each candidate is provided
in Table 6. The CFM-ID scores ranged from 0.596 for the spectral signature annotated by EMMF as
salicylal, to 0.979 for the spectral signature annotated by EMMF annotated as 5-aminopentanoate.
We analyzed the number of reactions in CHO that contributed an operator that was used to generate
each derivative and the number of Enzyme Commission (E.C.) numbers that were associated with each
set of reactions (Table 5, group D). The number of reactions and enzymes varied for each derivative.
For example, 12 different reactions catalyzed by 15 enzymes corresponded to the operator that generated
4-hydroxyphenyllactate, whereas only one reaction and enzyme corresponded to the operator that
generated acetoacetamide.
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Table 5. Candidate metabolites identified by EMMF that were used for experimental validation.
(A) Candidate mass and name. (B) Ranking of metabolite and number of candidates that matched mass
measurement using KEGG. (C) Ranking of metabolite and number of candidates that matched mass
measurement using PubChem. (D) The number of reactions that yielded the PROXIMAL operator that
yielded each candidate metabolite and the associated number of enzymes that catalyze these reactions.
(E) The status of experimental validation.

(A)
Candidate Metabolites

(B)
KEGG

(C)
PubChem

(D)
PROXIMAL (E)

Mass
Measurement

(Daltons)

Candidate
Metabolite

Identified by
EMMF

Rank Matches Rank Matches

Number of
Reactions
Used to
Derive

Operator

Number of
ECs

Associated
with

Reactions

Experimentally
Validated?

122.04 Salicylaldehyde 1 1 1 1 1 1 No

182.06 4-Hydroxyphenyllactate 1 2 1 4 12 15 Yes

101.05 Acetoacetamide 1 1 2 3 1 1 No

117.79 5-Aminopentanoate 1 2 1 5 4 4 No

132.04 Glutarate 1 1 3 6 12 11 No

167.06 3-Methoxyanthranilate 1 1 2 3 8 2 No

152.05 2-Hydroxyphenylacetic
acid NA 1 1 4 1 1 No

183.05 4-Pyridoxate NA 0 1 1 1 1 No

We compared the RTs and MS/MS spectra of standards for these chemicals against the
corresponding CHO cell culture sample features (Supplementary Methods). We were able to confirm
correct annotation of 4-hydroxyphenyllactate (Figure 3). This demonstrated that the EMMF can indeed
identify a novel metabolite that was not found among metabolites cataloged for the organism of
interest, in this case the Chinese hamster.

In addition to KEGG, we searched for 4-hydroxyphenyllactate in MetaCyc. Neither database
associated this metabolite with the Chinese hamster. In KEGG, 4-hydroxyphenyllactate is associated
with three enzymatic reactions. Reactions 4-hydroxyphenyllactate:NAD+ oxidoreductase (Reaction
R03336 in the KEGG database) and 4-hydroxyphenyllactate:NADP+ oxidoreductase (R03338) are
both catalyzed by D-hydrogenase (E.C. 1.1.1.222, which was recently deleted and transferred to E.C.
1.1.1.110) and hydroxyphenylpyruvate reductase (E.C. 1.1.1.237). Reaction 3-(4-hydroxyphenyl)lactate
hydro-lyase (4-coumarate-forming) (Reaction R08766 in the KEGG database) is associated with
an enzyme that has yet to be characterized (E.C. 4.2.1.-). It is unlikely that the source of
4-hydroxyphenyllactate in our sample was exogenous, as our cell culture medium was chemically
defined and did not include this metabolite. Further evidence that the metabolite is endogenously
derived was provided by a recently updated genome-scale metabolic model (GEM) for the CHO cell
in the BiGG database [30]. This GEM reconstruction (iCHOv1) included 4-hydroxyphenyllactate as
a “universal” metabolite that could be formed enzymatically, but for which a specific gene encoding
the enzyme remains unknown. None of the other standards confirmed matches (Figure S3). Further,
upon careful examination of the spectral signature annotated as glutarate, we realized that the spectral
signature was incorrectly selected via peak picking. We therefore excluded it from further analysis.
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Table 6. EMMF candidate metabolites analyzed using annotation tools and databases.(A) Candidate metabolite suggested by EMMF on the basis of scores from
CFM-ID. (B) CFM-ID score. (C) Name of top match compound(s) and its score based on the GNPS spectral library. (D) Name of top match compounds and its score
based on HMDB. (E) Number of PubChem candidates based on a 10ppm window of the measured mass. (F) MetFrag results, including the rank of the compound
identified via EMMF based on CFM-ID scores and compound availability, its associated number of peaks in the spectral signature that MetFrag explained compared to
the number of peaks that were utilized to provide the MetFrag ranking, the top match provided by MetFrag, and its associated number of peaks in the spectral
signature that MetFrag explained compared to the number of peaks that were utilized to provide the MetFrag ranking.

(A)
EMMF

(B)
CFMID

(C)
GNPS

(D)
HMDB

(E)
PubChem (F) MetFrag

Mass
Measurement

(Daltons)

Candidate
Metabolite Score

Matched
Compound

( Score)

Matched Compound
(Score)

Number of
Matches

Rank of
Compound

Identified by
EMMF

# of Peaks
Explained/
# of Peaks

Used

Top Ranked Candidate

# of Peaks
Explained/
# of Peaks

Used

122.04 Salicylal 0.596 No Match No Match 241 27 4/8 2-cyclopenta-1,3-dien-1-yl-2-
oxo-acetaldehyde 4/8

182.06 4-Hydroxyphenyllactate 0.717 No Match Homovanillic acid
(0.43) 1694 218 10/22 methyl

2-hydroxy-2-phenyl-peroxyacetate 11/22

101.05 Acetoacetamide 0.682
Aminocyclopropane

(0.92),
L-threonine (0.90)

No Match 445 331 1/2 hydroxy
N-isopropenylmethanimidate 1/2

117.79 5-Aminopentanoate 0.979 No Match

L-Valine (0.44),
Betaine (0.34),

5-Aminopentanoic acid
(0.31)

858 12 2/5 2-[ethyl(methyl)amino]acetic
acid 2/5

132.04 Glutarate 0.600 No Match Ethylmalonic acid
(0.41) N/A

167.06 3-Methoxyanthranilate 0.949 No Match

Mandelic acid (0.55),
3-Hydroxyphenylacetic

acid (0.44),
p-Hydroxyphenylacetic

acid (0.40),
Ortho-Hydroxyphenylacetic

acid (0.19)

1962 972 2/7 (2-aminophenyl)
peroxyacetate 2/7

152.05 2-Hydroxyphenylacetic
acid 0.716 4-hydroxyphenylacetic

acid (0.81) No Match 841 129 1/4 methyl-phenyl-silyl-silane 1/4

183.05 4-Pyridoxate 0.870 4-Pyridoxate (0.76) No Match 1252 149 2/5 2-[1-(3-furyl)ethylideneamino]
oxyacetic acid 2/5
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Figure 3. Mirror plot for 4-hydroxyphenyllactate, KEGG compound C03672. (A) Experimental data
collected using untargeted metabolomics from the CHO cell culture. (B) Data from high-purity chemical
standard. This is considered a match by retention time (RT; difference < 3 min) and by MS/MS (spearman
rank correlation p-value < 0.05 and r-value > 0.6).

We further analyzed the spectral signatures comprising our experimental validation set using the
Global Natural Products Social Molecular Networking (GNPS) spectral library [45]. There were
suggested matches in GNPS (Table 6, column C). The spectral signature that was annotated
by EMMF as acetoacetamide was matched in the GNPS library with aminocyclopropane and
L-threonine (cosine scores 0.92 and 0.9, respectively). Neither of these candidates were suggested
by PROXIMAL. The spectral signature that was annotated by EMMF as 2-hydroxyphenylacetic
acid was matched in the GNPS library with 4-hydroxyphenylacetic acid (cosine score of 0.81).
Compounds 2-hydroxyphenylacetic acid and 4-hydroxyphenylacetic acid are isomers that only differ
in their hydroxyl group positions. The spectral signature that was annotated by EMMF as 4-pyridoxic
acid was matched with the same compound in the GNPS library (cosine score 0.76). None of the other
features matched to a metabolite in the GNPS library, including the metabolite that was identified by
EMMF and experimentally validated as 4-hydroxyphenyllactate.

We further explored the annotation of the experimental validation set using the Human
Metabolome Database (HMDB) [46]. There were several suggested matches for four metabolites
(Table 6, column D). The scores, however, were relatively low for all compounds. Homovanillic acid,
with a score of 0.43, was incorrectly suggested as a match for the spectral signature experimentally
verified as 4-hydroxyphenyllactate.

We report the number of PubChem compounds that matched in mass to the measured spectra
(Table 6, column E), and the MetFrag analysis of the test spectra (Table 6, group F) using PubChem
as a database. The number of candidates ranged from 241 to 1962. None of the tested compounds
were ranked highly amongst the candidates, including the compound experimentally verified as
4-hydroxyphenyllactate. The rank for 4-hydroxyphenyllactate was 12. The top match via MetFrag for
the compound annotated by EMMF as 2-hydroxyphenylacetic acid was methyl-phenyl-silyl-silane,
a compound that includes silicon. There is a chance that this compound may be due to an unknown
environmental contaminant from. Excluding this low-probability possibility, this compound is clearly
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not native to CHO cell metabolism, thus emphasizing the need for biologically relevant filters when
performing annotations.

4. Discussion and Conclusions

Our EMMF workflow addressed the challenge of creating an annotation candidate set that is
enzymatically relevant to the sample under study and that includes metabolites beyond what is already
catalogued in reference metabolic models. One important contribution of the work is conceptually
separating the engineering of the candidate set from annotation, as EMMF creates a biologically
relevant candidate set that can be utilized for putative identification. Prior works provided limited
engineering of candidate sets. These works focused on exclusions of particular elements, substructures,
or compounds [47], or on inclusion sets [48]. Filtering PubChem compounds using PubMed Medical
Subject Heading (MeSH) labels [49] can reduce the candidate set size by including only naturally
occurring compounds that are biologically relevant (carbohydrates, lipids, etc.). However, only a tiny
fraction (124,049 compounds) of PubChem compounds has MeSH labels. Filtering using current MeSH
labels was reported to reduce a candidate set of 62,782 structures that match in mass to 3868 compounds
in the GNPS dataset to only 36 compounds [21].

Results from comparing the three workflows emphasized the need for optimizing the engineering
of candidate sets. We demonstrated for our two case studies that using candidate sets from large
databases is computationally prohibitive, as others have also noted [21]. We also demonstrated
that using a biological database such as KEGG yields a smaller candidate set when compared to
using a large structural database. Continued and significant growth of biological databases such as
HMDB [46], which allows not only for candidate retrieval but also for spectral searches, promises to
improve annotation rates and reduce the uncatalogued unknowns that must be explored in novel ways,
as suggested herein. We further demonstrated that using a reference metabolic model is inadequate,
as only a very small percentage (3.31% on average) of measurements can be annotated. In this regard,
EMMF contributes two key advances. First, filtering candidate chemicals using an EMM allows for the
identification of novel metabolites that are missing from a GEM reconstruction. This advance addresses
the need to enable discovery, which is inherently limited in the simpler approach of using a model
comprising only known metabolites to filter the candidate chemicals or when using a small biological
database, without incurring a prohibitive computational cost. Second, filtering the measurements
through an EMM specific for the system of interest provides a biologically relevant and computationally
feasible candidate set. This advance eliminates unnecessary and time-consuming computations on
chemicals from large databases that are likely irrelevant to the system of interest. Not all biologically
relevant candidates from a large database are in the EMM. This issue could be addressed by further
expansion of the EMM candidate set by the repeated application of the biotransformation operators
derived from the reference model to derived promiscuous products.

EMMF relies on a reference metabolic model for annotation. Other recent studies have also
exploited the metabolic network to enhance annotation. One method, iMet, suggests that neighboring
metabolites within a metabolic network have similar MS/MS spectra and trains a classifier to predict if
two spectra belong to neighboring metabolites [50]. The classifier is trained using MS/MS spectra from
spectral databases and mass differences between reactant pairs from KEGG that are not specific to
the biological sample. Another method, BioCAN creates a network based on measured features
and assigns aggregate annotation scores based on spectral lookups and annotation tools [51].
Mummichog maps features to metabolic models, and performs statistical pathway and module
enrichment [52]. There are also other studies that exploit putative biotransformation for annotation.
In one method, the mass difference between a pair of features is matched against mass differences
between substrate–product pairs of common metabolic conversions (oxygenation, acetylation, etc.),
with a match indicating a potential biochemical transformation between the pair of detected feature
masses [53]. These transformations can be used to propagate metabolite annotation from an identified
metabolite to its potential reactants and products. In contrast to this method, EMMF does not require
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any MS/MS training data and utilizes biological context that is specific to the sample to suggest
a candidate set. There is a common limitation when using metabolic models to improve annotation.
Genome-scale metabolic reconstructions can be incomplete, especially for non-model organisms.
EMMF suggested that 4-hydroxyphenyllactate may result from the promiscuous activity of one
or more carboxylic acid dehydrogenases expressed in the CHO cell on 4-hydroxyphenylpyruvate.
Using a chemical standard, we confirmed the presence of 4-hydroxyphenyllactate in the CHO cell
samples analyzed in this study, even though there is no documented gene associated with CHO
cell metabolism that can catalyze the reaction with 4-hydroxyphenyllactate as product. Our result
is supported by other recent papers that report on the presence of this metabolite in CHO cell
cultures [54,55].

This work presents the first in vivo experimental evidence for a computationally predicted
metabolite derived through promiscuous action of an enzyme. Using a chemical standard, we confirmed
the presence of 4-hydroxyphenyllactate in a CHO cell culture, even though there is no documented gene
associated with the CHO cell metabolism that can catalyze the reaction with 4-hydroxyphenyllactate as
product. We were, however, able to confirm only one out of the eight predicted metabolites. This could
be due to inaccuracies in the rankings by the annotation tools. Analyses of the tested compounds
using the GNPS spectra database, HMDB, CFM-ID, and MetFrag showed significant variations in the
annotation results. The low confirmation rate can also be due to the assumption that all enzymes are
promiscuous. As an enhancement, we are currently investigating methods to improve PROXIMAL
to rank predicted derivatives on the basis of enzyme designations as generalists or specialists [56]
and participation in primary or secondary metabolism [57]. The current version of PROXIMAL is
available through the web portal http://hassounlab.cs.tufts.edu/proximal. This work did not evaluate
the quality of candidates that did not have a match in PubChem or KEGG. A thorough evaluation of
these candidates may have yielded biologically relevant matches.

It is possible to utilize other tools or databases to identify metabolites that could occur due
to enzyme promiscuity. For example, BioTransfomer utilizes a knowledgebase (MetXBioDB) and
a reasoning engine to predict enzyme products [58]. MetXBioDB provides chemical and biological
information for deriving biotransformation rules that can be utilized with the reasoning engine.
The BioTransfomer metabolite identification tool analyzes biotransformations associated with human,
gut microbiome, or environmental enzymes to suggest promiscuous enzyme products for an input
molecule. Similarly, the MINEs database [59] extends other databases of known metabolites by
computing new structures that follow a set of biochemical transformation rules [60]. The MINEs
database was incorporated in MS-FINDER 2.0 to support an annotation function that retrieves structural
isomers of predicted formulas for a given spectral signature [61]. In contrast to Biotransformer and
MINEs, which use curated generic biotransformation rules, PROXIMAL utilizes organism-specific
transformation rules derived specifically from reactions within the organism’s metabolic model.
A systematic evaluation of such promiscuity prediction tools can shed light on the tradeoffs between
a limited number of generic but highly curated rules vs. a larger number of automatically generated
rules when predicting promiscuous products.

Despite limitations due to the underlying potentially incomplete metabolic models and to the
accuracy of current annotation tools, EMMF demonstrates utility in creating an expanded, biologically
relevant candidate set and in utilizing it to enhance annotation. This utility is demonstrated via the
discovery of 4-hydroxyphenylpyruvate and in high annotation scores using CFM-ID for some EMMF
derivatives. Importantly, EMMF promises to offer annotation opportunities beyond those possible
with metabolic models without the high computational cost of searching large structural databases
that contain many non-biological compounds.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/160/s1,
Supplementary Methods is a PDF file that provides a detailed description of PROXIMAL and EMMF. Supplementary
Listing is an excel spreadsheet that lists promiscuous enzymatic products in SMILES format for the CHO and gut
microbiota samples.

http://hassounlab.cs.tufts.edu/proximal
http://www.mdpi.com/2218-1989/10/4/160/s1
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