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Abstract: Gut bacterial toxins are thought to contribute to the development of colorectal cancer
(CRC). This study examines the presence of specific gut bacterial toxin genes in stool samples
from individuals with colorectal neoplasia (adenomas and/or CRC). The presence of bacterial
genes encoding genotoxic or pro-inflammatory factors (pks, tcpC, gelE, cnf-1, AMmurB, and usp) was
established by PCR of stool samples from individuals from mainland US (n = 30; controls = 10,
adenoma = 10, CRC = 10) and from Puerto Rico (PR) (n = 33; controls = 13; adenomas = 8; CRC = 12).
Logistic regression models and multinomial logistic regression models were used to estimate the
magnitude of association. Distinct bacterial gene profiles were observed in each sample cohort.
In individuals with CRC, AMmurB was detected more frequently in samples from the US and
gelE in samples from PR. In samples from PR, individuals with ≥2 gut bacterial toxin genes in
stool had higher odds of having colorectal neoplasia (OR = 11.0, 95%: CI 1.0–637.1): however, no
significant association between bacterial genes and colorectal neoplasia was observed in the US
cohort. Further analyses are warranted in a larger cohort to validate these preliminary findings, but
these encouraging results highlight the importance of developing bacterial markers as tools for CRC
diagnosis or risk stratification.
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1. Introduction

Sporadic, non-hereditary colorectal cancer (CRC) is a complex and multifactorial disease involving
genetic, environmental, and lifestyle risk factors. CRC survival is largely dependent on prevention
and early detection [1,2]. Currently, routine CRC screening and removal of adenomas (pre-cancerous
lesions) are the primary means for prevention; however, the fact that 61% of CRC patients are diagnosed
at more advanced, less treatable stages emphasizes the need for risk-stratified CRC prevention
strategies that incorporate the individual’s modifiable and non-modifiable risk factors [2].

One of the most currently studied environmental risk factors associated with CRC is the gut
microbiota [3,4]. Compared to healthy subjects, individuals with CRC have been reported to have a distinct
gut microbiota composition enriched in gram-negative bacteria [5,6], which may include opportunistic
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pathogens such as Escherichia and Campylobacter that may harbor toxins that induce DNA damage, genomic
instability, inflammation, and aberrant cell signaling and other hallmarks of cancer [7–11]. Accumulating
evidence supports the notion that a subset of the gut microbiota can promote CRC development through
chronic inflammation and genotoxicity, among other possible pathways [12–20]. However, the precise
mechanisms by which the gut microbiota exerts its CRC-promoting effects are still not fully understood.

Although numerous studies suggest the involvement of individual gut bacterial species in the
etiology of CRC, causality is yet to be established [3,10,14,21,22]. Recent studies have reported that
genotoxin-producing E. coli strains are more prevalent in CRC [8,23,24] and that CRC tissues have
more mucosa-associated E. coli than seemingly healthy tissues [25]. These findings support the
idea that bacteria with genotoxic and/or pro-inflammatory toxins are not only more abundant in
CRC, but that they are also in close proximity to the colonic epithelium where they can exert their
pro-carcinogenic effects.

In this study, we have assembled a panel of genes that includes six specific, genotoxic and/or
pro-inflammatory gut bacterial genes that encode toxins with known pathogenic mechanisms, that
may contribute to colorectal carcinogenesis (Table 1). Previously, our group reported a method for
the detection of six gut bacterial toxin genes in DNA isolated from clinical stool samples [26]. In the
present study, we report the association between the presence of these six gut bacterial toxin genes in
stool and colorectal neoplasia using samples from two different geographical locations (mainland US
and PR).

Table 1. A list of six bacterial genes in this study and their known pathogenic mechanism.

Gene Name Pathogenic Mechanism

pks island (pks) Encodes colibactin, a genotoxin that induces double-strand
DNA breaks and genome instability [27,28]

TIR domain-containing protein (tcpC) Toxin modulates host immune response [29]

gelatinase-E (gelE) Pro-inflammatory toxin [30]

cytotoxic necrotizing factor (CNF) Cyclomodulin that promotes proliferation [31]

uropathogenic specific protein (USP) Genotoxin that induces DNA damage [32]

UDP-N-acetylenolpyruvylglucosamine
reductase (murB)

Nonpathogenic; surrogate marker for Akkermansia muciniphila,
a mucolytic bacterium associated with CRC [33]

2. Materials and Methods

2.1. Stool Sample Collection

Human stool samples were obtained from the Early Detection Research Network (EDRN; https:
//edrn.nci.nih.gov/) and the Puerto Rico Familial Colorectal Cancer Registry (PURIFICAR; http:
//purificar.rcm.upr.edu/ index_eng.html). The EDRN, an initiative of the National Cancer Institute
(NCI), brings together dozens of institutions to help accrue biospecimens, accelerate the translation
of biomarker information into clinical applications, and to evaluate new diagnostic tests for cancer.
PURIFICAR is an island-wide registry that recruits healthy individuals and those with colorectal
neoplasia. All subjects recruited by PURIFICAR complete the Colon Cancer Family Registry risk factor
questionnaire, which collects sociodemographic and clinical information including: medical history,
body mass index (BMI), lifestyle, family history of cancer, and demographic information, among others.
PURIFICAR was approved by the University of Puerto Rico Institutional Review Board (approval
number: A2210207).

The EDRN kindly provided 30 age- and gender-matched stool samples from individuals residing
in the mainland US (controls = 10; adenoma = 10; and CRC = 10). Samples from individuals living in PR
were obtained through PURIFICAR (n = 33; controls = 13; adenoma = 8; and CRC = 12), an island-wide
population-based registry that collects biospecimens (blood, colorectal tissue, and stool) from both
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cases (individuals with colorectal neoplasia) and controls (healthy individuals without prior history
of colorectal neoplasia). Only individuals with pathologic confirmation of adenomas and CRC were
included in this study. Individuals diagnosed with Crohn’s disease or ulcerative colitis, that have
undergone previous subtotal or total colectomies, or have had antibiotic treatment at any time in the
three months previous to recruitment were excluded. All stool samples obtained through PURIFICAR
were collected during a six-month period and stored at −80 ◦C.

2.2. Bacterial DNA Extraction

Bacterial DNA was extracted from human stool samples (200 mg/per sample) using the QIAamp®

DNA Stool Mini Kit (QIAGEN) according the manufacturer’s instructions. DNA extractions were
performed within a one-month period since stool samples were received at the laboratory. A total of
5 µL of DNA extract was used as template for subsequent PCR analyses. DNA concentrations were
determined using a Nanodrop (ThermoFisher Scientific) and total bacterial DNA was quantified using
the formula: µg of DNA = A260 × 0.05 × Vol, where A260 is the absorbance at 260 nm and Vol is the
total volume of eluted DNA in microliters.

2.3. PCR Profiling of Specific Bacterial Toxin Genes

The detection and quantification of the six gut bacterial toxin genes in our panel was carried out by
PCR analyses as previously described [26]. DNA extracts from bacterial isolates known to contain the
genes of interest were used as positive controls. The strains used as positive controls for the pks, tcpC,
and cnf qPCRs were selected from a collection of E. coli clinical isolates that were part of a nosocomial
infection surveillance study [34]. The E. faecalis strain H32, an isolate previously known to contain
gelE, was kindly donated by Dr. Luis Ríos-Hernández from University of Puerto Rico-Mayagüez.
A. muciniphila genomic DNA was purchased from the American Type Culture Collection.

Gut bacterial toxin gene primer sequences, annealing temperatures, and expected PCR products
are summarized in Tables 2 and 3. Due to the limited amount of stool sample from individuals from
the mainland US, only end-point PCR was used to detect the bacterial toxin genes. Briefly, an initial
denaturation step of 1 min at 94 ◦C was performed followed 30 s at 94 ◦C, 30 s at the corresponding
annealing temperature, and 3 min at 68 ◦C. All reactions were finalized with a final extension step of
10 min at 72 ◦C. pks, tcpC, gelE, cnf-1, AMmurB, and usp amplicons were sequenced to ensure primer
specificity. Samples positive for any of the gut bacterial toxin genes in our panel were further analyzed
to by qPCR quantify the corresponding gene copy number.

Stool samples from individuals living in PR served as a validation set. The gut bacterial toxin
genes in these samples were detected by qPCR. Detection of pks, tcpC, gelE, cnf-1, AMmurB, and usp
in stool was performed in triplicate by qPCR analysis using the QuantiTect SYBR Green PCR kit
(QIAGEN). Briefly, qPCR reactions required a 15 min incubation at 95 ◦C, followed by 50 cycles (for
quantifying gelE) or 30 cycles (for the other genes in the panel) of 30 s at 94 ◦C, 30 s at the corresponding
annealing temperature, and 3 min at 68 ◦C. All reactions had a final extension step of 10 min at 72 ◦C
to ensure maximum detection. The presence of a single DNA amplicon at the end of the qPCR cycle
was ascertained by a melting curve with a single-phase transition (Figure A1). Two independent qPCR
assays were performed independently. Only the samples that tested positive in both independent
measurements were counted as true positives (86% of all positives).

Standard curves using DNA extracts from bacterial isolates known to contain the bacterial toxin
genes (Figure A2) were generated for the quantification of the gene copy numbers in our panel. All
qPCRs reactions were performed as described in the section above. Gene copy numbers were calculated
in stool samples for the bacterial toxin genes of interest. To calculate the number of gene copies in
each sample, the DNA copy number conversion is determined from a measurement of absorbance at
260 nm, according to the following relationship:

gene copies = A260 × (50 × 10−9 gDNA/µL)/(GW)(1) (1)
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where A260 is the absorbance of the sample at 260 nm and GW is the weight of the entire genome of
the organism harboring the gene (5.1 × 10−15 g for E. coli, 3.6 × 10−15 g for E. faecalis, and, 2.7 × 10 ×
10−15 g for A. muciniphila). The E. coli genome weight is used to calculate pks, tcpc, cnf-1, and usp gene
copy numbers. E. faecalis and A. muciniphila genome weights are used to calculate gelE and AMmurB
copy numbers, respectively.

Table 2. Gut bacterial toxin gene primer sequences, annealing temperatures, and expected amplicon
size for end-point PCR analyses.

Bacterial Gene Primer Sequence Annealing Temp (◦C) Size (bp) Reference

pks island
F: GTTTTGCTCGCCAGATAGTCATTC

63 733 Ref. [26]
R: CAGTTCGGGTATGTGTGGAAGG

tcpC
F: TCGGCGATAGCTTAAGGAGA

56 216 Ref. [26]
R: CCGCCAAATAATGGCTGTAT

gelE
F: TATGACAATGCTTTTTGGGAT

49 213 Ref. [26]
R: AGATGCACCCGAAATAATATA

cnf-1
F: AGCGTGCAATCTATCCGTATTT

56 173 Ref. [26]
R: TGGAATTTCCCCAGTATAGGTG

usp
F: GGTGTTCATACGGGTGAAGG

63 618 This study
R: CTCAGGGACATAGGGGGAAT

AMmurB
F: GAAATCCGCAGCCATACAAG

57.3 135 This study
R: CTCCAGAAGACGCTCCATTT

Table 3. Gut bacterial toxin gene primer sequences, annealing temperatures, and expected amplicon
sizes for quantitative real-time PCR analyses.

Bacterial Gene Primer Sequence Annealing Temp (◦C) Size (bp) Reference

pks island
F: TCGATATAGTCACGCCACCA

63 137 This study
R: GTCAAGCGAGCATACGAACA

tcpC
F: AGATGGGAGTGGAAGGAGGT

61 144 This study
R: TGCTTGTAATTTTGCCCAGTC

gelE
F: GGTACAGGCATCTTTGTTGGA

61 131 This study
R: GCCTCAGAAATTGCCTCCTT

cnf-1
F: AGCGTGCAATCTATCCGTATTT

56 173 Ref. [26]
R: TGGAATTTCCCCAGTATAGGTG

usp F: GGTGTTCATACGGGTGAAGG
63 618 This study

R: CTCAGGGACATAGGGGGAAT

AMmurB
F: GAAATCCGCAGCCATACAAG

57.3 135 This study
R: CTCCAGAAGACGCTCCATTT

2.4. Statistical Analysis

Logistic regression models were used to estimate the magnitude of association (Odds ratio
with 95% confidence interval, OR with 95% CI) between colorectal neoplasia (CRC and polyps) and
bacterial genes. In addition, multinomial (polytomous) logistic regression models were fitted to
estimate the OR’s with 95% CI for CRC (outcome 1) and adenomas (outcome 2) compared with
controls. The multinomial logistic regression was used to predict the probabilities of the different
possible outcomes (CRC or adenomas) of a categorically distributed dependent variable given a set of
independent variables (bacterial genes). All data was analyzed using Stata for Windows release 14.0
(Stata Corporation, College Station, TX, USA).
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3. Results

3.1. Detection of Genotoxic or Pro-Inflammatory Bacterial Genes by PCR

The total bacterial DNA extracted ranged between 0.5 µg and 32 µg per 200 mg per stool sample.
No statistical difference in the average total bacterial DNA concentrations between controls (9.2 µg),
adenoma (11.6 µg), and CRC groups (11.9 µg) and the stool sample subgroups (US and PR) was
observed (Figure 1). PCR analyses of stool samples from both mainland US and PR showed a higher
frequency of genotoxic or pro-inflammatory toxin genes detected in samples from individuals with
adenoma and CRC compared to controls (Figure 2). Also, differences were observed in the gut bacterial
toxin gene profiles between samples from these two subgroups. In samples from the US, all of the gut
bacterial toxin genes in our panel, except AMmurB, were detected in samples from healthy controls
(Figure 2A). In the healthy group from PR, 4 of 6 of the gut bacterial toxin genes in our panel (pks, tcpC,
cnf-1, and AMmurB) were detected (Figure 2B). In samples from PR with adenoma and CRC, AMmurB
(50%) was more frequently detected in samples from individuals with adenomas and gelE (42%) in
CRC samples. In the US cohort, pks (50%) was more frequently detected in samples from individuals
with adenomas and usp (60%) in CRC stool samples.
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Figure 2. Pro-inflammatory and/or genotoxic bacterial genes were detected for (A) US samples from
the Early Detection Research Network (EDRN) and (B) Puerto Rico samples from the University of
Puerto Rico Comprehensive Cancer Center (UPR CCC). Samples were divided by diagnosis as controls
(green), adenomas (yellow), and CRC (red). Orange squares represent samples that were positive for
the gene.
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The presence of genotoxic and/or pro-inflammatory bacterial toxin genes was associated with
colorectal neoplasia in both of the study groups (US and PR cohorts); however, the degree of the
association and the bacterial toxin genes associated varied between the two populations. Among the
US cohort (Table 4), the odds of having CRC among individuals with AMmurB gene in their stool
were 14.5-times (OR = 14.5, 95% CI: 0.7–316.7) compared to controls. However, this association was
marginally significant (p = 0.09). No statistically significant associations between the presence of the
gut bacterial toxin genes and colorectal neoplasia (adenoma and CRC) were observed in stool samples
from individuals from the US. In the PR cohort, the presence of gelE in stool was marginally associated
with adenomas (OR = 8.6, 95% CI: 0.8–89.04) (Table 5). In addition, the presence of ≥2 bacterial toxin
genes in stool was significantly associated with adenomas (OR = 24; 95% CI: 1.11–518.6) and colorectal
neoplasia (OR = 11.3; 95% CI: 1.0–637.1) compared to controls.

Table 4. Odds ratio (OR) estimation for the association between the presence of gut bacterial toxin
genes in stool samples from individuals in the U.S. and colorectal neoplasia (n = 30).

Model 1 Model 2

Bacterial Gene
Adenoma CRC Neoplasia

OR (% CI) p-Value OR (% CI) p-Value OR (% CI) p-Value

pks 2.7 (0.4–29.1) 0.17 2.7 (0.4–19.7) 0.34 3.3 (0.6–19.4) 0.19

tcpC 0.5 (0.03–5.9) 0.53 2.7 (0.4–19.7) 0.33 1.3 (0.21–8.5) 0.76

cnf 0.5 (0.03–5.9) 0.53 1 (0.1–8.9) 0.99 0.7 (0.1–5.1) 0.73

usp 1.6 (0.2–9.9) 0.64 3.5 (0.5–22.3) 0.18 2.3 (0.5–11.7) 0.30

gelE 1 (0.2–6.0) 0.99 0.64 (0.1–4.1) 0.64 0.8 (0.2–3.9) 0.79

AMmurB * 9.8 (0.4–219.2) 0.15 14.5 (0.7–316.7) 0.09 11.7 (0.6–228.4) 0.11

≥2 genes 3.2 (0.4–28.8) 0.29 3.7 (0.5–28.5) 0.19 4.4 (0.6–32.5) 0.15

Not having the gene was used as reference. Neoplasia includes adenomas and CRC cases. ORs were estimated
through multinomial logistic regression models (Model 1) or logistic regression models (Model 2) where controls
were the reference group. * Added 0.05 to each field.

Table 5. Odds ratio (OR) estimation for the association between the presence of gut bacterial toxin
genes in stool samples from individuals from Puerto Rico and colorectal neoplasia (n = 33).

Model 1 Model 2

Bacterial Gene
Adenoma CRC Neoplasia

OR (% CI) p-Value OR (% CI) p-Value OR (% CI) p-Value

Pks * 1.6 (0.02–87.8) 0.82 10.0 (0.5–215.8) 0.82 5.4 (0.3–113.7) 0.28

tcpC * 10.4 (0.4–249.0) 0.15 3.5 (0.1–95.1) 0.46 5.4 (0.3–113.7) 0.28

cnf * 0.3 (0.01–6.4) 0.41 1.7 (0.3–10.6) 0.57 1.0 (0.1–13.4) 0.99

usp 3.3 (0.4–26.4) 0.26 1.1 (0.1–9.3) 0.93 1.8 (0.2–22.3) 0.84

gelE 4.0 (0.3–53.5) 0.30 8.6 (0.8–89.0) 0.07 6.2 (0.6–315.0) 0.16

AMmurB 5.5 (0.7–42.6) 0.10 2.8 (0.4–18.9) 0.30 3.5 (0.5–41.3) 0.26

≥2 genes 24.0 (1.1–518.6) 0.04 10.0 (0.9–117.0) 0.07 11.3 (1.0–637.1) 0.05

Not having the gene was used as reference. Neoplasia includes adenomas and CRC cases. ORs were estimated
through multinomial logistic regression models (Model 1) or logistic regression models (Model 2) where controls
were the reference group. * Added 0.05 to each field.

3.2. Gene Copy Number Measurements

Bacterial toxin gene copy numbers were calculated in all samples positive for the bacterial genes
in our panel. Although colorectal neoplasia samples were expected to have a higher bacterial gene
copy number compared to the corresponding control samples, no differences were observed between



Diseases 2019, 7, 16 7 of 12

the mean copy number of any of the bacterial genes studied (Figure 3). A higher degree of variability
was observed for usp and pks gene copy numbers than for other genes.
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4. Discussion

The gut microbiota has emerged as a major contributor to gastrointestinal carcinogenesis [35–37].
Despite new insights about the relationships between the gut microbiota and CRC, no methods have
been developed that use microbial species or genes as markers for the purposes of screening or risk
stratification [38]. In this case-control study, we have examined the association between the presence in
stool of a subset of known pro-inflammatory and/or genotoxic bacterial genes and colorectal neoplasia,
in samples from two geographically and ethnically distinct populations. This study, even with the
limited number of stool samples, revealed a gut bacterial toxin gene profile that was different for each
of the two populations (US and PR). Our analyses also revealed that individuals who are positive
for multiple bacterial toxin genes have higher odds of developing colorectal neoplasia. Due to the
small sample size, most of our observations are not statistically significant, but they reveal a trend that
underscores the possibility of incorporating bacterial biomarkers into CRC screening protocols or as
tools for risk stratification [38].

In this work, rather than report the detection and prevalence of pro-carcinogenic bacterial species,
such as F. nucleatum and B. fragilis, we screened stool samples for the presence of six specific gut
bacterial genes that encode toxins that have been previously shown to promote DNA damage
and inflammation [26,28–30,32]. Two distinct bacterial toxin gene signatures were observed in
stool samples from individuals living in the mainland US and PR. The sample size in these two
cohorts (n = 30 in US and n = 33 in PR) is too small to draw any conclusions regarding how the
geographical differences between these groups may influence the gut microbiome. However, dietary
patterns are known to shape and influence the gut microbiota, their metabolism, and functional
characteristics [39–41]. Studies have shown that the dietary patterns of Puerto Rican adults differ
from those in the general US population [42]. In addition, host genetics have been reported to
modulate the gut microbial composition [43–45] and Puerto Rican Hispanics have been shown to have
a unique genomic composition [46], which could possibly contribute to the differences observed in
their stool bacterial toxin gene profiles compared to the profiles from individuals from the mainland
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US. Nonetheless, additional studies with a larger number of samples are needed in order to examine
the factors that contribute to the observed differences in the gut microbiota in these two populations.

In the samples from the mainland USA, the gene AMmurB was found to be associated with CRC.
Although not encoding a bacterial toxin itself, this gene is a marker for the presence of Akkermansia
muciniphila, a mucolytic bacterium whose link to CRC had been previously established [33,47]. It has
been thought that the presence of this bacterium in CRC is due to the increased production of the
glycoprotein mucin in diseased tissue [33]. This is not surprising since colorectal adenomas have
been reported to contain increased levels of certain mucins [48]. Although not reaching statistical
significance, the presence of pks island was associated with higher odds (OR = 2.7) of having adenomas
or CRC. The pks island encodes a number of enzymes for the production of a genotoxic natural product
colibactin, whose chemical structure and mechanism of action have not been elucidated, but its
presence had been previously shown to correlate with CRC and tumor formation [8]. We also report
the increased presence of tcpC and usp in CRC samples (OR > 2.7). The possible role of TcpC in
cancer could be related with its known activity as an antagonist of Toll-like receptor 4, an activity
that promotes aberrant tissue inflammation [29]. Finally the presence of usp in the GI tract had been
documented, but its main previously known activity was the promotion of cell cycle arrest and DNA
damage in the urinary tract [32]. Although there are a number of plausible mechanisms by which
these bacterial genes could favor cancer promotion, we believe that the true clinical significance of
these preliminary associations will emerge from validation studies with larger cohorts that more fully
reflect the geographical and racial diversity of the US.

In the Puerto Rico samples, stronger associations were observed between the presence of the
bacterial toxin genes in our panel and increased odds of having adenomas or CRC. As in the US
samples, marginally significant associations were detected between the presence of pks, tcpC, or usp,
and colorectal neoplasia. Having 2 or more of any bacterial toxin gene in our panel in stool showed
a strong significant association with higher odds of having adenomas. The detection of such a strong
significant association within this small sample group warrants further investigation in larger number
of individuals and supports that this panel may have potential as a CRC risk stratification tool.

Taken together, our results provide a glimpse into the possible feasibility and clinical utility of
a CRC risk stratification and/or screening strategies based on the detection of specific bacterial toxin
genes in stool. Although our results need to be further validated in a larger number of patient samples
and with more diverse patient populations, it is clear that distinct bacterial toxin gene signatures
can be detected and quantified, without having to isolate bacterial clones or to reconstruct species
composition. Further research is warranted to evaluate the clinical utility of this PCR-based method in
CRC risk stratification and/or screening, and to further explore the mechanisms by which these genes
could act as functional effectors in colorectal carcinogenesis.
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Figure A1. (A) Real-time PCR reactions were performed for the quantitation of DNA in stool samples
compared with a set of standards of known concentration for each of the genes, (B) The presence of a
single PCR product was ascertained by monitoring a DNA melting profile immediately after the PCR
reaction. The presence of a single peak for each sample is indicative of a single PCR product.Diseases 2019, 7, x FOR PEER REVIEW 10 of 12 
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