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Abstract: Properties and applications of synthetic thiol- and disulfide-based materials, principally
polymers, are reviewed. Emphasis is placed on soft and self-assembling materials in which inter-
conversion of the thiol and disulfide groups initiates stimulus-responses and/or self-healing for
biomedical and non-biomedical applications.
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1. Introduction
1.1. Thiols and Disulfides in Materials Chemistry

Thiols (RSH) and disulfides (RSSR) are components of many proteins, biopolymers,
and biomolecules. In nature, thiols and disulfides contribute to key biological functions
related to cell signaling, protein conformation and folding processes, redox homeostasis,
and biopolymer secondary structure development. Thiol groups and/or disulfide linkages
can be incorporated into polymers to produce stimulus-responsive and/or self-healing
materials. They owe their stimulus-responsiveness to covalent disulfide bonds, which can
be broken and re-formed under mild conditions. The extent of reactivity, and thus the
stimulus-responsive behavior depends on the nature of the groups flanking the disulfide
bond, as well as interactions with stimuli such as light, heat, mechanical force, and changes
in the pH or redox state [1]. The ease with which thiols can be converted to disulfides, and
vice versa, renders thiol-containing polymers (thiomers) similarly dynamic.

This review will focus on the properties and applications of synthetic thiomers and
disulfide-containing polymers, with an emphasis on soft and self-assembling materials.
Common thiol-containing pendant groups, as well as the synthetic methodologies for
their incorporation into polymers, have been discussed extensively in a 2019 review of
biomedically relevant thiomers, which includes a discourse on thiomer design strategies [2].
A recent review by Bej and coworkers covered responsive aggregation of both small
molecule and polymer amphiphiles containing disulfide bonds, with an emphasis on
biomedical applications [3]. Additionally, thiol and disulfide-based self-healing materials
were reviewed by Yang [4], Wang [5], Utrera-Barrios [6], and their coworkers. Here, we
discuss polymers in which the thiol and disulfide groups are important to their function. In
addition to the types of systems previously reviewed, many examples of disulfide-based,
self-healing polymers, many of which are elastomers, will be mentioned. However, to
the best of our knowledge, no review devoted specifically to self-healing disulfides has
been published.

After a brief overview of reactions between (and among) thiols and disulfides, a
variety of thiol- and disulfide-based stimulus-responsive systems will be reviewed. The
examples will be classified by the structures of the materials and the stimuli employed.
The processes include thiol-disulfide and disulfide-disulfide exchange reactions, and redox
reactions, as well as multiple responses by materials that contain additional functionalities
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which trigger “cascade” reactions (such as decomposition). The connections between
the applications and the structures of the materials and the nature of their reactions will
be emphasized.

1.2. Some Important Reactions of Thiols and Disulfides

Thiol-disulfide exchange reactions can occur between deprotonated thiols (thiolates)
and disulfides. Thiol-disulfide exchange proceeds via substitution-type pathways, with the
thiolate anion (RS−) functioning as the nucleophile (1 in Figure 1). In addition, thiols can
be oxidized to disulfides (2 through 10 in Figure 1), and disulfides can be reduced to thiols.
Although the products of oxidation or reduction reactions are often the same as those of
thiol-disulfide exchange reactions, the pathways are mechanistically different (as shown in
Figure 1). There are well-documented multi-step examples of both one electron (7 through
10 in Figure 1) and two electron (2 through 6 in Figure 1) oxidation pathways within cells [7].
Thiyl radicals (RS·) can be generated from thiols or disulfides using a variety of reagents or
stimuli. Thiyl radicals play a crucial role in biological systems and are important reagents
in organic synthesis. Thiyl radicals are intermediates in disulfide-disulfide metathesis
reactions, also known as disulfide-disulfide exchange reactions, which proceed via a
radical pathway (11 in Figure 1). Because disulfide linkages are often the weakest covalent
bonds in an organic molecule, they provide an avenue to tune the properties of a material
under mild reaction or stimulus conditions. Please note that the product distributions of
both thiol-disulfide and disulfide-disulfide exchange depend upon the ratios of reactants
and the nature of the R groups, which determine product stabilities.
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Figure 1. Reactions of thiols (RSH) and disulfides (RSSR): 1.1 SN2-mediated thiol-disulfide exchange;
1.2–1.6. Thiol oxidation with two-electron oxidants, where RSX is a sulfenyl halide, RSOH is a sulfenic
acid, HOX is a halohydrin, and HOx is the reduced oxidizing agent; 1.7–1.10 Thiol oxidation with
one-electron oxidizing agents; 1.11 disulfide-disulfide metathesis.
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1.3. Biological Relavance of Thiols and Disulfides

Some molecules of biological relevance that exploit the disulfide bond are shown in
Figure 2. For example, processes involving cystine (Cys2) and cysteine (Cys) interconver-
sions have structural and functional consequences on the macroscopic and microscopic
scale. On a macroscopic level, disulfide bonds in Cys2 stabilize the secondary structure of
keratin-based materials, such as hair, wool, and nails. The cleavage of disulfide bonds in
keratin results in a dramatic decrease of strength and elasticity of these materials. In that
regard, the redox states and pH of intracellular and extracellular environments control the
reversible oxidation of Cys to Cys2 in polypeptides. As such, disulfide bonds are keys to
the protein folding process, and thus strongly dictate protein conformation.
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1.4. Thiols and Disulfides in Materials Science

Nature has shown that thiol-disulfide exchange and redox reactions can be used
to interconvert thiols and disulfides reversibly in response to changes in pH or redox
state. The dynamic nature of the disulfide bond has been extended to materials science
to produce a wide range of stimulus-responsive materials. The reviews of Seidi [8] and
Zhang [9] include recent examples of controlled drug release, with an emphasis on stimulus-
responsive and redox-triggered drug release. These reviews include several examples of
thiol- and disulfide-based materials.

Thiol-disulfide exchange is often used to bind thiomers to disulfide-containing sub-
strates, and to trigger the release of disulfide bound “cargo,” such as drugs or dyes, from
a polymer upon exposure to high concentrations of thiols and/or changes in pH. Thiol
oxidation and disulfide reduction are commonly used to form and break covalent disulfide
crosslinks in polymeric networks, respectively. The scission and reformation of disulfide
crosslinks in situ via reduction and oxidation, respectively, is often reported as a means for
reversible sol-gel transitions. Commonly, dramatic rheological changes are observed over
several reversible sol-gel redox cycles. Self-healing behavior has been widely reported for
a variety of disulfide-containing polymers, due to disulfide-disulfide shuffling reactions,
which occur after breakage.

1.5. Applications of Thiomers and Disulfide-Containing Polymers

Drug delivery is among the most common biomedical applications of thiomers and
disulfide-containing polymers. The prototypical drug delivery system releases a conjugated
drug molecule after being exposed to a cellular trigger. For example, solid tumors have
higher levels of GSH and lower pH levels than healthy tissues. Chemotherapy employing
a drug delivery system can be tuned to release the drug when exposed to the unique
chemical environment of a cancer cell; more targeted drug delivery results in fewer side
effects [3]. Figure 3 demonstrates the wide variety of drug delivery systems that rely on
disulfide bonds for controlled delivery of nucleic acid therapeutics [10].
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The reviews of Dutta [10], Wang [11], and Saitoa [12] focus on disulfide-based drug
delivery systems. Another notable application is in the field of biomedicine, which merges
biological and physiological principles within clinical science. Biomedicine often deals with
mucoadhesive materials, which contain thiols and/or disulfides that penetrate mucosal
membranes by binding with free thiol side chains from Cys residues [2].

The applications of thiomers and disulfide-containing polymers extend beyond biomedicine.
A wide range of dynamic materials, such as self-healing elastomers [4,13], shape memory
polymers [14] and stimulus-responsive polymers [9,15] have been designed as coatings [16],
adhesive materials [17], and sensors [2,18]. Incorporation of thiols and/or disulfides into
polymers that contain other stimulus-responsive moieties is an emerging technique that has
been used to fabricate multi stimulus-responsive materials that may enhance specificity for
both biomedical [15] and non-biomedical applications [6,14,18] For example, drug delivery
systems incorporating multi-stimulus-responsive materials can increase the amount of
drug reaching the targeted cells [19,20]. Some multi stimulus-responsive materials have
been designed to release a drug only after the application of two or more stimuli associated
with the target environment. Other multi stimulus-responsive drug delivery systems
incorporate functional groups designed to enhance targeting specific types of cells.

2. Factors Influencing the Reactivity of Thiols and Disulfides
2.1. Factors Influencing the Bond Strengths of Thiols and Disulfides

The strengths of both the RS-H and RS-SR bonds are highly dependent upon the
nature of the attached R groups. Thus, changing the R group provides a means to tune the
reactivity and, therefore, the stimulus-responsiveness of thiol- and disulfide-containing
materials. Alkanethiols and thiophenols have homolytic S-H bond dissociation energies
of ca. 87 and 79 kcal/mol, respectively [21]. Disulfides generally have lower homolytic
S-S bond dissociation energies, ranging from 50-65 kcal/mol [21]. Aryl thiols, such as
thiophenol, generally have the lowest homolytic S-H bond dissociation energies, especially
when an electron donating aryl substituent is present at the para position [22]. The relatively
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low homolytic bond dissociation energies of thiols and disulfides facilitate important
radical reactions, and thiols are very popular initiators for free radical polymerization
reactions [22].

2.2. Reactivity of Thiols and Disulfides in Thiol-Disulfide Exchange Reactions

Thiol pKa values span a large range, from 3 to 11, with values contingent upon the
nature of the R group attached to the sulfur atom [23]. Often, pKa values can be used to
predict whether a reaction will favor the reactants or products in a thiol-disulfide exchange
(1 in Figure 1). The thiolate anion RS− reacts about 1010 times faster than the corresponding
thiol in a thiol-disulfide exchange reaction. However, because thiol-disulfide exchange is
known to be a kinetically driven process, equilibrium parameters are sometimes not good
predictors [7].

When the pKa of the thiol is ~7, the thiol-disulfide exchange rate constant is at its
maximum value (Figure 4; [7]). The rate constant decreases as thiol pKa decreases below
7, or increases above 7, due to a decrease in thiolate nucleophilicity and in the fraction of
thiolate in solution. In addition to pKa values, a comparison of the redox potentials of the
thiol reactant and product is generally a successful method to predict whether a reaction is
favored [7,24].
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However, considering only the nature of the R groups of the thiol reactant and product
tends to be a pragmatic (rather than critically planned) approach when the reactants and/or
products are polymers. The nature of monomers and co-monomers along the polymer
backbone must also be considered. All else being equal, a thiomer comprised of a flexible,
low glass transition temperature (Tg) polymer backbone will be more reactive than one
with a strong, rigid polymer backbone because the thiol and disulfide groups in the former
are more likely to adopt the required transition state geometry (Figure 5) when they are
nearer. For similar reasons, similar polymers with greater degrees of thiolation are more
reactive to a disulfide than those with lower degrees of thiolation.
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Figure 5. The orientation of a thiol and disulfide during thiol-disulfide exchange. Sn is the nucleophilic sulfur of the thiolate
reactant; Sc and Slg are the central and leaving group sulfur atoms of the disulfide reactant Adapted with permission
from [23]. Copyright (2013) Elsevier B.V.

Disulfide products are stabilized by electron donating groups, the presence of nega-
tively charged groups, and hydrogen bonding in the overall structure [2]. The placement
and type of electrostatic charges on the backbone and the groups surrounding the thiol or
disulfide influence the reactivity in the exchange reaction. Reactivity is inhibited if the thiol
or disulfide moieties are flanked by groups with the same charge type. Similarly, if both
the thiol and the disulfide have the same charge, the rate of exchange will be impeded by
electrostatic repulsion (Figure 6; [2]).
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Some thiol reactants can yield cyclic disulfides in thiol-disulfide exchange reactions.
Likewise, some disulfide reactants can yield thiols that tautomerize into forms such as
thiones. In either case, the reverse reaction is substantially slowed and effectively blocked,
resulting in a near quantitative thiol-disulfide exchange [23,24]. Thiols and disulfides,
such as dithiothreitol (DTT) and 4,4′dithiodipyridine, are therefore favored reactants for
the reduction of disulfides and the oxidation of thiols, respectively [23]. Although these
reagents participate mechanistically in thiol-disulfide exchange reactions, the products are
formed in nearly quantitative yields; thus, the terms “oxidation” and “reduction” are far
more common in the literature. Conversely, the term “thiol-disulfide exchange” is more
commonly used to describe reactions that are more dynamic and not quantitative.

2.3. Factors Influencing the Redox Chemistry of Thiols and Disulfides
2.3.1. Reduction of Disulfides with Thiols by Exchange Reactions

Reactions of disulfides with redox active thiols, such as DTT, are frequently described
in the literature as being reductions, but mechanistically, they are often thiol-disulfide
exchange reactions [7]. Generally, the term “reduction” is applied to thiol-disulfide ex-
change reactions that are occur in nearly quantitative yields. This condition can be achieved
by employing excess thiol reagent and using specific thiols that have higher reduction
potentials or that form cyclic rings (such as mercaptoethanol (ME) or DTT; Figure 2).

DTT and GSH are the most popular reagents for the in situ reduction of disulfide gels
to thiol sols In soft matter, and many studies have shown that thiol sols can be reversibly
oxidized to disulfide gels, then reduced with DTT or GSH to regenerate the thiol sol. This
process can often be repeated several times with little loss of disulfide gel strength in
some cases [25,26]. As such, it is ideal for applications related to fast and reversible in situ
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gelation. However, in depth analysis of the gels and sols is not possible if the by-products
are not removed between the gel-sol transformation steps.

2.3.2. Direct Reduction of Thiols with Non-Thiol Reducing Agents

Facile, direct reduction of disulfides to thiols can be achieved with several non-thiol
reducing agents, such as borohydrides, zinc and dilute acid, nascent hydrogen, and phos-
phines [24,27]. The direct reduction of disulfides with non-thiol reductants does not require
the removal of disulfide by-products or residual thiol reductants in the reaction mixture.
As indicated in the previous section, by-products that cannot be easily removed can often
complicate analysis. It is also possible to reduce one disulfide to one equivalent of the
corresponding thiol and one equivalent of an S-substituted derivative using sulfite or
cyanide. Although the atom efficiency of such reactions is low, they are used often for
analytical purposes [24].

2.4. Oxidation of Thiols to Disulfides

The oxidation of thiols can produce both symmetrical and unsymmetrical disulfides,
the latter of which are sought for a variety of applications [28,29]. The formation of
unsymmetrical disulfides has been extensively used to determine important members of
dynamic combinatorial libraries comprised of thiol and disulfide mixtures. The knowledge
gained from studying dynamic combinatorial libraries of thiols and disulfides can be used
to promote specific reaction products, and interesting results have been reported for many
unsymmetrical systems [1,30].

The groups attached to a thiol determine how easily it can be oxidized to a disulfide.
The ease of oxidation increases from tertiary to primary R groups attached to sulfur, and
aryl thiols are easier to oxidize than aliphatic ones. Aryl thiols can often be oxidized by
molecular oxygen, even in air [28]. However, over-oxidation of thiols to sulfonic acids,
sulfinc acids, etc. can occur with some oxidants. Iodine and disulfide-based reagents
have been found less likely to over-oxidize thiols beyond the disulfide form. The oxida-
tion of tertiary thiols generally requires very harsh conditions that are not tolerated by
most functional groups. Conversely, the aerobic oxidation of aryl and primary thiols to
the corresponding disulfides can often be achieved in high yields in the presence of a
silica-supported iron, manganese, or cobalt salt catalysts [28]. Unlike air, diethyl azodicar-
boxylate (DEAD) and diisopropyl azodicarboxylate (DIAD) can be used to selectively form
unsymmetrical disulfides, RSSR’ from two thiols, RSH and R’SH [28,29].

There are many reports of materials based on aryl disulfides that exhibit exceptional
self-healing abilities [4,13]. Overall, aryl and primary disulfides, as well as a wide vari-
ety of non-aliphatic disulfides, are favored in self-healing applications because they are
sufficiently reactive to undergo facile oxidation or thiol-disulfide exchange reactions. The
mild conditions needed for aryl disulfide S-S bond scission generally tolerate most of the
common polymer backbone functional groups. Thus, aryl disulfides are well suited for
incorporation into multi stimulus-responsive materials, which often contain other func-
tional groups. Many other materials incorporating aryl disulfides are more sensitive to
applied stimuli than are aliphatic disulfides [13]. For that reason, employing aryl disulfides
facilitates finding conditions appropriate for provoking material response. A potential
problem of incorporating aryl disulfide groups into materials is the possibility of decom-
position via hydrolysis at higher pH values [24]. As pointed out by Leichner [2], thiol- or
disulfide-containing polymers behave optimally when two competing factors—strong re-
sponses to applied stimuli in the target environment, and stability before entering the target
environment—are balanced. If thiomers or disulfides are too reactive, they may prema-
turely react with non-target stimuli, or decompose before reaching target sites in the body.

2.5. Radical Reactions and Radical Coupling of Thiols and Disulfides

Disulfide-disulfide metathesis (11 in Figure 1) is the primary reaction responsible for
the self-healing processes of many disulfide-based polymers and elastomers [4]. Although
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many such polymers have been reported to be self-healing, the mechanistic process for it is
not well understood.

Disulfide-disulfide metathesis is also an important side reaction in many disulfide-
containing polymers [31]. When materials containing disulfide bonds are mechanically
fractured, thiyl radicals are generated [4,32]. Self-healing of fractured disulfide-containing
polymers requires thiyl radical chain ends to approach one another, after which radical
recombination and self-healing become possible [4]. Self-healing is favored within flex-
ible polymers with low Tg values, and recent research has considered various methods
to incorporate disulfides into high Tg polymers to produce stronger materials that can
adequately self-heal [13]. Disulfide-containing polymers that are slow to self-heal under
ambient conditions can be exposed to ultraviolet (UV) light or heat to accelerate the rate
and efficiency of self-healing.

3. Reaction Types and Applications

Thiols and disulfides have been incorporated into a wide variety of polymer backbones
to impart stimulus-responsiveness. In many cases, an applied stimulus prompts either
a thiol-disulfide exchange reaction or a redox reaction. The review of Leichner contains
examples of common polymer backbones and common thiol-containing pendant groups
which can be appended to them to generate thiomers [2]. The wide array of polymer back-
bones reported in the literature reflects why thiomers and disulfide-containing polymers
are so ubiquitous in materials science: thiols and disulfides can be incorporated into many
polymers with relative ease by a variety of techniques [1]. Additionally, the reactivity of
the thiol and disulfide groups can be tailored easily by altering the connectivity (changing
R groups). Thiols and disulfides are ubiquitous components of living systems, which have
evolved sophisticated and specific reactivity pathways for in vivo stimulus-responsiveness.
Thiomers and disulfide-containing polymers are ideal candidates for applications where
biological stimuli are desired to trigger a response [2]. The following sections are divided
to show key methods in which stimuli have been used to prompt thiol-disulfide exchange,
disulfide-disulfide exchange, and/or redox reactions for specific applications.

3.1. Thiol-Disulfide Exchange-Based and Redox Reactions
3.1.1. Natural Keratin Protection and Regenerated Keratin Enhancement

There is much interest in finding methods by which keratin waste products can be
processed into high quality materials. Keratin is a ubiquitous, crosslinked biopolymer
protein that forms a variety of materials, including animal horns, feathers, nails, and
hair [33]. The animal butchery and textile industries produce large volumes of keratinous
waste materials that usually are not repurposed due to a large decrease in the mechanical
properties suffered during processing [34]. That is unfortunate because keratin is one of
the strongest known natural materials. The currently employed conditions are harsh, in
that they rupture disulfide bonds and destroy secondary structures [35,36].

A large part of the strength of keratin is a consequence of the large number of disulfide
bonds between Cys groups of its amino acid residues [37]. In combination with strong
hydrogen bonding, the disulfide bonds in keratin enable the formation of very strong and
stable secondary structures, such as fibers.

Mi et al. demonstrated that the secondary structures of waste keratinous materials can
be restored after processing by crosslinking it with a dithiol, dithiothreitol (DTT), which
functions as a “disulfide chain extender” [38]. In their work, the disulfide bonds of keratin
were reduced, after which either a “disulfide capping agent” (Cys) or a “disulfide chain
extender” (DTT) was added to regenerate disulfide bonds (Figure 7). Both wet and dry thin
films fabricated from the disulfide chain extended keratin exhibited superior mechanical
properties, relative to the capped keratin films.
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The capping agents and disulfide extending groups were incorporated by reacting the
free thiol (Cys) groups of processed keratin with individual Cys molecules or DTT. Unlike
the capped keratin, the disulfide extended keratin can form extended networks because
one molecule of DTT can react with itself and/or the Cys groups in keratin, forming DTT-
based disulfide bridge crosslinks of variable lengths. Mi et al. hypothesize that the chain
extended, crosslinked keratin network is dynamic, and that disulfide-disulfide metathesis
facilitates crosslink reorganization during stretching (thus making the elasticity and tensile
strength of the disulfide extended keratin film greater than the capped keratin film). The
different bridge lengths are hypothesized to be the main reason for the dynamic nature of
the disulfide extended network.

Other groups have adopted different approaches to investigate how to protect keratin
by adding a thiomer capping agent. Thiol groups are an ideal target site for attachment of
groups that can protect or restore hair, because hair contains between 7–20% Cys [37], most
of which is present in the oxidized Cys2 form [39]. Leichner and coworkers [39] reduced
keratin from human hair, generating a form with free Cys thiol groups (keratin-SH). They
further derivatized keratin-SH with oxidized 2-mercaptonicotinic acid (MNA), generating
a keratin-MNA derivative (Figure 8).

Natural and bleached hair strands were soaked in an aqueous solution at pH 8
containing 1% of either keratin, keratin-SH, or keratin-MMA, to determine the binding
ability of the keratins to hair. Keratin-MMA had the highest binding affinity to both natural
and bleached hair fibers, relative to underivatized keratin and keratin-SH. The increase in
the binding ability of keratin-MMA was especially pronounced for bleached hair strands,
which were able to bind approximately three times more keratin-MMA than underivatized
keratin, regardless of whether the strands were exposed to one or five treatments noted
above. Fernandes [40], Roddick-Lanzilotta [41], and Barba [42] also investigated alternative
hair treatments designed to avoid directly breaking and then reforming disulfide bonds
in keratin.
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Figure 8. Reduction of keratin, to generate keratin-SH, and subsequent reaction with oxidized MMA
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Fundamentally, both the protection and regeneration of keratinous materials relies
on an initial reduction followed by a binding step that establishes new disulfide bond
crosslinks between the Cys groups of keratin and thiol groups of the added material.

3.1.2. Mucoadhesion

Thiomers and disulfide-containing polymers have garnered interest as potential mu-
coadhesive drug delivery carriers. The use of thiomers and disulfide-containing polymers,
also-called “S-protected” polymers, as mucoadhesives has been the subject of several re-
views in the last decade [43–46], and drugs formulated with mucoadhesive thiomers have
been successfully developed and marketed. In 2014, Lacrimera® eyedrops, formulated
with thiolated chitosan, were introduced to European markets [47]. Mucosal membrane
surfaces are coated with cysteine-rich mucin glycoproteins at a variety of key sites in the
body, including the mouth and nose. Permeation enhancing materials can be added to in-
crease drug permeation through membranes [48], and the size of the permeation enhancer
determines whether it will be absorbed through the mucosa and taken into the bloodstream
along with the drug—which is the case for small molecules—or whether it will permeate
the mucosal layer and remain bound to it during, and after, drug absorption—which is the
case with polymers. Macromolecular mucoadhesive materials are less invasive because
they do not enter the blood stream. Mucoadhesion was achieved through a variety of non-
covalent interactions, such as van der Waals forces, hydrogen bonding, and hydrophobic
interactions [49]. Thiomers and disulfide-containing mucoadhesive polymers; however,
covalently bind to mucosa through the formation of new disulfide bonds between the
Cys and/or Cys2 of mucin and disulfides and/or thiols on the polymer. Thiol-disulfide
exchange reactions between the polymer and mucosa prompt in situ gelation that binds the
polymer to the membrane [50]. Like the systems described in Section 3.1.1, the key factor
that allows thiomers to function in this application is binding of a thiomer to a protein-rich
substrate via a disulfide bond formed in a thiol-disulfide exchange reaction (Figure 9).
The newly formed disulfide bonds can also participate in disulfide-disulfide metathesis
reactions, affecting the quality of membrane adhesion through the formation of various
inter- and intra-molecular disulfide crosslinks. Oxidation of thiols by GSH, which is present
in mucosal membrane cells, is also important to the binding of thiomers to mucosa. The
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reactivity of thiomers and S-protected thiomers changes as a function of the penetration
depth into the mucosal membrane, as a response to decreasing pH [51].
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Thiolation of polymer backbones derived from naturally occurring biopolymers, like
hyaluronic acid [52], chitosan [53,54], alginate [55], gellan gum [56,57], starch [58], glyco-
gen [59], cellulose [60,61], arabinoxylan [62], xanthan gum [63,64], and cyclodextrins [65–67]
have been studied as mucoadhesive materials. The mucoadhesive properties of thiolated syn-
thetic polymers have been studied, also. Synthetic polymer backbones for this purpose include:
poly(acrylic acid) [68,69], poly(methacrylate) [70], poly(acrylamide) [71], silicone oil [72,73],
poly(ethylene glycol) (PEG) [74,75], poly(aspartamide) [76], and poly(allylamine) [77]. Thiola-
tion of both hydrophobic and hydrophilic polymers generally increases mucoadhesivity [2].

Partenhauser and coworkers attached thiol pendant groups to poly(dimethylsiloxane)-
co-(3-aminopropyl)methylsiloxane by forming amide bonds between the carboxylic acid
group of a thiol “ligand” precursors—either 3-mercaptopropionic acid (MPA) or Cys—and
the primary amine groups of the poly(siloxane) (Figure 10; [72]).
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Figure 10. Thiolated silicone oils bearing 3-mercaptopropionic acid (MPA) or cysteine (Cys) pendant
groups synthesized by Partenhauser et al. [72].

Mucoadhesion between a silicone oil and excised porcine mucosa was measured
for silicone oil-MMA and silicone oil-Cys, as well as a non-thiolated silicone oil control
(Figure 11). The maximum detachment force required to separate the mucosa from the
silicone oil, as well as the total work of adhesion values demonstrate that the thiolated
silicone oils bond more strongly to the mucosa than does the non-thiolated control.
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The residence time of the silicone oils on porcine mucosa was measured after submerg-
ing the samples in a phosphate buffer solution (pH 6.8). The non-thiolated silicone oil was
completely washed away after about 2 h in the solution, whereas 40–60% of the thiolated
silicone oil remained on the surface after 8 h for silicone oil-MPA and silicone oil-Cys.

3.1.3. Organic/Inorganic Hybrid Materials and Thiolated Organosilica Nanoparticles

Thiol- and disulfide-containing organosilica materials have been used for other appli-
cations, moreover mucoadhesion. For example, organosilica nanoparticles (ONPs) have
been investigated as potential nanotherapeutics for anti-cancer drug delivery. ONP-based
drug delivery systems tend to be physically stronger than other well-studied drug delivery
system platforms based on liposomes or micelles [78]. The use of nanosized drug delivery
systems for anticancer drug delivery offers advantages because cancer cells tend to accumu-
late selectively nanosized materials and retain them to a greater extent than non-nanosized
materials (possibly due to enhanced permeability and retention [79]). Additionally, the
unique behavior of nanosized materials in magnetic fields, and in response to light, opens
possibilities for manipulating nanomedicines in the body. Disulfide-containing materials
are an attractive choice for improving controlled release of anticancer drugs in response
to elevated levels of the reducing agent, glutathione (GSH; Figure 2), in cancer cells. A
drug delivery system should be sufficiently strong so that disulfide bonds linking the drug
to the substrate do not break prematurely in cells that have normal cellular GSH levels.
In an ideal system, disulfide bond scission will prompt anticancer drug release from the
drug delivery system substrate only within the cancer cell. The concentration of GSH in
cancer cells ranges between 2–10 mM, which is 100-1,000 times greater than in non-cancer
cells [80].

Mekaru et al. used soft X-ray photoelectron spectroscopy (XPS) to study the
biodegradability of two disulfide-containing ONPs formed from the hydrolysis of (3-
mercaptopropyl)trimethoxysilane (MPMS) or (3-mercaptopropyl)methyldimethoxysilane
(MPDMS) (Figure 12; [81]).
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The sol-gel synthesis of MPMS ONPs via base hydrolysis resulted in ONPs with a
greater degree of siloxane crosslinking than the MPDMS ONPs, because MPMS can form
up to three siloxane bonds per monomer, whereas MPDMS can only form one siloxane
bond per monomer. Consequently, the MPMS ONPs were expected to be more extensively
crosslinked, more compact, and more rigid than MPDMS, but to have fewer disulfide
crosslinks due to greater conformational restriction in the network. To demonstrate that
the ONPs would decompose through disulfide bond scission, Meraku et al. incubated
the ONPs in 10 mM GSH and monitored their degradation over 7 days using Raman
spectroscopy and soft X-ray photoelectron spectroscopy (XPS), both of which are able to dif-
ferentiate between disulfide and thiol bonds. Field-emission scanning electron microscopy
(FE-SEM) images were obtained periodically and compared with the Raman and XPS data.
The Raman data suggested that the proportion of disulfide bonds before degradation was
much higher in the MPDMS ONPs, and much lower in the MPMS ONPs. The FE-SEM
images of the MPDMS and MPMS ONPs after 7 days of GSH incubation showed extensive
MPDMS degradation, but little to no MPMS degradation, suggesting that the cleavage
of disulfide bonds by GSH is responsible for the observed decomposition. The XPS data
indicated that oxidized GSH (GSSG) was present on the surface of the MPDMS ONP after
7 days incubation in GSH. which This observation provides indirect evidence for reduction
of disulfide bonds in MPDMS by GSH.

Doura and coworkers [82] synthesized three types of organosilica ONPs using the
same thiolated MPMS and MPDMS precursors as Mekaru et al. [81]. A sol-gel NP synthesis
was used to form MPDMS and MPMS ONPs, as well as an MPDMS-MPMS copolymer
ONPs with varying ratios of MPDMS to MPMS. MPDMS-MPMS ONPs offer an approach
to tune biodegradation, because the ratio of disulfide bonds to free thiols should be roughly
proportional to the ratio of MPDMS to MPMS used to fabricate the ONPs. Raman spec-
troscopy, thermal gravimetric analysis, and solid-state 13C nuclear magnetic resonance
(NMR) spectroscopy were used to determine the ratio of MPMS to MPDMS and the pro-
portion of thiol and disulfide groups in the ONPs. Rhodamine-b dye was loaded into the
ONPs and fluorescence microscopy was used to track the GSH-triggered degradation of
the nanoparticle suspensions over time. Transmission electron microscopy (TEM) and
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SEM were used to track the degradation of the ONPs after incubation in a GSH solution
for 2 to 7 days. Although only minor changes were observed in the shapes and sizes
of the ONPs after this period, the SEM and TEM images showed a clearer trend after
exposure to 40 mM GSH solution for 2 months: although MPMS ONPs were degraded to a
negligible extent, the MPDMS ONPs were degraded completely. The extent of degradation
of the MPMS-MPDMS copolymer ONPs was dependent upon the amount of MPDMS
incorporated; more MPDMS resulted in more extensive degradation.

It is unclear why the MPDMS ONPs in this study did not decompose after 7 days in
10 mM GSH, given that the MPDMS ONPs synthesized by Mekaru and coworkers did
decompose extensively under similar conditions. Both Mekaru and Doura used a sol-gel
methodology using base hydrolysis to synthesize their MPDMS-ONPs. Studies relating
various aspects of ONP synthetic methodologies to the overall disulfide content and the
degradation rate would be useful in the future.

3.1.4. Redox-Reversible Gelation

In a technical sense, gelation through disulfide bond formation is responsible for
the mucoadhesion of the materials described in Section 3.1.2. However, mucoadhesive
systems are generally governed by thiol-disulfide exchange (1 in Figure 1) and redox-based
processes (2 through 10 in Figure 1) that result in the formation of new disulfide bonds
between the mucoadhesive polymer and the Cys-rich mucin glycoproteins (as in Figure 9).
Upon binding to a mucosal membrane, thiol- and disulfide-containing mucoadhesive
materials undergo chemical reactions and gelation processes which are mechanistically
different, and much more complicated than some of the redox-based examples that will be
described below.

Reversible redox-triggered sol-to-gel transitions typically begin with the oxidation of
a thiomer in solution to form disulfide linkages that gel the solution in situ. The thiomer is
reacting with itself (either intermolecularly, or intramolecularly), as opposed to a substrate,
as in the mucoadhesion examples described in Section 3.1.2. Often, the gelled networks can
be reconverted to their sol phases by adding a reducing agent to break the crosslinks. This
type of reaction can also be used to form more complicated networks from poly-thiolated
molecules, oligomers, and/or polymers, as shown in Table 1.

Kamada and coworkers used core-first atom transfer radical polymerization (ATRP) to
synthesize star polymers whose arms contain disulfide crosslinks (SS crosslinked star) [83].
An initial ATRP generated a star polymer macroinitiator, which consisted of a crosslinked
poly(ethylene glycol diacrylate) (polyEGDA) core surrounded by linear poly(n-butyl acry-
late) (polyBA) arms (polyEGDA-polyBA). A second chain-extension ATRP was used to
incorporate bis(2-methacryloyl-oxyethyl) disulfide (DSDMA) on the ends of the star arms,
forming the SS crosslinked star (Figure 13). The disulfide bonds of DSDMA were scram-
bled upon their incorporation into the SS crosslinked star product. Results from dynamic
mechanical analysis (DMA) indicate that this process resulted in inter- and intra-molecular
disulfide crosslinks between arms.
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In the chain-extension ATRP step, the reaction solvent, dimethylformamide (DMF),
was gelled as disulfide linkages formed. The redox responsiveness of the gels was studied
in mixtures of tetrahydrofuran (THF) and chloroform (CHCl3). Addition of n-tributyl
phosphine (n-Bu3P) cleaved the disulfide bonds to free thiols and converted the gel to a sol
as the disulfide crosslinks were reduced at the peripheral ends of the star arms.

Kamada et al. demonstrated the reversibility of this redox cycle by reconverting the
sol to a gel upon the addition of an oxidizing agent (Table 1). Comparison of the relative
sizes of the peaks associated with the S-S and C-SS bonds in the Raman spectra before and
after each redox step, supported the mechanistic attribution of the sol-gel transitions to
redox reactions. The temperature dependence of the storage (G’) and loss (G”) moduli
for the different phases was assessed by DMA. The data suggest that the original and
regenerated SS crosslinked materials are structurally different. Both are different from the
reduced thiol form, which has a Tg close to that of polyBA.

Yoon et al. studied the self-healing abilities of thin films fabricated from SS crosslinked
polyEGDA-polyBA stars [84]. The mechanical properties and self-healing abilities were
assessed for regenerated SS crosslinked films prepared by casting a dilute solution of
reduced stars onto a silicon wafer. The kinetics of self-healing in the films was monitored
after making cuts of various depths and widths using an AFM tip; the time-resolved
tip-sample force vector was measured across the sample topology as the material healed
at room temperature. Deep cuts that penetrated the film did not self-heal to the same
extent as shallower, non-penetrating cuts. The cuts were considered “healed” when the
Young’s modulus of the cut region matched that of the virgin material. Figure 14 shows
the proposed self-healing mechanism.
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Yoon et al. proposed that the self-healing limitations are due to the rigidity of the
films: when cuts are deep and/or wide, there is insufficient flow around the fractured area
to bridge the two sides of the cut. They also compared these results to the self-healing of
polyEGDA-polyBA star polymers that were synthesized with a similar density of permanent
crosslinks connecting the arms. The permanently crosslinked polyEGDA-polyBA control
was not able to heal appreciably, indicating that the SS crosslinked films rely on both flow
and chemical reactions between the bridged sides to self-heal. Kinetic studies, such as
these, proposing molecular-level mechanisms can help assess the suitability of self-healing
materials for various applications. Molecular-level self-healing processes often determine
the healing efficiency because, if effective, they prevent deformations which are the source
of macroscopic fracture formation [85].
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Table 1. Redox-Reversibility in Disulfide-Crosslinked Polymers.

Polymer Backbone Thiol or
Disulfide Ligand Gelated Solvents Oxidizing Agent(s) Reducing Agent(s) Number of

Reversible Cycles 1 Reference

Poly(acrylate)-based
core-crosslinked star copolymer
(polyEGDA-polyBA)
(Figure 13)

DSDMA DMF,
CHCl3 ,THF

FeCl3 and O2 or
I2 and O2

n-Bu3P One full cycle [83,84]

Branched trithiols: TMMP
and TEMPIC
Branched tetrathiol:
PEMP
Branched hexathiol:
DPMP
(Figure 15)

N/A, disulfides formed
during oxidation of
branched monomers

DMSO
DMSO or
Albright-Goldman
oxidation 2

DTT One full cycle [25]

Poly
(2(dimethylamino)
ethyl methacrylate)
(Figure 17b)

1,2,3 triazole-based Aqueous phosphate
buffer Heating in air

tris(2-carboxyethyl)
phosphine
hydrochloride

Five cycles [86]

PEG functionalized chitosan
(Figure 19)

BDS-functionalized or
disulfide-conjugated to
thiolated methyl red
dye or GSH

Water n/a, formed
as disulfides DTT One direction [87]

Poly(styrene-co-4-vinylbenzene
chloride) and PEG
triblock copolymer

1,2,3-triazole derivative
[EMI][TFSA]
ionic liquid
with DCM

Heated in air DTT Six redox cycles [26,88]

Poly(benzyl ether)- PEG
copolymer (ScIP)
(Figure 23)

Pyridine disulfide DMF n/a DTT Non-reversible [89]

1 One cycle—disulfide was reduced to the thiol; one full cycle—disulfide was reduced to the thiol and back; non-reversible—the material
could not be reconverted. 2 Albright-Goldman oxidation conducted in DMSO with acetic anhydride.

The research of Kamada and Yoon on thiol- and disulfide-containing polyEGDA-
polyBA star polymers highlights the range of applications possible for redox-reversible
thiol-disulfide-containing materials. In addition, the SS crosslinked thin films were stable
and self-healing [84]. However, as noted, the addition of reducing agents—such as n-
Bu3P—to the SS crosslinked organogels is effective in converting them to sols [83]. Thus,
thin films swollen in organic solvents or organogels could potentially be removed from
surfaces in this way. This methodology would have benefits for manipulating well-defined
architectures, compact structures, and site-specific functional group placements in fields as
diverse as drug delivery [90,91], coatings [92], and lithography [93].

Naga and coworkers studied the redox-reversible gelation of networks formed
from the crosslinking of four different multi-thiol-containing monomers with vari-
ous degrees of branching: trimethylolpropane tris (3-mercaptopropionate) (TMMP),
tris[(3-mercaptopropionyloxy-ethyl]-isocyanurate (TEMPIC), pentaerythritol tetrakis
(3-mercaptopropionate) PEMP, and dipentaerythritol hexakis (DPMP) (Figure 15; [25]).
Oxidation of the thiol-containing monomers by dimethyl sulfoxide (DMSO), which was
also the solvent (Table 1), resulted in gelation.

Compression tests revealed a correlation between the degree of monomer branch-
ing (either three, four, or six), monomer concentration, and gel strength. Increasing the
monomer weight percentage during synthesis, and/or decreasing the degree of monomer
branching resulted in stronger organogels. The gel networks could be reconverted to sols
containing the free monomers via reduction with DTT. Heating the sols at 85 ◦C for 8 h
was sufficient to oxidize the monomers and regenerate the gels. The TMMP, PEMP, and
DPMP monomers were also copolymerized with a dithiol-containing derivative of tetra
ethylene glycol (EGMP-4; Figure 16). Copolymerization of the monomers with a linear
dithiol produced networks with mesh sizes of about 0.5 nm.
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Mocny and coworkers examined redox-reversible disulfide crosslinking of thiol-
containing polymer brushes [86] that are thin films formed by end-grafting linear polymer
chains. Unlike the sol-gel examples above, polymer brushes are grafted to a substrate,
so the polymer “gels” in this case are swollen thin films attached to a substrate, and the
reduction of the disulfide crosslinks merely changes the brush density, instead of forming
a sol. The strength of the thin films can be correlated with brush density, which can be
modified by incorporating irreversible-covalent crosslinks. Mocny et al. incorporated
thiol pendant groups on poly(2-(dimethylamino)ethyl methacrylate) copolymer brushes



Molecules 2021, 26, 3332 18 of 44

using 1,2,3-triazole linkages in a copper(I)-catalyzed azide−alkyne cycloaddition (CuAAC)
reaction (Figure 17a). The polymer brush density was reversibly changed through the
oxidative crosslinking of the thiols (Figure 17b).
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The swelling and dissipative properties of the polymer brushes were measured using
ellipsometry and a quartz crystal microbalance, respectively, over five cycles of reduction
and oxidation. Both techniques suggested that the crosslinking was reversible for two
full redox cycles. Thereafter, a decrease in the crosslinking density of the oxidized form
was noted. It was attributed to the irreversible formation of a small amount of non-
disulfide oxidation products. This was the first study to assess the reversibility of disulfide
pendant crosslinks in polymer brush films, and it demonstrates that the polymer brush
densities, and consequently the swelling and dissipative properties, can be controlled
in a reversible manner. Further work will be required to assess what types of polymer
backbones, thiol pendant groups, and redox reagents can be combined to provide systems
that are redox-reversible over many cycles. The thiol groups on the brushes studied by
Mocny and coworkers were easily crosslinked by heating (60 ◦C). However, crosslinking a
more oxidation-resistant thiol might be a better option if repeated redox cycles are desired.

Wei and coworkers also used a CuAAC reaction to tether a thiol-containing pen-
dant group to an ABA block copolymer via a 1,2,3-triazole linkage [26,88]. The CuAAC
“click” reaction is very popular for tethering thiol- or disulfide-containing groups to poly-
mer backbones because it is efficient, functional group tolerant, and high yielding [94].
Wei and coworkers studied the redox-reversible gelation of an ionic liquid, 1-ethyl-3-
methylimidazolium bis-(trifluoromethyl) sulfonyl amide ionic liquid ([EMI][TFSA]), by
ABA block copolymers comprised of a thiol-containing, polystyrene A block that was
insoluble in ionic liquids, and a PEG B block that was soluble in them (Table 1).

Ion gels using ionic liquids as the solvent have been proposed for use in a variety of
applications, including the fabrication of electrochemical devices. These gels have been
fabricated into flexible and transparent thin films with desirable properties for electronics
applications because of their high ionic conductivity, low volatility, and low flammabil-
ity [95–97]. After six gel redox cycles, the material exhibited less than 10% change in
mechanical properties [26]. Sols of the ionic liquids were oxidatively crosslinked by heat-
ing, and disulfide-disulfide metathesis was proposed to be crucial to the reshaping and
restructuring of the gels after reduction and re-oxidation. The same group demonstrated by
mass spectrometry of small molecule analogs that disulfide-scrambling probably occurred
during oxidation [88]. They suspect that residual copper salts from the CuAAC click
reaction were present and catalyzed disulfide-disulfide scrambling in the molecules during
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oxidation. Control studies using the small molecule analogs indicated no disulfide-disulfide
metathesis in the absence of the salts.

3.1.5. Redox-Triggered Drug Release and Disulfide-Diselenide Chemistry

Zhang and coworkers conducted redox reactions and redox reactions with triblock
copolymers comprised of a hydrophobic poly(ε-caprolactone) (PCL) “B” block flanked by
two hydrophilic PEG “A” blocks [80]. A disulfide or diselenide linkage present at the center
of the B blocks produced copolymers of the form AB-S-S-BA or AB-Se-Se-BA, respectively
(Figure 18).
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sized by Zhang et al. [80].

The amphiphilic triblock copolymers formed micelles in phosphate-buffered saline
(PBS) solutions, and micelles were formed and loaded by dialysis with the anticancer drug
doxorubicin (DOX). The release of DOX from the disulfide and diselenide micelles in the
buffered solution was measured with GSH after the reductive cleavage of the disulfide
and diselenide bonds. The release of DOX in the buffered solution with 1% H2O2 was also
measured; cancer cells are known to contain a 100-fold higher concentration of H2O2 than
normal ones [98]. The non-drug loaded micelles were exposed to various concentrations
GSH and the micellar polydispersity index values were calculated from dynamic light
scattering measurements.

As the disulfide and diselenide bonds break in the hydrophobic core, the micelles
dissociate or change size. Thus, the polydispersity increases can be correlated with the
degree of S-S or Se-Se bond cleavage. When exposed to 1 mM GSH, the polydispersity of
diselenide micelles changes more rapidly, and increases to a greater extent, when compared
with the disulfide micelles. This result indicates that Se-Se bond scission in the diselenide
micelles occurs more rapidly and to a greater extent than S-S bond scission in the disulfide
micelles. Solutions of disulfide and diselenide micelles were incubated with GSH at
concentrations ranging from 20 µM to 2 mM. The two micelles exhibited comparable minor
changes in polydispersity after being incubated for 6 h in 20 µM GSH. Conversely, after 6 h
of exposure to 1 or 2 mM GSH, the diselenide micelle polydispersity increased much more
than that of the disulfide micelles.

Fluorescence spectroscopy was used to quantify the DOX release from the micelles
as a function of time in a simulated blood environment with and without 10 mM GSH
or 1% H2O2. The results demonstrated that the diselenide-linked micelles were more
responsive to both redox conditions, releasing DOX more rapidly, and to a greater ex-
tent, than the disulfide-linked micelles. Disulfide micelles exposed to 1% H2O2 in PBS
at 37 ◦C for 32 h released the same percentage of DOX (40%) as the control sample (in
PBS at 37 ◦C). However, the diselenide micelles released about 65% of the loaded DOX
under the same oxidizing conditions, which was slightly greater than the 60% lost by the
control sample in PBS (that is, without H2O2). After 32 h of exposure to 10 mM GSH in
PBS at 37 ◦C, the DOX-loaded diselenide micelles had released about 90% of the initial
amount of DOX, whereas the disulfide micelles released about 70%. However, the dif-
ference between the mass of DOX released from disulfide and diselenide micelles upon
exposure to GSH or H2O2 is even greater than the difference based on the percentages
because more DOX can be loaded into the diselenide micelles. The DOX drug loading
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content was greater for the diselenide micelles, possibly due to coordination between
Se and the quinonyl ring of DOX [80]. In this regard, diselenide-linked micelles may be
more effective for triggered anti-cancer drug release for types of cancer associated with
relatively lower GSH concentrations, such as Hela, B16F10, and 4T1 cells [98]. The con-
centration gradient between these types of cancer cells and surrounding non-cancerous
cells is lower, relative to many other cancer cell types, which commonly have GSH con-
centrations closer to 10 mM [99]. The diselenide-linked micelles are more responsive to
GSH concentration changes in the low mM range, which suggests that they may be more
effective for anti-cancer drug delivery for types of cancers associated with GSH concentra-
tions in the low mM range. Lang et al. [100] also found that DOX-loaded diselenide-linked
poly(ester)-co-poly(urethane) micelles were more sensitive to reduction, and had better
antitumor activity than the analogous disulfide-linked micelles. Although disulfides are
well suited for use in the body, due to the ubiquity of thiol and disulfide groups in nature,
diselenides can undergo some of the same reactions as disulfides, and studies comparing
the two may reveal possible niche applications for diselenide chemistry. Self-healing dise-
lenide systems have been reported as well [6]. Recently, Perera et al. demonstrated that
norbornene-terminated poly(ethylene glycol) and poly(2-hydroxypropyl methacrylate-stat-
mercaptoethyl acrylate) polymeric hydrogels could participate in seleno-sulfide exchange
reactions with 5,5′-diselenide-bis(2-aminobenzoic acid) upon irradiation with UV light,
resulting in reversible hydrogel softening and stiffening [101]. Unlike the redox-reversible
systems in Section 3.1.4, which can undergo reversible sol-to-gel transitions in response
to a redox stimulus, the hydrogel system described by Perera and coworkers can alter its
stiffness under irradiation via seleno-sulfide exchange.

Several additional examples of disulfide-based drug delivery systems will be consid-
ered in Sections 3.1.6 and 3.1.7. However, the handful of examples covered here is a minute
subset of the literature since disulfide-linked drugs were first approved for human use in
the early 2000s [12]. As shown in Figure 3, there is a wide variety of disulfide-based drug
delivery systems for nucleic acid-based drug delivery [10]. For more information, please
consult reviews by Dutta, Saitoa, Quinn, and Wang [10–12]; as well as several reviews on
redox-responsive [9,102–105] or multi stimulus-responsive [15] drug delivery systems, in
addition to general reviews on them [8,79,106].

3.1.6. Loading Small Molecule Cargo into Networks

Thiol-disulfide exchange (1 in Figure 1) and redox reactions (2 through 10 in Figure 1)
can be used to generate mixed disulfides, R’SSR, where R’ is a polymer backbone and R is
a small “cargo” molecule derived from a thiol-containing precursor. Thiol- and disulfide-
containing polymers loaded with ‘cargo’ have been explored as drug delivery systems,
sensors, and as analytical tools. The chemical reactions that govern a small molecule’s
reversible conjugation to—and subsequent release from—an extended network are the
same as those mentioned in preceding sections. In comparison to redox-reversible gel
systems, cargo binding systems can bind cargo to a site in the network via a disulfide
linkage. In the following examples, disulfide bonds are used to regulate the binding of
small molecules to a network, as opposed to regulating the crosslinking between and
within an extended network.

Arslan and coworkers synthesized a disulfide-containing poly(ethylene glycol) (PEG)
functionalized chitosan (Figure 19; [105]). Amine groups were reacted in an aza-Michael
addition with benzothiazole disulfide acrylate (BDSA), in the presence of poly(ethylene
glycol) diacrylate (PEGDA), to furnish benzothiazole disulfide (BDS)-containing pendant
groups and form permanent crosslinks between the PEGDA and the chitosan chains. Most
thiolated small molecules readily exchange with BDS groups. In the hydrogel states of the
PEG functionalized chitosan, thiol-disulfide exchange reactions were conducted between
the BDSA and either thiolated methyl red dye or GSH. The thiol-disulfide exchange
reactions were used to incorporate the methyl red dye or GSH into the hydrogel network
via disulfide bonds.
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As will be discussed in Section 3.1.7, disulfide bonds can crosslink polymer networks
and bind small cargo molecules to the networks. The resulting materials are capable of
simultaneously being degraded and releasing cargo in response to a trigger, such as a
reducing agent.

The cargo molecules released from networks can also be used as sensors. For example,
the amount of released cargo can be related to the amount of analyte that has reacted in an
exchange reaction. Although this subject is outside the scope of this review, it is sufficiently
related to warrant some mention. Thus, Tomei and coworkers recently fabricated filter
paper-based electrochemical cells that can detect as little as 60 µM concentrations of GSH
in blood. The strips detect cysteamine (a thiol) as a product of the thiol-disulfide exchange
reaction with GSH based on selective oxidation at a carbon black/Prussian blue electrode
in the strips [18].

Wierzba and coworkers designed and synthesized a vitamin B12 (B12) derivative
for direct conjugation to small molecules or polymer networks via a disulfide linkage
(Figure 20; [107]). B12 has been touted as a potential transport agent for drug delivery
and in vivo imaging agents because of its high affinity toward transport proteins, and its
propensity to be accumulated in dividing cells [108–111]. B12 has a unique dietary uptake
pathway, and the incorporation of B12 groups into a drug delivery system can improve the
efficacy of drug delivery by expanding the metabolic pathways to include B12 uptake.
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Although other metabolically stable B12 derivatives have been synthesized, they do
not always retain a high affinity for transport proteins. The domains of B12 circled in gray
in Figure 20 have been explored as conjugation sites. Amide-based conjugates formed at
the starred positions still demonstrate a strong binding affinity for trafficking proteins [108].
Most conjugates are formed with ester, amide, or carbamate linkages [107], which—unlike
disulfide bonds—are not cleavable in cells.

The same authors also developed a B12 derivative based on disulfide conjugation at
the 5′ position of the ring. A pyridyl disulfide precursor (B12-5′-SSPy) was found to be
highly reactive toward a variety of thiols in thiol-disulfide exchange reactions (Figure 20).
Like benzothiazole disulfides, pyridyl disulfides are highly reactive in thiol-disulfide
exchange reactions. Thus, they are excellent precursors of unsymmetrical disulfides used
in cargo tethering applications, including cyclic peptide conjugates [112]. The addition of
glutathione (GSH) was shown to result in disulfide bond scission for the R groups examined.
In theory, when both B12 and a drug are conjugated to a network via disulfide linkages,
GSH-induced reduction can be used to trigger concomitant release of the drug and B12.

The research of Wierzba et al. provides an alternative perspective for the release
of cargo molecules. Research focusing on synthetic modifications of molecules prior to
conjugation would expand the range of cargo capable of being used in disulfide-based
drug delivery systems. Despite the effects of enhanced permeability and retention, which
are afforded to any nanosized anti-cancer drug delivery system, disulfide-based nano-drug
delivery systems still suffer from inefficient delivery and cellular uptake [11]. However, the
quality of drug delivery and release can be enhanced by the addition of various biological
targeting groups, such as folic acid, biotin, and galactose.

3.1.7. Thiol-Disulfide Exchange and Redox Reactions That Initiate Degradation or
Cascade Reactions

Several applications have been proposed for thiomers or disulfide-containing poly-
mers that can be triggered to react in a cascade-like fashion, after an initial thiol-disulfide
exchange (1 in Figure 1) or redox reaction (2 through 10 in Figure 1) occurs. Examples
include reactions that ultimately result in the formation of new bonds, or the destruction
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of bonds in self-immolative (i.e., degradation) processes. Disulfide- and thiol-containing
polymers offer mild, yet targeted opportunities to initiate and trigger the cascade.

Self-immolative polymers have been proposed for addressing several biomedical and
environmental problems. They include the formulation or fabrication of biomedical materi-
als, drug delivery systems, tissue scaffoldings, biodegradable polymers, soil treatments and
microelectronics [113–116]. Functional groups containing cleavable bonds, such as esters,
amides, polysulfides, etc., have been used for self-immolative polymer formulations [117].
In that regard, the inherent biological redox responsiveness of disulfide-containing poly-
meric networks makes them ideal for self-immolative polymers for environmental and
biomedical degradation applications.

Disulfide-linked networks may degrade by two basic scenarios. In the simpler case,
disulfide linkages functioning as crosslink or branch sites, can be cleaved to cause network
decomposition into constituent monomers, oligomers, and/or sub-branches upon exposure
to a stimulus. Such a case was described by Naga and coworkers [25] (Section 3.1.4). None
of their examples, however, achieved redox-triggered decomposition of linear polymers
into constituent monomers.

More mechanistically complex degradation pathways for self-immolative polymers
occur in the second scenario. In these systems, disulfide bond scission leads to a cascade
reaction that results in the subsequent cleavage of other, non-disulfide, linkages in the
polymer. Polymers linked to pendant groups via disulfide bonds, as well as systems with
disulfide linkages along the main polymer backbone, can exhibit true self-immolation.
Generally, these systems have well-defined architectures. Commonly, the cleavage of a
disulfide bond results in a cascade decomposition process that affects adjacent groups
which have labile bonds, such as ester linkages. If disulfide bonds are used to crosslink
a network and tether cargo to it, simultaneous drug delivery and decomposition (into
monomers) can be achieved under appropriate conditions. The biodegradability, biocom-
patibility, and environmental impact of the decomposition products are key factors to
consider in this regard, as are the decomposition mechanisms which are consequential in
in vivo applications.

Cascade Reactions Triggering Decomposition

Bej and coworkers [118] used a polycondensation reaction between a hydroxyl-
containing dithiol and pyridyl disulfide to create a poly(disulfide) with a free hydroxyl
group on each monomer unit. Post-polymerization modification was used to incorpo-
rate the anticancer drug camptothecin (CPT) via an ester linkage. Then, a thiol-disulfide
exchange between thiol-terminated PEG oligomers and terminal pyridyl disulfides of
the polydisulfide was used to generate an amphiphilic ABA triblock copolymer prodrug
(polydisulfide-CPT). The polydisulfide-CPT contained two disulfide bonds per polydisul-
fide monomer directly along the polymer backbone (Figure 21a). The polydisulfide-CPT
formed polymersomes in aqueous solutions, and exposure to 10 mM GSH resulted in the re-
lease of CPT and polymer backbone degradation. In the proposed mechanism (Figure 21b),
initial GSH-triggered disulfide bond scission breaks the triblock copolymer into constituent
PEG and polydisulfide blocks and generates a free thiol group in the PDS block. The free
thiol then participates in an intrachain nucleophilic attack of the polydisulfide-CPT ester
linkage, resulting in bond scission and CPT drug release.

Comparative studies among the polydisulfide-CPT, free CPT, and an analogous CPT-
free triblock copolymer were conducted to gauge the degree of cellular internalization,
toxicity to HeLa cancer cells, and toxicity to non-cancerous cells. Based on the half-maximal
inhibitory concentration (IC50) values (3.1 and 5.7 µg/mL, respectively), treatment of the
cancer cells with polydisulfide-CPT was more effective than treatment with free CPT.
Additionally, after 36 h exposure to 300 µg/mL (based on CPT content), polydisulfide-CPT
killed <25% and free CPT killed > 60% of the non-cancer cells. Because the non-CPT
containing polymer exhibited negligible toxicity toward both cancer and non-cancer cell
lines, the undesired toxicity of polydisulfide-CPT in normal cells appears to be due to the
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presence of CPT, rather than the polymer backbone. By extension, the greater toxicity of
polydisulfide-CPT towards the cancer cells can be attributed to the in situ release of CPT,
and not the polymer backbone blocks themselves.
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Yin and coworkers [19] designed and synthesized PEG and poly(methyl methacrylate)
(PMA) diblock copolymers (BCPs) conjugated to CPT as dual-responsive micellar drug
delivery systems (GR-BCPs). The GR-BCPs were designed for the dual-responsive release
of CPT in response to elevated concentrations of reactive oxygen species (ROS) and/or
GSH (i.e., concentrations found in cancer cells). The CPT was conjugated to the PMA block
of the BCPs via a labile thioether bond that was cleavable in the presence of excess ROS
or glutathione. The GR-BCPs incorporated disulfide linkages that were designed to be
cleaved in the presence of high concentrations of GSH, as well as thioketal bonds that were
designed to be cleaved in the presence of high concentrations of ROS. Single-responsive
BCPs were also prepared with either disulfide bonds (G-BCPs) selective for elevated GSH
concentrations or thioketal bonds (R-BCPs) for response to elevated ROS concentrations.

Dual-responsive systems designed to respond to the presence of either GSH or ROS can
enhance drug release because overexpression of ROS and GSH occur non-homogenously
within cancer cells [119]. Although it is possible to design successful drug delivery systems
for the precise targeting of specific cellular regions—such as mitochondria, which are
known to overexpress ROSs—this approach requires the design and synthesis of extremely
complex drug delivery systems [120]. The observation by Yin et al. that GR-BCP micelles
can enter all parts of the cell suggests that CMT can be released in any area where either
ROS or GSH is sufficiently overexpressed.

All three of the BCPs shown in Figure 22 formed nano-sized micelles in PBS solution.
The release of CPT from the three micelles was studied in vitro, using HeLa cancer cells,
as well as in vivo, by treating mice with tumors with intravenous BCP solution injections.
The dual-responsive GR-BCP exhibited the best performance in vivo and in vitro: the IC50
values were 6.3 µM for BR-BCP, 17.8 µM for G-BCP, and 28.9 µM for R-BCP. The increase in
mouse tumor size was smallest in mice injected with GR-BCP.
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Figure 22. (a) Self-assembly of GSH- and ROH-dual-responsive BCPs (GR-BCPs) comprised of a PEG block and CPT-PMA
conjugate block (PGRCPT; top). Disassembly of GR-BCP with subsequent CPT drug release in mouse tumor tissue (bottom).
(b) Reversible addition-fragmentation chain transfer (RAFT) copolymerization of PGRCPT and PEG blocks, and structures
of R groups for dual-responsive BCPs (GR-BCPs), and single-responsive BCPs that respond to GSH (G-BCP) or ROS (R-BCP).
(c) GR-BCP structure before and after subsequent disassembly and CPT release for GSH- and RSH-triggered pathways.
Reprinted with permission from [19]. Copyright (2020) American Chemical Society.

Although drug release in response to stimuli associated with intracellular redox
chemicals has been widely studied, other stimuli can function as secondary triggers in
multi stimulus-responsive drug delivery systems. In fact, any other differences between
the microenvironments of cancerous and non-cancerous cells (e.g., pH, concentrations of
specific enzymes, and oxygen levels (due to hypoxia) [121]), can, in principle, be exploited
for selective drug release.

Xiao and coworkers [89] placed pyridyl disulfide-containing pendant groups on
poly(benzyl ether) (PBE) backbones to form side chain-immolative polymers (ScIPs; Figure 23)
which can be degraded upon exposure to reducing agents, such as DTT. These pendant
groups were then reacted in a thiol-disulfide exchange reaction with either a mono-
mercapto- terminated PEG (HS-PEG) or a bis-mercapto-terminated PEG (HS-PEG-HS),
to produce a PEG-grafted ScIP (ScIP-g-PEG) or an extended network crosslinked by PEG
groups via disulfide bonds (Figure 24).

The self-immolative behavior was studied in the solution, organogel, and solid states
by gel permeation chromatography, 1H NMR, electrospray ionization-mass spectrometry,
and molecular modeling. The data indicated that exposure of the ScIPs (in the solid
and solution states) to DTT and 1,8-diazobicyclo [5.4.0]undec-7-ene (DBU) resulted in
unidirectional self-immolation, triggered by DTT-induced cleavage of the pyridyl disulfide
bonds (Figure 25).
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with mono-or bis-mercapto-terminated PEG to form PEG-grafted ScIPs (ScIP-g-PEG) or organogel
networks with PEG-disulfide crosslinks. Adapted with permission from [89]. Copyright (2019)
American Chemical Society.
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Figure 25. Proposed mechanism for the unidirectional self-immolative depolymerization of the ScIP after exposure to DTT
and DBU. Data from electrospray ionization-mass spectrometry were able to identify the two molecules on the far right as
the predominant products Reprinted with permission from [89]. Copyright (2019) American Chemical Society.

Self-immolation in this system is proposed to begin with DTT-triggered pyridyl
disulfide bond rupture, which generates a sulfhydryl anion capable of backbiting the
carbonate group and generating a phenolate ion. Phenolate ions are known to trigger
self-immolation of PBEs when initiated from an end group. Since the PBE-based ScIPs
decompose from their pendant groups, full decomposition via depolymerization occurs
unidirectionally along one side of the ScIP, producing monomers. The other side of the
ScIP remains intact, as an oligomer. Because the pyridyl disulfide pendants on the intact
oligomer continue to react with DTT over time, so the ScIP can be depolymerized almost
completely into constituent monomers or small oligomers.

Li et al. [122] synthesized disulfide-linked hyperbranched polystyrene (PS) networks
(HB-(S-S-PS)) with well-defined architectures. “Seesaw”-like macroinitiators were pre-
pared wherein dual azide-terminated PS pendant groups branched from a middle region
that contained a disulfide linkage and a terminal alkyne (≡−S-S-(PS-N3)2) (Figure 26).
Hyperbranched networks were formed by reacting the PS-chains in a CuAAC click reaction
(Figure 26). The objective was to synthesize a well-defined hyperbranched polymer with
disulfide linkages as a “model”. The disulfide-linked hyperbranched polymers reported
in previous literature lacked the well-defined architectures that are better for biomedical
applications [123–127]
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from [122]. Copyright (2014) American Chemical Society.
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The seesaw macroinitiator was designed so that a CuAAC could be used to form the
network, ensuring high specificity during branch formation. The DTT-induced cleavage
of the disulfide bonds was monitored by DLS. Data from kinetic studies conducted in
DMF solutions suggest that the degradation of HB-(S-S-PS) by DTT proceeds by both faster
(in peripheral regions) and slower (in interior regions) reaction pathways. The interior
disulfides react more slowly due to greater steric hinderance, restricted chain mobility, and
lowered reagent accessibility. Both reactions exhibited first-order dependence of on DTT
concentration [128–130], but both rate constants are several orders of magnitude lower
than those reported for the reactions of DTT with small molecule thiols [131].

Zhang and coworkers [132] took a similar approach when synthesizing amphiphilic
PEG- and palmitate-grafted linear poly(urethane)s (PUs), with disulfide linkages along the
main chain (Figure 27). The amphiphilic polymers formed micelles in solution that were
degradable upon being reduced.
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Cascade Reactions Resulting in Polymerization or Material Rearrangements

Zhang and Waymouth [31] synthesized ABA triblock copolymers comprised of PEG
and polycarbonate (PC), the latter of which was appended with 1,2-dithiolane pendant
groups. Two different 1,2-dithiolane containing molecules, TMCDT and TMCLA, derived
from methyl asparagusic acid and lipoic acid, respectively, were synthesized (Figure 28).
Triblock copolymers incorporating either TMCDT, TMCLA, or both were synthesized by
the ring opening polymerization (ROP) of the cyclic carbonate groups.
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Figure 28. Synthesis of TMCDT and TMCLA, and the ring opening polymerization to form PEG-PC ABA triblock
copolymers with 1,2-dithiolane pendant groups. The block copolymer product on the right is for the ring opening
polymerization of TMCDT with PEG. Reprinted with permission from [31]. Copyright (2017) American Chemical Society.

In aqueous solution, both 1,2-ditholane-functionalized block copolymers (DBCPs)
formed micelles above their critical micelle concentrations, and further aggregated at
higher concentrations. Eventually, they formed physical gels at ~10–15 wt% concentrations.
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This type of concentration dependence is well-known for ABA triblock copolymers with
hydrophobic end blocks (Figure 29a) [133–137].
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Figure 29. (a) ABA triblock copolymers, like DBCP, with hydrophobic end blocks and their self-
assembly into flower micelles above their critical micelle concentrations and gelation at still higher
concentrations. (b) Formation of chemically crosslinked gels from DBCPs after addition of dithiol
3,6-dioxa-1,8-octadecanethiol. Adapted with permission from [31]. Copyright (2017) American
Chemical Society.

To crosslink chemically the DBCP micelles and form a hydrogel, a dithiol, 3,6-dioxa-
1,8-octadecanethiol (ODT), was added to solutions of the DBCP at concentrations above the
critical micelle concentration. Zhang and Waymouth found that hydrogelation occurred
when even a monothiol, 2-mercaptoethanol (ME), was added. Furthermore, the observation
that DBCP hydrogels formed with ODT were physically and rheologically similar to those
formed with ME indicates that gelation was a result of a thiol-initiated ring opening
polymerization (Figures 29b and 30a).
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Figure 30. (a) Ring opening polymerization of 1,2-ditholane pendant group in the hydrophobic micelle cores upon exposure
to a small molecule thiol. (b) Ring opening polymerization energy profiles (relative) for TMCLA (green) and TMCDT (blue)
monomers. Reprinted with permission from [31]. Copyright (2014) American Chemical Society.

Unlike the physically crosslinked gels, the chemically crosslinked TMCDT- and
TMCLA-based DBCP hydrogels were rheologically dissimilar. The chemically crosslinked
TMCDT-based DBCP hydrogels were structurally dynamic, flowed under applied stress,
and exhibited self-healing properties while the TMCLA-based hydrogels were rigid, not
moldable, not deformable, and not self-healing. Gels from the mixed TMCDT-TMCLA
DBCPs exhibited intermediate rheological properties: higher TMCLA contents led to more
brittle and more rigid gels. Gelation was reversible and tunable based on temperature,
polymer concentration, and pH.

Thermodynamic and kinetic parameters associated with the ring opening polymer-
ization of TMCLA and TMCDT were determined and used to construct the energy profile
in Figure 30b. It suggests that the ring opening polymerization of TMCDT is less favored
thermodynamically than that of TMCLA, but it proceeds with a lower energy barrier. The
authors proposed that TMCLA hydrogels are more dynamic than the rigid TMCDT gels
because TMCLA can crosslink (via ring opening polymerization) and un-crosslink (via
depolymerization) much more rapidly than TMCDT.

Studies in non-aqueous solutions demonstrated the role of self-aggregation to the ring
opening polymerization-induced crosslinking. Thus, the DBCPs were unable to crosslink
in acetone; an initial self-assembly step is required to crosslink the DBCP micelle cores.

Komaromy et al. [138] investigated the role of self-assembly on the distribution of
oxidation products formed by small, amphiphilic dithiol building blocks. They showed
that controlling the self-assembly pathway can control covalent disulfide bond formation.
From analyses by ultra high-performance chromatography-mass spectrometry (UPHC-MS),
it was possible to detect the influence of several experimental variables (including stirring)
on the ring sizes which ranged from trimers to 51-mers (Figure 31).
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Figure 31. Oxidation and subsequent self-assembly of small dithiol amphiphiles with and without
stirring. Reprinted with permission from [138]. Copyright (2017) American Chemical Society.

The role of the self-assembly process on oxidation product specificity was examined
using stirred and un-stirred reaction conditions with different co-solvents. Some conditions
generated one ring type with high specificity, whereas others generated a diverse array of
different ring sizes. For example, after stirring for 7 days, the mass spectrum of the reaction
mixture in a 9:1 aqueous borate buffer:DMF solution showed thiol oxidation products that
included a trimer, a tetramer, and a distribution of large macrocyclic rings (LMCs; Figure 32,
top). When unstirred, the reaction mixture produced hexamers exclusively (Figure 32,
bottom)! These results demonstrate that self-assembly can dictate the type and nature of
disulfides formed during the oxidation of multi-thiolated amphiphiles in solution. The
highly specific production of the hexamers in the stirred solution is an example of exclusive
and autocatalytic formation of one dynamic combinatorial library member. Additionally,
because any examples of disulfide-containing micellar drug delivery systems have been
reported, the role of self-assembly on their reactivity may be important when considering
long-term storage and drug delivery.
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3.2. Disulfide-Disulfide Metathesis-Based Systems
3.2.1. Introduction to Self-Healing Materials and Current Challenges in the Field

Many examples of disulfide-based self-healing polymeric systems, including gels and
elastomers, have been reported [4–6]. Here, we review briefly research that is historically
important and is currently being conducted to address the biggest challenges facing the
development of new disulfide-based self-healing polymers.

Self-healing polymers were reported first in the 1970s [139–141]. In the early examples,
the self-healing was driven by chain interdiffusion, which occurs at temperatures above
the Tg [6,142]. A recent review by Utrera-Barrios et al. [6] identified four generations of
self-healing polymers, beginning with the development of extrinsic self-healing materials
in the early 2000s. ‘Extrinsic’ self-healing materials include encapsulated healing reagents
that are released upon fracture to heal the material. Additionally developed in the early
2000s, second generation ‘intrinsic’ self-healing materials do not require additional reagents,
although external stimuli are sometimes added to speed self-healing.

Some intrinsically self-healing systems incorporate dynamic covalent bonds, such as
disulfide, diselenide, ditelluride, alkoxyamine, oxime-carbamate, urea, imine, and boron-
based bonds [5,6]. Intrinsic self-healing prompted by reversible reactions, such as transester-
ification or Diels-Alder reactions, has also been explored. Intrinsic self-healing can also be
achieved by strong non-covalent interactions, including dipole-dipole, hydrogen bonding,
host-guest, metal-ligand, ionic interactions, and even shape memory responsiveness.

It is challenging to find intrinsically self-healable materials with high healing efficien-
cies and high tensile strengths. Intrinsic self-healing requires that fractured surfaces be
bridged before healing. However, high tensile strength materials, often associated with
higher Tg values, do not have adequate flow for this key step to occur. If the ambient tem-
perature is below the Tg, chain-end mobility will be too restricted for interchain diffusion
and/or chain end recombination, and the efficiency of self-healing will be low [143]. Con-
sequently, most examples of intrinsically self-healing materials are elastomers. The most
recent 4th generation of self-healing materials is based on the combination of two or more
intrinsically self-healing motifs (the 3rd generation is not pertinent to this review). This
approach circumvents problems associated with balancing healing ability and strength [6].
Self-healing materials combining dual-non-covalent, dual-covalent, and a combination of
non-covalent and covalent healing motifs have been reported.

Dual-responsive, fourth generation self-healing materials have been made by pairing
disulfides with shape memory materials [14,32,144–147], as well as iminie [17,148,149]
hydrogen [143,150–158], and metal-ligand bonds [159]. Self-healing in the presence of a
stimulus, such as heat or UV radiation, is commonly reported but a greater emphasis has
been placed on developing systems that can heal in ambient conditions [13]. If the Tg of the
material is above room temperature, an added stimulus will be necessary for self-healing.
This is part of the trade-off that is often required if strong materials are desired. Since
disulfide-disulfide metathesis generally drives material repair, aryl disulfides, which are
more reactive in metathesis reactions, have been popular in self-healing material design.

3.2.2. Quantification of Self-Healing Behavior

Healing time and healing efficiency are commonly monitored via optical techniques.
The size of a scratch or crack can be monitored over time, and the ratio of the initial crack
to the crack width at a time can be used to calculate the self-healing efficiency.

Ultimate tensile strength (UTS) can be measured before and after self-healing to
quantify self-healing efficiency using the method of Wool and O’Connor, which is expressed
in equation (1), where x is a tensile property such as strength, elongation at break, or
robustness [160].

self− healing efficency =
xhealed
xvirgin

× 100% (1)

Comparing the self-healing efficiencies found from different studies, or finding using
different methods in one study, can be problematic because many variables can influence



Molecules 2021, 26, 3332 33 of 44

the result. For example, the size of the initial cut and positioning of the cut pieces can
influence self-healing time and efficiency measurements. Additionally, for tensile studies,
changes in the thin film thickness and stretching rate can result in different tensile property
values. Some studies also report the stress at which the material breaks when stretched.
The UTS of a material is always less than or equal to the yield strength, which is the stress
above which permanent deformation occurs. When considering the self-healing data in
Table 2, these factors should be kept in mind.

3.2.3. Disulfide-Based Self-Healing

The tensile strengths and strains at the break points of the pristine materials and pa-
rameters related to self-healing are included in Table 2. Those data demonstrate the variety
of different disulfides that have been incorporated into self-healing polymer networks.
They include aryl [13,14,17] and aliphatic [32,84,143,161] disulfides. More exotic disulfides,
such as bis(2,2,6,6-tetramethylpiperidin-1-yl)disulfides (BiTEMPS) [162,163], and thiuram
disulfide [164] have been incorporated into polymeric networks as well.

Lv and coworkers [17] prepared dual-self-healing polydimethylsiloxane (PDMS) elas-
tomers containing two types of dynamic covalent bonds, aromatic disulfide and imine
linkages (Figure 33).
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Figure 33. Dual imine- and disulfide-functionalized PDMS elastomers synthesized from aminopropyl
poly(dimethyl siloxane), 1,3,5-triformyl benzene (TFB), and either 4-aminophenyl disulfide (APDS) or
4,4′-aminophenyl methane (DADPM). Reaction with APDS resulted in a dual-functionalized network,
whereas reaction with DADPM resulted in a mono-functionalized imine network. Reprinted with
permission from [17]. Copyright (2017) Wiley Periodicals, Inc.

Imine bonds were incorporated into the PDMS network as temporary crosslinks,
whereas disulfide bonds were incorporated as “sacrificial bonds” that could break and
reorganize in response to mechanical stress. The elastomers were reprocessable and could
self-heal completely within 4 h. Tensile testing for the dual-functionalized PDMS elastomers
showed strain at break values of up to 2000% if stretched slowly. The strain at break of
the dual-functionalized PDMS was higher than a control PDMS containing only imine
groups. The disulfide bonds appear to function as sacrificial bonds during stretching and be
responsible for the high elasticity. Cyclic tensile tests on the dual-functionalized elastomers
revealed a pronounced hysteresis between subsequent stress loading and unloading cycles.
However, when the material was left undisturbed for 2 days at room temperature, the
initial stress loading/unloading curve was reestablished.
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The self-healing ability of dual-functionalized PDMS was better than that of imine single-
functionalized PDMS: 100% self-healing was attained in 4h for the dual-functionalized PDMS
and 55% in 24h for the imine single-functionalized material. The dual-functionalized PDMS
was reprocessed using cold-compression modeling, and the decrease in tensile strength
was negligible after three repeat reprocessing steps. The dual-functionalized PDMS was
degraded due to imine bond scission when the pH was lowered, or when an aldehyde or
alkoxyamine was added. Although not examined, the effects of disulfide bond cleavage
reagents would be interesting to examine, because this system is probably sensitive to
stimulus-induced degradation and self-healing.

Jian and coworkers [143] examined dual-functionalized polyurethane (PU) that con-
tained disulfide bonds with a strong hydrogen bonding motif for advanced self-healing
applications (Figure 34a). Although the self-healing associated with the disulfides occurred
over longer timescales than that associated with hydrogen bonding, it was key to full self-
healing, as shown by comparison of the tensile curves of dual-functionalized and hydrogen
bond mono-functionalized PUs (Figure 34b). However, hydrogen bonding interactions
accounted for almost 50% of the early self-healing.
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Table 2. Self-Healing Polymers Incorporating Disulfide Linkages.

Polymer Structure Secondary Self-
Healing Interaction External Stimuli Self-Healing Efficency 1 Time to Self-Heal 2 Tensile Strength 3

(MPa) Strain at Break 3 Reference
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The results of the groups of Lv [17] and Jian [143] suggest that disulfide bonds are
more effective as self-healers than imine or hydrogen bonds. However, disulfide-based
self-healing appears to occur over a longer time scale. Pairing disulfide bonds with the
faster self-healing functionalities may improve overall self-healing and material longevity
by lowering the risk of permanent deformation when rapid stress is applied.

Kim and co-workers [13] examined how structure-property relationships influenced
self-healing in thermoplastic polyurethanes (TPUs) containing aryl disulfide groups with
variable molecular packing and rigidities. Thus, ‘hard’ para-substituted diaryl disulfide
prepolymers were copolymerized with ‘soft’ poly(tetramethylene ether) glycol segments
(PTMG) (Figure 35). Comparison of the results from the resultant copolymers suggests that
the packing ability of the hard segment, which is determined by the R groups flanking the
aryl disulfide, strongly influences self-healing. TPUs formed with an alicyclic isophorone
diisocyanate-based hard segment (IP-SS) self-healed most efficiently (Table 2). The tensile
strength of IP-SS was 6.8 MPa, which is nearly one order of magnitude higher than that
reported for crosslinked PUs (0.8 MPa) [150]. This is one of the highest strengths reported
among materials that can self-heal at room temperature.

Molecules 2021, 26, x FOR PEER REVIEW 38 of 45 
 

 

 
Figure 35. Synthesis of diphenyl disulfide “hard segment” prepolymers and subsequent copolymerization with PTMG. 
Adapted with permission from [13]. Copyright (2017) Wiley Periodicals, Inc. 

An Ashby plot of self-healing time at room temperature versus toughness (Figure 36) 
highlights the superior performance of IP-SS compared to other intrinsically self-healing 
materials. As shown in Table 2, self-healing materials with comparable or higher tensile 
strengths have been reported, but they require heat, pressure, and/or light for comparably 
efficient self-healing to occur [14,143,163]. 

 
Figure 36. Ashby plot of self-healing time at room temperature versus toughness. Adapted with 
permission from [13]. Copyright (2017) Wiley Periodicals, Inc. 

Figure 35. Synthesis of diphenyl disulfide “hard segment” prepolymers and subsequent copolymerization with PTMG.
Adapted with permission from [13]. Copyright (2017) Wiley Periodicals, Inc.

Kim and coworkers propose that the combination of the rigid diaryl disulfide and
the alicyclic flanking groups provides sufficient chain mobility for efficient healing with-
out weakening the material to an appreciable extent. By comparison, TPUs formed with
symmetric alicyclic 4,4′-methylenebis(phenyl isocyanate) (M-SS) and linear aliphatic hex-
amethylene diisocyanate hard segments (H-SS), exhibited little self-healing ability. The
higher tensile strengths of M-SS and H-SS (Table 2) than that of IP-SS suggests that the
rigidity of M-SS and the high packing ability of H-SS hinder self-healing. Although both
M-SS and H-SS exhibited no self-healing in scratch tests, some recovery of tensile properties
was observed (especially for H-SS, see values in Table 2) when the materials were cut and
subjected to pressure.
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An Ashby plot of self-healing time at room temperature versus toughness (Figure 36)
highlights the superior performance of IP-SS compared to other intrinsically self-healing
materials. As shown in Table 2, self-healing materials with comparable or higher tensile
strengths have been reported, but they require heat, pressure, and/or light for comparably
efficient self-healing to occur [14,143,163].
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4. Conclusions

Thiomers and disulfide-containing polymers have been studied for a wide variety
of applications, due to their stimulus-responsive reactions. Many applications for these
materials have been proposed and realized. Since disulfide-based drug delivery systems
were first approved for human use nearly 20 years ago, research on them and an expansion
of their forms has led to a wide range of sustainable materials that exhibit self-healing
and controllable biodegradation. Future research in the field of thiomer and disulfide-
containing polymers as in drug delivery agents and self-healing materials appears to
be ongoing at an ever-increasing pace. We expect that future research will explore the
potential of multi stimulus-responsive materials that include other functionalities moreover
disulfides and thiols.
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