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Abstract: With the increase of wounds and body damage, the clinical demand for antibacterial,
hemostatic, and repairable biomaterials is increasing. Various types of biomedical materials have
become research hotspots. Of these, and among materials derived from marine organisms, the
research and application of alginate, chitosan, and collagen are the most common. Chitosan is
mainly used as a hemostatic material in clinical applications, but due to problems such as the poor
mechanical strength of a single component, the general antibacterial ability, and fast degradation
speed research into the extraction process and modification mainly focuses on the improvement of
the above-mentioned ability. Similarly, the research and modification of sodium alginate, used as
a material for hemostasis and the repair of wounds, is mainly focused on the improvement of cell
adhesion, hydrophilicity, degradation speed, mechanical properties, etc.; therefore, there are fewer
marine biological collagen products. The research mainly focuses on immunogenicity removal and
mechanical performance improvement. This article summarizes the source, molecular structure,
and characteristics of alginate, chitosan, and collagen from marine organisms; and introduces the
biological safety, clinical efficacy, and mechanism of action of these materials, as well as their
extraction processes and material properties. Their modification and other issues are also discussed,
and their potential clinical applications are examined.

Keywords: alginate; chitosan; collagen; biomaterials; tissue engineering

1. Introduction

Wound hemorrhage, tissue defects, and body damage caused by various physical,
chemical, and human factors are common clinical phenomena. In the process of treatment,
many medical wound repair materials are needed as an aid. Bioremediation materials,
especially natural biomedical materials, are a class of safe and effective materials. They
are widely used, due to their good biocompatibility and cell adhesion. The most repre-
sentative type is animal-derived collagen, which has been developed into many varieties
of soft tissue and hard tissue repair materials; however, the effects of zoonotic diseases,
religious ethics, etc., restrict the large-scale use of animal-derived biomedical materials [1].
With the continuous deepening of human development of the ocean, marine biological
materials without pollution, comorbidities, and religious issues have attracted widespread
attention [2].

Chitosan is a derivative of chitin after deacetylation. With good biocompatibility,
bioactivity, biosafety, biodegradability, and hypoallergenicity, it is called a multipotent
biomaterial. It has excellent physical and chemical properties, such as high specific surface,
porosity, tensile strength, and electrical conductivity, it is prepared into different products
and dosage forms (such as films, fibers, sponges, powders, powders, gels, solutions,
etc.) that are widely used in clinical processes [3]. Alginic acid is a kind of natural
polysaccharide, which is widely found in brown algae. Due to the different amounts of
guluronic acid (G) and mannuronic acid (M) in the molecule, the composition and relative
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molecular mass are diverse, making it salts and mixtures show functional diversity, such
as high hygroscopicity, easy removal, high air permeability, gel blocking, biodegradability,
compatibility, and metal ion adsorption [4,5], which are widely used in the field of wound
hemostasis and repair. Collagen, as a kind of medical material widely used in the field of
tissue engineering, has achieved good application effects for soft tissue and hard tissue
repair. Marine animal collagen has a similar amino acid sequence structure to terrestrial
mammal collagen, and has similar biocompatibility, safety, and degradation properties to
terrestrial animal collagen. It is an excellent source of collagen for medical products [6,7].

However, as these three marine-derived biomedical materials are widely used clin-
ically, their shortcomings and deficiencies are gradually being exposed: for example,
single-component chitosan has a low antibacterial ability, fast degradation speed, poor
water solubility, etc. [8]; single alginic acid has poor cell adhesion, too strong hydrophilicity,
a slow degradation rate, poor mechanical properties, etc. [5,9]; and pure collagen prod-
ucts have poor mechanical properties and rapid degradation in the body, plus the lack
of uniform production quality standards, inspection standards, etc. The development
of marine-derived biomedical materials is restricted [10,11]. How to obtain high-quality,
high-performance clinical products using the aspects of source control, molecular structure
adjustment, extraction process improvement, and molecular modification, and expand
their clinical application range, has become a hot research topic. This article summarizes
the raw material sources, structure and function relationships, main effects and mecha-
nisms, shortcomings, and modification methods of the three marine biomedical materials
of chitosan, alginate, and collagen, and their clinical applications and application prospects
are discussed.

2. Sources, Unique Structures, and Functional Groups
2.1. Alginate

Alginate mainly exists in the cell wall and matrix of brown algal cells, and plays a
mechanical supporting role for cells [12]. It is mainly extracted from kelp and exists in the
form of calcium alginate, magnesium alginate, potassium alginate, and sodium alginate,
etc. [13]. Different types of brown algae have different molecular weights [14] and contents
of alginate, and the differences increase with changes of temperature, marine environment,
and season.

Alginate is a kind of polyanionic natural hydrophilic polysaccharide, which is mainly
composed of D-mannuronic acid (M) and L-guluronic acid (G) [15] (Figure 1, Table 1). It has
powerful water imbibition, is insoluble in water and non-polar solvents, and contains free
carboxyl groups with active properties. Many hydroxyl groups create strong hydrophilicity.
These structural characteristics make alginate a good moisturizer. Combined with metal
ions, which are monovalent or polyvalent, it is converted into alginate, which has good
gelatinizing and hemostatic properties [16,17]. The immunogenicity of alginate, which can
induce higher levels of cytokines for wound healing, is affected by the M-unit amount in
the alginate.

Table 1. Main active groups, functions, and sources of three polymers.

Species Active Groups Maine Functions

Alginate Laminaria, Macrocystis, Sargassum, etc.

D-mannuronic acid (M)
L-guluronic acid (G)

Free carboxyl groups
Hydroxyl groups

Hemostasis [18]
Bacteriostatic [17]

Promote healing [19]
Drug carrier [9]

Chitosan Shrimp, crab, etc
Amino/acetyl amino

Hydroxyl groups
Gluco-1,4-glycoside bond

Anti-bacteria [17]
Anti-inflammation [20]

Anti-oxidation [21]
Hemostasis [22]

Wound healing [11]
Drug carrier [11]
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Table 1. Cont.

Species Active Groups Maine Functions

Collagen skin, bone, scale, muscle of marine
fish, like Sharks, squid, salmon, etc Diamino-dicarboxylic groups

Wound care [20]
Tissue repair [19]

Tissue instead [20]
Hemostasis [23]

Drug delivery systems [24]
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2.2. Chitosan

Chitosan, the product of the N-deacetylation group of chitins, is mainly extracted
from the shells of shrimp, crabs, and other crustaceans (Figure 1, Table 1). It is the only
natural alkaline polysaccharide discovered so far and belongs to the group of linear sug-
ars [25]. Its features include being white-translucent, solid with a pearl luster, its relative
molecular mass ranging from thousands to millions, and being insoluble in water and
alkaline solutions, but soluble in dilute acid solutions, such as formic acid and acetic acid.
Chitosan is a natural non-toxic biopolymer that has three functional groups, which are the
amino/acetyl amino on C-2, the hydroxyl on C-3, and the hydroxyl on C-6. The amino
group on chitosan is the main cause of the unique physical and chemical properties of
chitosan. The protonation of the amino group makes chitosan carry a positive charge and
induces the agglutination reaction of bacteria or red blood cells by electrostatic attraction,
thus achieving bacteriostatic effects and hemostasis. The gluco-1, 4-glycoside bond in the
chitosan molecule is easily degraded into N-acetyl-glucosamine by lysozyme, chitosanase,
and other enzymes secreted by cells, and then induces and promotes the processes of tissue
self-repair. In addition, the degree of deacetylation and molecular weight of chitosan have
a greater impact on physical and chemical properties and biological properties, such as
solubility, hydrophilicity, and cellular response (Figure 1, Table 1).

2.3. Collagen

Marine collagen is a macromolecule with a triple helix structure that is mainly ob-
tained from invertebrates and vertebrates such as sponges [26–28], fish [29,30], squid [31]
and echinoderms [32,33], and extracted from the skin, bones, scales, muscles, and other
tissues [34].
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Studies have shown that the amino acid composition of marine fish collagen is like
that of terrestrial mammals. Glycine accounts for about 30% of the total amino acid
content, while proline hydroxyl accounts for 35% to 48%. The contents of methionine,
isoleucine, and tyrosine are slightly lower than those of land mammals [35]. In addition,
the presence of many diamino-dicarboxylic groups makes collagen extremely hydrophilic
and hemostatic (Figure 1, Table 1).

3. Mechanisms for Main Functions
3.1. Alginates
3.1.1. Hemostatic Mechanisms

Alginate types of hemostatic materials are mainly calcium alginate or other alginates
bound with divalent ions, which can achieve hemostasis through absorption, ion exchange,
etc. Studies have shown that in the coagulation mechanisms of calcium alginate: (1) The
–COOH on the alginate molecular chain can react with the NaCl in the blood, causing
the ionization balance to be broken and the coagulation factor to be activated. Sodium
alginate absorbs a large amount of water in the blood, making the blood viscosity increase
and the flow rate slow down. Moreover, the generated gel can block the end of the
capillary, having the effect of ballistic hemostasis [36]. (2) After the alginate fiber absorbs
the blood, the calcium ions and sodium ions are exchanged to rapidly form the gel. The
calcium ions are released into the blood as coagulation factor IV, which together with
other coagulation factors activates prothrombin into thrombin and participates in the
endogenous coagulation process [37]. (3) Calcium alginate contains plant agglutinin, which
aggregates red blood cells, and then causes red blood cells to transform from discs into
leaves, exposing phosphatidylserine on their surface and promoting local prothrombin
conversion into thrombin [38] (Figure 2).

In addition to these clotting mechanisms, researchers added zinc ions to alginate fibers,
which showed effects of enhance clotting and platelet activation.

3.1.2. Wound Regeneration Function of Alginates

Calcium alginate fiber has high hygroscopicity and a good gel-forming performance,
so it can quickly absorb exudate and blood from the wound and form a low-viscosity
gel to cover the wound surface, effectively keeping the wound wet; providing a suitable
environment for cell migration and regeneration of blood vessels; and, finally, accelerating
wound healing [39]. Many studies have shown that calcium ions released by calcium
alginate fibers can stimulate the growth of fibroblasts and facilitate cell migration to
the wound site, before attempting accelerating wound healing and repair. Additionally,
researchers have pointed out that there are plentiful calcium ions in the cells of keratinocytes
and sebaceous glands around the wound surface. It can be inferred that calcium alginate
fibers may participate in the whole healing process through the release of calcium ions. The
efficacy of calcium alginate fiber in inducing and promoting wound regeneration has been
proved for acute and chronic wounds [40,41] and post-skin grafting care. At the same time,
alginic acid gel can also repair various soft and hard tissue wounds by carrying various
cells, factors, etc. (Figure 3).
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3.1.3. Antibacterial Function of Alginate

After the alginate is implanted into the wound, it reacts with sodium ions in the blood
to quickly form a dense hydrogel, and an imbibition reaction occurs. Alginate bloating, on
the one hand, causes bacteria at the wound to follow the liquid into the sodium alginate
hydrogel, thus restricting its free movement. On the other hand, it results in less liquid at
the wound site and limits the range and activity of bacteria in order to inhibit bacteria from
forming [42] (Figure 4).
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3.1.4. Function as Carriers

The gelatinizing property of alginate gives it unique advantages in both drug embed-
ded and sustained release. Due to its anion carboxyl group in its molecular structure, it is
often made into microspheres with cationic amino chitosan, and the ratio between these
two components determines the stability of the microsphere structure and the time span of
drug sustained release [43]. The strong hydrophilicity of alginate can weaken the stability
of microspheres and affect the loading amount and sustained-release effects of drugs, so its
application in sustained-release drugs is limited without modifications [44,45]. For exam-
ple, it is necessary to prepare microspheres with liposomes for enhanced hydrophobicity
and to graft with dodecyl glycidyl ether (DGE) to make amphoteric carriers.

3.2. Chitosan
3.2.1. Hemostatic Mechanisms

The hemostatic effect of chitosan has been widely applied clinically, especially for
superficial wounds. Its coagulation mechanisms mainly include: (1) Chitosan is a kind
of alkali polysaccharide with positive charge. After implantation into the wound, it can
adsorb the red blood cells with negative charge, to gather and form a thrombus and seal
the wound surface and induce hemostasis [46]. (2) Chitosan can replace damaged tissue
at the wound surface because of its good adhesion, promote platelet activation, and thus
shorten the hemostasis time [47] (Figure 5).
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3.2.2. Wound Regeneration

Chitosan is a kind of aminoglycan composed of glucosamines connected by a β-1,
4-glycoside bond. Its structure is like that of glucosamine in the human body, with good
biocompatibility, non-toxicity, and non-immunogenicity. The mechanisms of the wound
repair function of chitosan (Figure 6) are due to: (1) Chitosan can be degraded to N-acetyl-β-
D-glucosamine by lysozyme and other enzymes secreted by cells. The degraded products
can be absorbed by tissues and organs, promote the orderly deposition at the wound
site, and stimulate the synthesis of hyaluronic acid, thus stimulating the proliferation
of fibroblasts and the formation of blood vessels, resulting in an acceleration of wound
healing [48]. (2) Chitosan can activate macrophages, promote the secretion of various
factors, accelerate the phagocytosis of fragments, prevent other abnormal growth activities,
and thus improving the overall repair of wounds. At the same time, chitosan can inhibit
the secretion of collagen I, promote the synthesis of collagen III, reduce the contraction
rate of the wound, and thus reduce the formation of scar tissue [49]. (3) Chitosan can be
combined with other polymers to give better mechanical properties and spatial structures
for cell migration, crawling, proliferation, and growth. Chitosan can be loaded with cells,
factors, and drugs to accelerate wound healing [50].

Polymers 2021, 13, x FOR PEER REVIEW 8 of 19 
 

 

Chitosan can be combined with other polymers to give better mechanical properties and 
spatial structures for cell migration, crawling, proliferation, and growth. Chitosan can be 
loaded with cells, factors, and drugs to accelerate wound healing [50]. 

 
Figure 6. Chitosan promotes different tissue defect repair mechanisms by carrying other macromolecules. 

3.2.3. Antibacterial Function. 
The antibacterial mechanism of chitosan is closely related to its amino group. There 

are many factors influencing its antibacterial effects, including proton concentration, 
deacetylation degree, molecular weight, and pH value, etc. [47,51]. The antibacterial 
mechanism of chitosan (Figure 7) is mainly speculated to have the following forms: (1) 
The free amino protonation gives chitosan a positive charge, while the cell wall of most 
bacteria has a negative charge. Thus, bacteria are attracted to chitosan and unable to move 
normally, and finally flocculation occurs [52]. (2) Low molecular weight chitosan with –
NH3+ can pass through bacterial cell walls and membranes in an acidic environment, 
interfering with the normal replication and transcription of DNA, and thus affecting the 
replication and reproduction of bacteria [53] (Figure 2). (3) Free amino groups on the 
surface of chitosan can chelate with metal ions and trace elements in an environment, and 
chelate with cofactors of various enzymes in bacteria. Thus, the uptake of trace elements 
and enzyme activities in vivo and t bacteria growth are affected [54]. 

Figure 6. Chitosan promotes different tissue defect repair mechanisms by carrying other macromolecules.



Polymers 2021, 13, 2482 8 of 18

3.2.3. Antibacterial Function

The antibacterial mechanism of chitosan is closely related to its amino group. There are
many factors influencing its antibacterial effects, including proton concentration, deacety-
lation degree, molecular weight, and pH value, etc. [47,51]. The antibacterial mechanism of
chitosan (Figure 7) is mainly speculated to have the following forms: (1) The free amino
protonation gives chitosan a positive charge, while the cell wall of most bacteria has a
negative charge. Thus, bacteria are attracted to chitosan and unable to move normally,
and finally flocculation occurs [52]. (2) Low molecular weight chitosan with –NH3+ can
pass through bacterial cell walls and membranes in an acidic environment, interfering with
the normal replication and transcription of DNA, and thus affecting the replication and
reproduction of bacteria [53] (Figure 2). (3) Free amino groups on the surface of chitosan can
chelate with metal ions and trace elements in an environment, and chelate with cofactors
of various enzymes in bacteria. Thus, the uptake of trace elements and enzyme activities
in vivo and t bacteria growth are affected [54].
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3.2.4. Function as Carriers

Chitosan can be prepared into microspheres with a suitable particle size and excellent
drug loading and sustained release ability through emulsification, crosslinking, evaporation
in a solvent, in-liquid drying, spray drying, and other simple methods, which can achieve
sustained release of a drug, targeted delivery, reduced drug use, reduced drug toxicity, and
other functions [55–57].

3.3. Collagens
3.3.1. Hemostatic Mechanism

Currently, the widely-recognized collagen coagulation mechanisms include: (1) colla-
gen contains a large number of diamino dicarboxylic acid groups, has an extremely strong
hydrophilicity, can absorb the wound bleeding quickly, sticks to the wound surface, forms a
blood scab, and blocks the bleeding. (2) With the absorption of collagen, platelets gather in
large quantities and are stimulated by collagen-related groups to release coagulation factors,
thus accelerating the endogenous hemostasis process and completing the hemostasis [58].
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From previous studies on the hemostatic process of marine fish collagen on skin
wounds and liver wounds in rats, it was found that fish collagen could absorb and swell
rapidly at the wound surface, and stopped bleeding within 30 s and formed blood scabs
within 1–2 h, which was similar to the above.

3.3.2. Wound Regeneration Function

Collagen is regarded as a natural biological repair material that has a similar spa-
tial structure to the human body and which can support cell differentiation, migration,
crawling, and proliferation [59]. At the same time, some scholars speculate that that its
degradation products may be used by the body; therefore, we hypothesized that colla-
gen at the wound may be decomposed and utilized in two ways (Figure 8) to promote
repair [60]: (1) Collagen is recognized by macrophages as tissue fragments and devoured.
After enzymatic digestion in macrophages, collagen is discharged to the wound surface [61].
(2) Collagen is decomposed by a proteolytic enzyme secreted by neutrophils to the wound
surface and hydrolyzed into polypeptide. Broken down peptides are used by fibroblasts to
make new collagen [62].
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3.3.3. Carrier Function

Studies have shown that sustained drug release and time in the body can be achieved
by controlling the structure of collagen. At present, it is mainly used to react with other
substances to form composite microspheres to achieve carrier functions, such as collagen–
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polylactic acid microspheres, collagen–hydroxyapatite microspheres, collagen–chitosan
microspheres, and so on [63,64].

3.4. Other Functions

In addition to the above functions, the three types of marine biomaterials have a
variety of applications in the medical field. For example, alginate can adsorb copper ions
of tyrosinase, block the process of synthesis of melanin by tyrosinase, and whiten the skin.
Chitosan can scavenge oxygen free radicals in vivo by using free amino groups, which play
an antioxidant role. Collagen can increase skin elasticity, slowing the effects of ageing.

4. Structural Shortages of Three Polymers

With the development of medical technology and biochemistry, greater requirements
have been asked of biomedical materials. In the application process of the three marine
derived biological materials in the medical field, all of them have performed well, but there
remain some problems to be further studied and solved for each material.

The problem with alginate is undoubtedly caused by modification. The content and
proportion of M and G in the substructure of alginate determine its properties. Modification
and derivatization mainly occur on the carboxyl group and hydroxyl group located on
the M and G structures. It is not clear whether various modification and derivatization
reactions are selective for the two structures and whether or not they can be regulated.
The effects of modification on the biocompatibility and physicochemical properties of
alginate have not been clarified. The degradation behavior and products of derivatives
need further study.

Pure chitosan has a poor spinnability and mechanical strength and has a fast degrada-
tion rate. In a neutral pH environment, the antibacterial activity of chitosan is weak. These
problems also need to be further studied and solved.

Marine collagen mainly has the following problems: (1) Poor mechanical strength
and fast degradation rate in vivo. (2) There are many species to choose between and a
wide range and great difference in extraction products, which need to be further clarified
according to the actual needs. (3) Further studies are needed on the control of the collagen
extraction process and final product. (4) The form and efficacy of the final product remain
to be determined. (5) There are differences in the structure and composition of collagen
and terrestrial collagen. There have been no systematic studies on the advantages and
disadvantages of collagen in terms of its functionality, which needs to be confirmed before
clinical applications.

5. Directional Modifications of Three Polymers
5.1. Alginate

Alginate has excellent gelling properties, hygroscopicity, hydrophilicity, etc., which
make it an excellent biomedical material. However, these characteristics also have certain
limitations, such as poor cell adhesion, a too strong hydrophilicity, slow degradation rate,
poor mechanical properties, etc. Therefore, it needs to be modified. The modification
of alginate is mainly based on the active sites of sugar units, such as –OH at C-2, C-3
and –COOH at C-6. Different active groups and molecules react with alginate to form
derivatives with different functions [65]. In addition, the ratios of D-mannuronic acid
(M) and L-guluronic acid (G) in alginate molecules also have a great influence on the
modification reaction, which constitutes the basis of alginate modification [66].

The main modification methods shown in studies include crosslinking, grafting,
acylation, carboxymethylation, and so on (Table 2). Different modification methods obtain
different results. For example, the reactivity with divalent ions was increased to enhance
the properties of the adhesive with sodium ions and the exchange ability of ions. Through
crosslinking and recombination with other proteins, the membrane forming ability and fiber
strength are enhanced [67]. Covalent crosslinking can enhance the mechanical properties
and improve the stability and swelling rate of the gel. Binding with biological factors can
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give it cell adhesion sites and the ability to regulate cell behavior [68]. The inclusion of
hydrophobic groups can reduce the hydrophilicity of alginate and effectively improve its
drug carrying capacity [69]. Grafting with other polymers gives it a better mechanical and
sustained-release abilities. Carrying cells and factors enhance repair functions [70–72].

Table 2. Purpose, methods, and effects of directional modification of alginate.

Modification Purpose Modification Method Modification Effect

Enhanced gelatinization
properties

Reacts with calcium ions and
so on

forms a gel quickly, protects
wound wetting, promotes

hemostasis, carries cells and
drugs [68]

Enhanced ion exchange
performance

Reacts with sodium ions and
so on

absorbs copper ions, lead ions
and so on [70,71]

Enhances the ability of
forming film and fiber

Crosslinks with ethylene
oxide and blends with

other proteins

Good film-forming ability,
efficient moisturizing ability,

and fiber ability [72,73]

At present, using modification technology gives many functions that are obviously
better than that of single alginate products (Table 2). For example, with the use of oxidized
alginate and chitosan cross-linked to obtain a hydrogel, and bovine serum albumen conju-
gated and cross-linked to form a microsphere water emulsion, the mechanical properties
and loading sustained release performance have been greatly improved [73]. Using grafting
technology, modified polyethyl methacrylate is attached to alginate to prepare high-quality
sustained-release microspheres [74]. The osteogenesis-related growth factors, peptides,
etc. are loaded into the alginic acid gel, so that the gel can promote bone regeneration [75].
In addition, modifications to carry different types of cells are conducive to the repair of
various types of wound [76,77].

5.2. Chitosan

Chitosan has good biocompatibility, biodegradable, adsorption, film forming, and
antimicrobial properties, as well as being non-toxic and accelerating wound healing, so
it is widely used in clinical practice. However, pure chitosan’s antibacterial ability is
not stable because it has poor mechanical properties and the degradation speed is too
fast, and it needs to use the amino, hydroxyl, and other active sites in the molecular
chain, through crosslinking, grafting, acylation, carboxy methylation, and other chemical
modification methods, to generate a variety of derivatives and improve its performance
(Table 3). For example, the reaction with silver ions enhanced the bacteriostatic function,
while quaternary ammonium salt and hydrochloride enhanced hemostatic function with
acid and salt to improve the water solubility and antioxidant capacity [8,78]. To enhance its
drug carrying capacity, its molecular weight needs to increased and it must compounded
with other substances. To enhance the mechanical strength, it should be compounded
with organic matter, inorganic matter, or polymer materials [79,80]. For example, using
the method of electrochemical precipitation, calcium ions are deposited on the chitosan
scaffold, so that it has the ability for bone repair [81,82]. Chitosan modified by quaternary
ammonium groups or other cations has a greatly improved antibacterial ability [83,84].
After cross-linking with sulfonate, the solubility of chitosan is significantly improved
(Table 3) [85,86].
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Table 3. Modification purpose, modification method, and modification effect of chitosan.

Modification Purpose Modification Method Modificatin Effect

Enhanced antibacterial properties Reaction with silver ions, deacetylation Significantly higher [79,83]

Enhanced hemostatic property Reaction with quaternary ammonium salt
and hydrochloride or deacetylation Greatly improved [80]

Increased antioxidant capacity Increase water solubility and react with
acids and salts

Activates antioxidant enzymes in vivo,
enhances the scavenging of oxygen free

radicals [81,82]

Enhanced carrier capacity
Increases molecular weight and

polymerizes with other substances, such
as polyethylene glycol

Carries insulin, cells, and other drugs [85]

Enhanced mechanical and
inductive properties

compounded with organic compounds
such as collagen, inorganic substances

such as SiO2 and HA, and
macromolecules such as polylactic acid

Improves the three-dimensional space,
structure, and mechanical properties [81]

5.3. Collagen

Collagen is widely used as a medical biomaterial because of its low immunogenicity,
good biocompatibility, and biodegradability. However, it has also some problems, such as
its poor mechanical properties and fast degradation rate, which also need to be modified
(Table 4). It is mainly modified by crosslinking, blending, grafting, and biomimetic miner-
alization (Table 4). Crosslinking with glutaraldehyde can enhance the mechanical strength
and prolong the degradation time. Reaction with inorganic salts and polymer materials
enhances mechanical properties. Compounding with chitosan and alginate enhances hemo-
static performance. Reaction with other polymers improves drug loading capacity [87].
Hoyer et al. conducted biomimetic mineralization of salmon collagen in vitro to prepare a
scaffold material that can be used for bone regeneration, and which has good mechanical
properties and spatial structure, conducive to cell crawling and proliferation [88]. Nagai
simultaneously cross-linked salmon collagen with 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide hydrochloride (EDC) to improve its mechanical properties for periodontal bone
defect treatment [28]. Another study used a chitosan and collagen preparation process
composite scaffold for oral mucosal repair (Table 4) [89].

Table 4. Modification purpose, modification method, and modification effect of collagen.

Modification Purpose Modification Method Modification Effect

Enhanced hemostatic
property

Compound with chitosan and
other hemostatic substances effectively improved [87]

Enhance carrier capacity
Improve the degree of

polymerization, and another
polymer organic compound

It can be prepared into
microspheres and

microcapsules [88,89]

6. Medical Applications

Chitosan and alginate products have been used in clinical practice for many years,
and a series of products have been derived according to clinical needs. There are many
studies focusing on the application of marine collagen, but few clinical products have been
developed. According to the query results from official websites, government websites,
and technical data there are mainly the following types of products.

6.1. Alginate Products

Products used clinically mainly utilize its rapid gel formation and hemostatic prop-
erties. For example, gel products with hemostatic properties for various types of wound
hemostasis; repair functions as filling products, used for filling sinus and cavity defects; and
products with easy to gel characteristics, used for tumor embolization, arterial bleeding,
organ disorders, and so on (Table 5).
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Table 5. Main product forms and functions of the three polymers.

Polymers Product Form Functions

Alginate Membrane, dressing, gel Hemostasis, cavity filling, blockage [18,39]

Chitosan Film, spray, liquid, powder,
sponge, suture

Cavity filling, wound hemostasis, defect
repair [2,45,49–51]

Collagen Sponge, acellular matrix Hemostasis, wound repair [26,53,66]

6.2. Chitosan Products

The products using a single chitosan component mainly use its hemostatic and bac-
teriostatic effects. They include: (1) hemostatic products: chitosan dressings, chitosan
protective film, spraying film, chitosan gel, and chitosan hemostatic powder, which are
used for the hemostasis of various wound surfaces. (2) Antibacterial products: chitosan
suppository, chitosan gel, chitosan anti-bacterial spray, and chitosan hydrocolloid applica-
tions, which are used for disinfection of various surfaces and internal cavities. (3) Repair
products: chitosan gel, sponge, and suture line, which are used for promoting wound
repair. In addition to the above products, chitosan-based artificial skin, artificial bone,
microcapsule drug carriers, and other products have been widely explored and studied
(Table 5).

6.3. Collagen Products

At present, many collagen products made from animal sources are used clinically;
they mainly include repair products, such as artificial meninges, artificial skin, oral repair
membranes, tissue repair membranes, and artificial bone materials [90]. The hemostatic
materials (NeuSkin-F®, Helisorb®, Sheet, BioFil®, BioFil®-AB) which are produced by the
Eucare Pharmaceutical company in India are the only products made with marine collagen
that have been used clinically, but they also require more supporting clinical and other
technological data. However, various types of biomedical materials and products based on
marine derived collagen are under research (Table 5).

7. Potentials in Generative Medicine

As emerging biomedical materials, marine derived biomaterials are widely used in the
fields of hemostasis and wound repair, and many new products based on their characteris-
tics are being developed. Meanwhile, we also need to pay more attention to their potential
problems. The questions that need to be explored and studied include: How to make
biomaterials from marine derived biomaterials that have the appropriate mechanical prop-
erties, have characteristics required by clinical practice, and have degradation properties
that match their functions; how to clarify the mechanism of marine derived biomaterials in
medical applications, as well as the metabolites, metabolic modes, and metabolic pathways
in vivo. More clinical guidance and data support are needed for developing different types
of products made from marine derived biomaterials, and these will become the hotspot
and direction of marine biomaterial development.

7.1. Soft Tissue Repair Materials

Clinical, physical, chemical, man-made, and other causes of soft tissue defects are very
common, and when the defect area reaches the limit of human self-repair, we must use med-
ical materials to assist treatment. The three marine biomaterials all have a repair function
and are suitable raw materials for the preparation of soft tissue repair materials; however,
some improvements must be made in terms of mechanical strength and degradability. For
example, the combination of other medical polymer materials can, not only maintain the
repair function, but also enhance the mechanical properties. Using 3D printing technology
or other bionic technology, the soft tissue structure can be synthesized in vitro with marine
biological materials as the matrix, which can greatly improve the repair effect.
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7.2. Hard Tissue Repair Materials

Hard tissue defects caused by traffic accident, trauma, and war are on the rise year
by year in the world. In clinical practice, polymer materials, inorganic materials, and
metal materials are widely used, but there are certain problems. Therefore, good biological
compatibility has gradually become the hotspot for application of degradable biomaterials,
and marine biological materials, especially with the human body composition being similar
to fish collagen. Collagen has many advantages for the preparation of hard tissue repair
materials; it can be used for a variety of bionical purposes, is similar bionically to human
bone as an in vitro synthesis material, and can also synthesize blood vessels, nerve biopsy
materials, and effectively promote hard tissue repair.

7.3. Limits and Development Direction

With the improvement of medical standards, higher requirements are demanded from
biomedical materials. The three marine-derived biomaterials have performed well in the
application process in the medical field, but each material has some problems that need to
be studied and solved.

The problem with alginate is mainly the uncertainty caused by its modification. The
content and ratio of M and G in the alginate structure determine its properties. Modification
and derivatization mainly occur on the carboxyl and hydroxyl groups on the M and G
structure. It is not clear whether the modification and derivatization reactions of these
two structures are selective and whether they can be controlled. The effect of modification
on the biocompatibility and physicochemical properties of alginate is still unclear. The
degradation behavior and products of derivatives need to be further studied.

Pure chitosan has a poor spinnability, low mechanical strength, and fast degradation.
In a neutral pH environment, the antibacterial activity of chitosan is not strong, and these
problems with chitosan need to be further studied and resolved.

Marine collagen mainly has the following problems: (1) Poor mechanical strength
and rapid degradation in the body. (2) There are many kinds of fish, the differences are
great, and the extracted protein is very varied, and thus further research is needed. (3) The
collagen extraction process and the control of the final product need to be further studied.
(4) The form and efficacy of the final product have yet to be determined. (5) The structure
and composition of collagen and terrestrial collagen are different. Regarding the functional
advantages and disadvantages of collagen, there is currently no systematic research, which
needs to be verified before clinical application.

In addition, the development of medical materials is a long process. In order to ensure
the biological safety and effectiveness of products, it is necessary to formulate standards
for raw material inspection, production inspection, and finished product inspection that
meet clinical needs, and it is also necessary to invest a lot of money in the production
and market.

In a word, various properties and characteristics of marine biological materials have
been gradually explored by humans. How to make full use of these in the medical field
and develop more suitable medical products is the direction of the efforts of researchers.

8. Conclusions

Three polymers derived from marine organisms have excellent performance in hemosta-
sis, repair, antibacterial action, and other aspects. There are also many products in clinical
use, but the materials prepared from each macromolecule still have certain defects. The
extraction process, modifications, and other aspects need to be further investigated to
improve their performance and develop more products that meet clinical needs.
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