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Estimating human motion intention, such as intent joint torque and

movement, plays a crucial role in assistive robotics for ensuring e�cient and

safe human-robot interaction. For coupled human-robot systems, surface

electromyography (sEMG) signal has been proven as an e�ective means for

estimating human’s intended movements. Usually, joint movement estimation

uses sEMG signals measured from multiple muscles and needs many sEMG

sensors placed on the human body, which may cause discomfort or result

in mechanical/signal interference from wearable robots/environment during

long-term routine use. Although the muscle synergy principle implies that

it is possible to estimate human motion using sEMG signals from even

one signal muscle, few studies investigated the feasibility of continuous

motion estimation based on single-channel sEMG. In this study, a feature-

guided convolutional neural network (FG-CNN) has been proposed to

estimate human knee joint movement using single-channel sEMG. In the

proposed FG-CNN, several handcrafted features have been fused into a

CNN model to guide CNN feature extraction, and both handcrafted and

CNN-extracted features were applied to a regression model, i.e., random

forest regression, to estimate knee joint movements. Experiments with 8

healthy subjects were carried out, and sEMG signals measured from 6

muscles, i.e., vastus lateralis, vastus medialis, biceps femoris, semitendinosus,

lateral or medial gastrocnemius (LG or MG), were separately evaluated

for knee joint estimation using the proposed method. The experimental

results demonstrated that the proposed FG-CNN method with single-channel

sEMG signals from LG or MG can e�ectively estimate human knee joint

movements. The average correlation coe�cient between the measured

and the estimated knee joint movements is 0.858 ± 0.085 for LG and

0.856 ± 0.057 for MG. Meanwhile, comparative studies showed that the

combined handcrafted-CNN features outperform either the handcrafted

features or the CNN features; the performance of the proposed signal-

channel sEMG-based FG-CNN method is comparable to those of the

traditional multi-channel sEMG-based methods. The outcomes of this study
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enable the possibility of developing a single-channel sEMG-based human-

robot interface for knee joint movement estimation, which can facilitate the

routine use of assistive robots.

KEYWORDS

single-channel sEMG signals, human-robot interaction, joint movement estimation,

level walking, feature-guided convolutional neural network (FG-CNN)

1. Introduction

Surface electromyography (sEMG) has been extensively used

to ensure accurate and safe human-robot interaction (HRI) in

robotic devices for rehabilitation or performance enhancement

(Nam et al., 2014; Spanias et al., 2016; Caulcrick et al., 2021).

Regarding the sEMG-based HRI, one crucial issue is to estimate

human motion intention (e.g., intended joint movements)

from the sEMG signals (Ding et al., 2017; Bi et al., 2019; Lu

et al., 2019). Due to the sEMG signal with the characteristics

of preceding the corresponding motion by 20–100 ms and

containing neuromuscular control information, the sEMG-

based motion estimation benefits in achieving a more natural

and fluent HRI and can differentiate how much of the motion

is caused by muscles: a unique advantage compared with the

inertial measurement unit (IMU)/optical-based method (Xiong

et al., 2021). Recently, many approaches have been proposed to

estimate the human joint movements based on multi-channel

sEMG signals, such as adaptive hybrid classifier for hand gesture

recognition (Ding et al., 2019) and Hill-based method or deep

learning method for joint movement prediction (Fleischer and

Hommel, 2008; Wang et al., 2021; Zhong et al., 2022).

Although multi-channel sEMG signals can provide rich

information and contribute to estimate the corresponding

joint movement accurately, using multi-channel sEMG

has some practical limitations: first, collecting multi-channel

sEMG subjects is subject to some limitations, such as

weakness or spasticity of one or more specific muscles and

mechanical/signal interference between sEMG sensors and

wearable robots/environment (e.g., sitting on a chair); second,

increasing the number of physical channels would increase the

system complexity, making it difficult to deploy, as well as

increase the power consumption (He et al., 2019). The above

drawbacks limit the routine use of sEMG-based assistive robots.

Therefore, it is important to investigate the estimation of human

motion using sEMG signals from fewer muscles or even a single

muscle.

Recently, some related studies on hand gesture identification

(Kumar et al., 2013), upper limb movement recognition

(Shao et al., 2020), terrain identification (Gupta and Agarwal,

2019), and lower limb movement recognition (Wei et al.,

2022) used single-channel sEMG signals. However, the existing

studies mainly focused on recognizing discrete motion modes

rather than estimating continuous joint movements. Compared

with discrete modes, continuous joint movements can enable

simultaneous and proportional control (Bao et al., 2021),

realizing more effective and safer HRI for rehabilitation and

assistive robots and orthoses. To the best of our knowledge, few

studies demonstrated an accurate joint movement estimation

method based on single-channel sEMG. According to themuscle

synergy principle, which is widely accepted as a constitutional

function unit of the central neural systems that control muscles

in groups (d’Avella et al., 2003; Jiang et al., 2014; Dwivedi

et al., 2020; Kubota et al., 2021), a group of related muscles’

activities have certain common components or patterns, which

enables the possibility of estimating joint movements using

sEMG signals from one or fewer muscles. Therefore, developing

a single-channel sEMG-based continuous joint movement

estimation method has great potential for facilitating the routine

use of assistive robots.

Compared to recognizing motion modes, it is more

challenging to accurately estimate continuous joint movements

using single-channel sEMG signals due to the limited muscular

information. To guarantee an accurate and robust estimation

of human joint movement, it is crucial to extract muscular

information from single-channel sEMG signals adequately.

There are two main ways of extracting muscular information:

One is directly computing handcrafted features using

mathematical equations (Phinyomark et al., 2012; Thongpanja

et al., 2016) and another one is to extract learning features by

deep learning, e.g., convolutional neural network (CNN). The

learning features may complement the handcrafted features

(Atzori et al., 2016; Phinyomark and Scheme, 2018; Côté-Allard

et al., 2020). Therefore, it is possible to obtain relatively adequate

muscular information from single-channel sEMG by fusing the

handcrafted and learning features.

In this study, a new feature extraction method, namely

feature-guide convolutional neural network (FG-CNN),

was proposed to estimate knee joint movements using

single-channel sEMG signals. In the proposed FG-CNN, 14

handcrafted features (Wei et al., 2019) were first fed into

a fusion layer to guide a traditional CNN in extracting 14

implicit features (i.e., CNN extracted features). The 28 FG-CNN

features containing 14 handcrafted features and 14 CNN
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features were applied to a regression model, e.g., random forest

regression, to estimate continuous knee joint movements. To

verify the effectiveness of the FG-CNN, the proposed method

was respectively evaluated on six kinds of single-channel

sEMG signals measured from vastus lateralis (VL), vastus

medialis (VM), biceps femoris (BF), semitendinosus (ST),

lateral and medial gastrocnemius (LG and MG) for estimating

the movements. Meanwhile, the 28 FG-CNN features were

respectively compared to 14 handcrafted features and 28

CNN features (extracted by the traditional CNN) on the

same regression model. The experimental results show that

the proposed FG-CNN method with single-channel sEMG

signals from LG or MG can effectively estimate the movement.

The FG-CNN features outperform the handcrafted features

and CNN features on single-channel sEMG-based movement

estimation, suggesting that the FG-CNN features contain more

muscular information.

The main contributions of this study are as follows:

1) This is the first study, to our knowledge, to investigate

the feasibility of using single-channel sEMG signals to

estimate the human knee angles.

2) A new feature extraction algorithm has been developed to

extract muscular information from single-channel sEMG

adequately and a new scheme is proposed to estimate knee

joint angles based on single-channel sEMG signals using

FG-CNN and regression models.

3) The effectiveness of the proposed method has been

evaluated via experiments with eight subjects during

walking. sEMG signals from a single muscle, LG or MG,

can be used to improve the estimation performance with

the proposed method.

2. Methods

2.1. Feature-guided convolutional neural
network

The proposed FG-CNN was depicted in Figure 1. In the FG-

CCN, 14 typical sEMG features, i.e., the handcrafted features,

were extracted from the raw sEMG data and fed into a fusion

layer of a CNN to guide the CNN in extracting implicit muscular

information. Furthermore, both the handcrafted features and

the CNN extracted features were connected and used to estimate

knee joint movements using a regression model, e.g., random

forest regression (RF) and light gradient boosting machine

(LGBM).

2.1.1. Handcrafted feature extraction

A method called overlapping analysis windows with a

window length of 50 ms and an increment of 20 ms was used

to segment the sEMG signals. The vector x = {x1, x2, . . . , xn}

represents sEMG signal in a window, where n is the length of

x. 14 handcrafted features, including integrated EMG (IEMG),

mean absolute value (MAV), mean, root mean square (RMS),

variance (VAR), Kurtosis, skewness, zero crossing (ZC), slop

sign change (SSC), waveform length (WL), and four auto-

regressive (AR) model coefficients are calculated using the

overlapping analysis windows (Wei et al., 2019). The above

14 handcrafted features are concatenated as a vector (p =

{IEMG,MAV, . . . , AR4}) fused into a CNN to extract CNN

features.

2.1.2. FG-CNN feature extraction

The CNN feature extraction (see Figure 1) is used to extract

implicit muscular information from the input sEMG signal

vector x. In the CNN structure, five convolution layers had 2,

4, 8, 16, and 32 filters, respectively, where the filters were 5×1,

4×1, 3×1, 2×1, and 1×1. Max pooling was conducted on 2×1

area with a stride of 1. The two fully-connected layers contain

192 and 14 neurons. For each convolutional layer, x ∈ R
L′×D′ is

defined as the input, where the L′ and D′ denote the length and

the number of channels. Assuming the D convolutional kernels

k, the output of the convolutional layer y ∈ R
L×D is described

as:

y = f
(

k ∗ x+ w
)

, (1)

where f represents an activation function, w is a bias parameter

vector, and ∗ denotes convolution.

The LeakyReLU nonlinearity (Maas et al., 2013) is applied as

the activation function of convolutional layers mentioned in (1),

which is defined as:

f (x) =











x, if x > 0

ax, otherwise,

(2)

where a is a learnable parameter.

To avoid overfitting the model, batch normalization (BN)

(Ioffe and Szegedy, 2015) is applied after each convolutional

layer. The convolutional layer is followed by a max-pooling layer

with a length of 2, which transforms the outputs of multiple

neurons in one layer into a single neuron in the next layer. The

input of the pooling layer is the output of the convolutional

layer before it, i.e., y ∈ R
L×D. The output of each pooling layer

y′ ∈ R
L
2×D is described as:

y′(i, j) = max(y(2i− 1, j), y(2i, j)), (3)

where i = 1, 2, . . . L2 , j = 1, 2, . . .D.

The output of the last pooling layer is then flattened into a

vector, l ∈ R
14×1, which is called CNN features.

A fusion layer is introduced to combine the extracted

handcrafted features (p) and the CNN extracted features (l). In
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FIGURE 1

The overall framework of the FG-CNN-based motion estimation. The FG-CNN consists of the operation of extracting handcrafted features, five

CNN layers, one flatten layer, and one fusion layer for fusing CNN features and handcrafted features. IMU represents the inertial measurement

unit; Conv denotes the convolutional layers; IEMG, VAR, ZC, and WL represent the handcrafted features. The symbols wl and wp, respectively,

represent the weights of the handcrafted and CNN features in the fusion layer. RF and LGBM represent the random forest model and light

gradient boosting machine, respectively.

FIGURE 2

The experimental setup. (A) Schematic diagram of the experimental setup. (B) The locations of sEMG electrodes.
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the fusion scheme, both the handcrafted and CNN extracted

features are fed into the last fully connected layer to estimate the

joint motion (ŷ) (see Figure 1). Instead of using the LeakyReLU,

the tanh function, which normalizes fused features to [-1,1], is

chosen to avoid the blow-up phenomenon. The fusion scheme is

defined as follows:

ŷ = tanh(wpp+ wll), (4)

where wp and wl refer to the connection weights.

The built FG-CNN model is trained using a mean squared

error function (MSEp) as follows:

MSEp =
1

N

N
∑

i=1

(y(i)− ŷ(i))2

=
1

N

N
∑

i=1

(y(i)− tanh(wpp(i)+ wll(i)))
2, (5)

where y and ŷ denote the measured and estimated knee joint

movements, respectively. N is the total number of samples.

During the training, Adam algorithm (Diederik and Jimmy,

2015) is utilized to update the weights. Unlike the traditional

CNN, the proposed FG-CNN includes the handcrafted features

in the weight updating process to guide the CNN to extract

features. Correspondingly, the weights of the fusion layer of the

FG-CNN are updated in the following steps.

Step 1: Compute the gradients:



































∂MSEp

∂wp
=

∂MSEp

∂ ŷ(i)

∂ ŷ(i)

∂wp
= −

2p

N

N
∑

i=1

(y(i)− ŷ(i))(1− ŷ(i)2)

∂MSEp

∂wl
=

∂MSEp

∂ ŷ(i)

∂ ŷ(i)

∂wl
= −

2l

N

N
∑

i=1

(y(i)− ŷ(i))(1− ŷ(i)2)

(6)

Step 2: Update the weights:











































wp ← wp −
ap + b

∂MSEp
∂wp

√

cp − d(
∂MSEp
∂wp

)2 + ǫ

wl ← wl −
al + b

∂MSEp
∂wl

√

cl − d(
∂MSEp

∂wl
)2 + ǫ

,

(7)

where ǫ denotes the constant, ǫ = 10−8. ap, al, b, cp, cl, and d

are given as follows:

ap =
αβ1sp

1− βt
1

al =
αβ1sl

1− βt
1

cp =
αβ2rp

1− βt
2

cl =
αβ2rl

1− βt
2

b =
α(1− β1)

(1− βt
1)

d =
α(1− β2)

(1− βt
2)

,

(8)

where sp and sl denote the first and second order moment vector

of handcrafted features, rp and rl denote the first and second

order moment vector of FG-CNN features, and β1, βt
1, β2, βt

2

are the exponential decay rates for the moment estimations. α

denotes the step-size.

As seen in Equation (7), the updated weights of the fusion

layer are updated using both handcrafted and CNN extracted

features. With a learning rate of 0.001, the FG-CNN was trained

on NVIDIA Quadro P5000 GPU by using the Adam algorithm

for 50 epochs in our experiments.

2.2. Experimental protocol and data
acquisition

Eight healthy subjects (six men and two women, aged

25.13 ± 3.27 years old) participated in the experiments. All

experiments were conducted in accordance with the ethical

standards encoded in the latest Declaration of Helsinki. Before

the experiments, each participant was fully informed of the

experimental purpose and procedures and provided their

written consent to participate in this study. The experiments

were proved by the local ethics committee of Nankai University.

The experiment scheme is shown in Figure 2. Six channels

of sEMG electrodes were respectively placed on six muscles,

namely, vastus lateralis (VL), vastus medialis (VM), biceps

femoris (BF), semitendinosus (ST), lateral gastrocnemius (LG),

and medial gastrocnemius (MG) (Lu et al., 2021), which are

relative to the knee joint motion. The data of sEMG were

obtained by an acquisition system (Bagnoli, Delsys, MA, USA)

under the sampling rate of 5 kHz. At the same time, the data of

knee joint angles were also measured using two IMUs with the

sampling rate of 100 Hz. Each subject was asked to walk for 1

min with a velocity of 1.25 m/s on the treadmill per trial and

perform 11 trials in total with a 3-min rest in between to avoid

muscle fatigue. The raw sEMG signals were pre-processed using

a Butterworth bandpass filter with cutoff frequencies of 10 Hz

and 500 Hz. The sEMG signals measured from the six muscles

were tested separately to estimate the knee joint movements.

Five cross-validations were used to split the dataset into training

data and testing data that are independent of each other. For

each time, the proposed FG-CNN model was trained on 80% of

data and evaluated on 20% of data.

2.3. Evaluation indicators

The estimation performance of the trained FG-CNN was

evaluated by using two indicators: normal root-mean-squared

error (NRMSE) and correlation coefficients (CC), respectively

(Kwon and Kim, 2011; Qing et al., 2022). The NRMSE is used to

reflect the deviation between the measured and estimated knee

joint angles, in percentage (%) (Zhu et al., 2022). The CC value
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can reflect the strength of the correlation between the measured

and estimated knee joint angles, which is close to 1, which

indicates meaning a good match between the measurement and

the estimation.

The NRMSE is defined as

NRMSE =

√

1
n ·

∑n
i=1(yi − ŷi)2

ymax − ymin
, (9)

where yi and ŷi are the measured and estimated knee joint

angles, respectively, n denotes the total number of samples, and

ymax and ymin are the maximum and minimum values of the

measured angles, respectively.

CC is defined as

CC =
Cyŷ

σy · σŷ
, (10)

where Cyŷ denotes the covariance between the measured and

estimated angles and σy and σŷ represent the standard deviation

of measured and estimated angles, respectively.

2.4. Statistical analysis

Statistical analyses were performed to compare the

estimation performances between the proposed FG-CNN and

the other compared methods. As the evaluation indicators were

not normally distributed, the Kruskal-Wallis test was conducted

to compare the different estimation methods with the FG-CNN

to identify differences in NRMSE and CC. For all tests, the

significance level was set at a p < 0.05. Statistical analyses were

conducted with MATLAB (MathWorks, Natick, MA, USA).

3. Experimental results

3.1. Performance of knee joint estimation

To verify the effectiveness of the proposed method in

extracting implicit features from single-channel sEMG signals,

a comparison study was carried out, in which the handcrafted

features, the CNN features, and the FG-CNN features were

separately used to estimate the knee joint movements via a

random forest (RF) regression model (see Figure 1).

The details are given as follows:

1) HF-RF: Fourteen handcrafted features were fed into the RF

regression.

2) CNN-RF: Twenty-eight CNN features were used as the

inputs of the RF regression.

3) FG-CNN-RF: Twenty-eight FG-CNN features were fed

into the RF regression.

Figure 3 shows the knee joint angles measured using the

IMUs (i.e., the reference) and the ones estimated using the

HF-RF, CNN-RF, and FG-CNN-RF. For all approaches, the

estimated angles from FG-CNN-RF are closer to the reference

than those fromHF-RF and CNN-RF. For all muscles, it can also

be seen that the estimated knee joint angles using single-channel

sEMG signals measured from LG or MG are more accurate than

those estimated using sEMG signals from VL, VM, BF, or ST.

Meanwhile, to quantitatively evaluate the estimation results,

the indicators of NRMSE and CC were used. The NRMSE

values using the LG and MG from the FG-CNN-RF were,

respectively, 15.2±3.5% (LG) and 15.7±3.1% (MG), and the

CC values were, respectively, 0.858 ± 0.085 (LG) and 0.856

± 0.057 (MG). Although the estimation performance obtained

from single-channel sEMG signals (LG or MG) is slightly lower

than that from six-channel signals (NRMSE: 10.2±1.4%; CC:

0.948±0.013, shown in Figure 4), the estimation accuracy using

the proposed single-channel based method is comparable to the

that using six-channel sEMG. The results can be explained by

the muscle synergy analysis, in which the muscles are controlled

in groups to generate a desired joint movement, and all relevant

muscles share some common components.

For each muscle, the mean NRMSE values of the FG-CNN-

RF were lowest and decreased by 15% (VL), 19.2% (VM), 8.1%

(BF), 13.3% (ST), 37.6% (LG), and 39.4% (MG) compared to

those of the HF-RF and by 11.3% (VL), 9% (VM), 8.6% (BF),

12.1% (ST), 18.8% (LG), and 19.2% (MG) compared to those of

the CNN-RF (shown in Figure 5A). The average CC values of

FG-CNN-RF were highest, which were increased by 33.4% (VL),

59.3% (VM), 42.4% (BF), 51.7% (ST), 27.3% (LG), and 33.8%

(MG) compared to those of the HF-RF, and increased by 32.2%

(VL), 24.8% (VM), 34.1% (BF), 42.8% (ST), 7.9% (LG), and 9.8%

(MG) compared to those of the CNN-RF (see Figure 5B).

The Kruskal-Wallis test was conducted to identify

differences in NRMSE and CC between the case using FG-CNN

features and the cases using the other two kinds of features

(handcrafted features and CNN features). Both the NRMSE and

CC values of FG-CNN had statistically significant differences

with respect to handcrafted features and CNN features (see

Figure 5). The above results implies that the FG-CNN features

contain more muscular information than the handcrafted

features or CNN features for ensuring a more accurate

estimation of knee joint movement.

3.2. Comparison of various regression
models

To further test the effectiveness of the FG-CNN features,

five difference regression models were used, including RF

regression, light gradient boosting machine (LightGBM),

multilayer perceptron (MLP), support vector regression (SVR),
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FIGURE 3

Knee joint angles profiles averaged across 57 strides with subject 2. Dashed and solid lines are reference angles measured by IMUs and

estimated angles by FG-CNN-RF, CNN-RF, and HF-RF, using single-channel sEMG signals. The gray shaded area indicates the stance phase.

FIGURE 4

Comparison of angle estimation accuracy between six kinds of single-channel sEMG and six-channel sEMG (SC). (A) Comparison of NRMSE. (B)

Comparison of CC. Bars are means, error bars are standard error of the mean (SEM), and asterisks denote statistically significant di�erences with

respect to the six-channel sEMG (P < 0.05).

and k-nearest neighbors (KNN) regression. The inputs of the

five models were FG-CNN features. Figure 6 shows the NRMSE

and CC values for knee joint movement estimation using the five

regression models. The regression models of RF, LightGBM, and

MLP have similar estimation performance with lower NRMSE

and greater CC values than the other two models.

The Kruskal-Wallis test was also used to determine if there

were differences between the RF and the other four regression

models. Table 1 showed the statistical analysis results on CC

and NRMSE. For each single-channel sEMG, the NRMSE values

of RF significantly decreased compared to these of SVR and

KNN. Meanwhile, the CC values of RF significantly increased
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FIGURE 5

Comparison of angle estimation accuracy by HF, CNN, and FG-CNN. (A) Comparison of NRMSE. (B) Comparison of CC. Bars are means, error

bars are standard error of the mean (SEM), and asterisks denote statistical significance (P < 0.05).

compared to those of SVR and KNN. The CC values of MLP

from LG and MG were different compared to that from the

RF (LG: P = 0.015; MG: P = 0.0015), while no significant

differences were found between RF and the other two models

(LightGBM and MLP) on NRMSE and CC.

4. Discussion

Human joint movement estimation using multi-channel

sEMG signals has been widely used to enable HRI systems’

intuitive and voluntary control. However, some issues have

inhibited the collection of high-quality sEMG signals from all

relevant muscles, such as weakness or spasticity of one or more

specific muscles, mechanical/signal interference between EMG

sensors and wearable robots/environment, discomfort for long-

term use, etc. Therefore, using fewer channels or single-channel

sEMG signals is of practical importance. It remains unknown

whether the continuous knee joint movement can be estimated

using single-channel sEMG signals. In addition, it is a challenge

to ensure high estimation accuracy using only single-channel

sEMG signals. This study verified the feasibility of continuous

joint movement estimation only using single-channel sEMG

signals and proposed a new feature extraction scheme, namely

FG-CNN, to improve the estimation performance effectively.

The main advantage of FG-CNN is that it contains both

handcrafted features and CNN features, which can improve the

motion estimation performance just by using single-channel

sEMG signals (as shown in Figure 5). When multi-channel

sEMG signals were used, the handcrafted features or CNN

features contained enough muscular information and could be

successfully adopted in motion estimation. However, with the

number of channels decreasing, the muscular information in the

handcrafted features or CNN features will not be sufficient. To

further extract implicit features, this study fed the handcrafted

features into a fusion layer to guide the extraction of CNN

features. Compared with both the handcrafted features and

CNN features, the FG-CNN features can ensure a more accurate

joint movement estimation, which implies that the FG-CNN

features contained more muscular information.

Based on the single-channel sEMG signals of LG or MG,

the estimated angle profiles were similar to the reference during

the gait cycle, as shown in Figure 3. On the contrary, for single-

channel sEMG of VL, VM, BF, or ST, the trends of estimated

angles profiles were reversed, especially at the stance phase. In

this study, the used estimation methods, such as random forest

regression and light gradient boosting machine, directly mapped

the sEMG features to knee angles without any biomechanics.

The estimation performance was influenced by the correlation

between inputs (sEMG features) and outputs (knee angles). In
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FIGURE 6

Comparison of angle estimation accuracy on di�erent regression models. RF, random forest regression; LGBM, gradient boosting machine; MLP,

multilayer perceptron (MLP); SVR, support vector regression; KNN, k-nearest neighbors regression. (A) Comparison of NRMSE. (B) Comparison

of CC. Bars are means, error bars are standard error of the mean (SEM), and asterisks denote statistically significant di�erences with respect to

the RF (P < 0.05).

a gait cycle, compared to the other four muscle activity profiles,

the correlation between the gastrocnemius activity profiles and

the knee angle profiles was stronger (shown in Figure 7). This

can explain why the estimation accuracy from LG or MG

is highest.

sEMG will be changed on different days and subjects due to

the changing skin impedance, which is affected by physiological

factors such as subcutaneous tissue, the physiological cross-

sectional area of the muscle, or dynamic factors such as sweat.

It is a complex and significant issue need to be addressed in

practical application. To date, some studies made efforts to

address this issue. Bao et al. established a two-stream CNN

with shared weights to enhance inter-subject performances in

the wrist kinematics estimation (Bao et al., 2021). The results

showed that the NRMSE and CC values were 22% and 0.67,

respectively, which outperformed a state-of-the-art transfer

learning method. Dantas et al. demonstrated that the CNN

decoder performed significantly better than polynomial Kalman

filters in most analyzed cases of temporal separations (0–150

days) between the acquisition of the training and testing datasets

(Dantas et al., 2019). The above studies demonstrated the

potential for the utilization of CNN to address the limitations of

using sEMG on different days and subjects. Therefore, although

the proposed FG-CNN degrades its estimation performance

using sEMG from different subjects or days, it is possible

not to degrade too much. Future studies should advance in

this direction.

In comparison with the previous studies, themain advantage

of the proposed method is to achieve good estimation

performance using single-channel sEMG signals rather than the

multi-channels, which can be used to improve the usability of

low limb wearable robotics in weakness or spasticity of one or

more specific muscles (Wei et al., 2022). Although the mean

CC values of the proposed FG-CNN with single-channel EMG

signals were slightly lower than the CC values of the state-of-

the-art studies with multi-channel sEMG (shown in Table 2), the

mean CC values of the proposed FG-CNN is around 0.85, which

suggests the strong correlation strength between the estimated

and the measured.

It is worth noting that the proposed methods have

limitations. Onemethod is that the sEMGdata from each subject

were recorded on the same day and the proposed FG-CNN

was trained and tested on the same subject. This study did

not consider the influence of sEMG changes on different days

and subjects. Future studies should advance in this direction.

Another method is that the estimation performance still has

room for improvement. Future studies would be required to

recruit more subjects and further to improve the accuracy

of knee joint estimation by advanced single-channel sEMG-

based methods.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2022.978014
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2022.978014

FIGURE 7

Muscle activity profiles and knee angle profiles during the gait cycle.

TABLE 1 Statistical analysis results between RF and the other

regression models (including LGBM, MLP, SVR, and KNN) on NRMSE

and CC.

Muscle NRMSE CC

LGBM MLP SVR KNN LGBM MLP SVR KNN

VL 0.7847 0.6135 0.0000 0.0000 0.5101 0.2079 0.0019 0.0000

VM 0.4528 0.0867 0.0000 0.0000 0.3551 0.2391 0.0039 0.0000

BF 0.6847 0.1712 0.0014 0.0000 0.2615 0.1744 0.0016 0.0000

ST 0.3291 0.1341 0.0000 0.0000 0.3622 0.3445 0.0120 0.0000

LG 0.4885 0.0993 0.0000 0.0000 0.3879 0.0150 0.0000 0.0000

MG 0.5874 0.0806 0.0000 0.0000 0.3993 0.0015 0.0000 0.0000

The bold values indicate the statistical significance values of p < 0.05 with respect to RF.

5. Conclusion

In this study, a new feature extraction method, namely FG-

CNN, was proposed to estimate human knee joint movement

using single-channel sEMG signals. To verify the effectiveness

of this method, sEMG signals measured from six muscles,

TABLE 2 Comparison with related research.

References Number

of

sensors

Method Performance (knee

angle)

Yi et al. (2022) 9 LSTM CC= 0.88± 0.04

Zhong et al. (2022) 8 Muscle

synergy-driven

CC= 0.92± 0.02

ANFIS model

Wang et al. (2021) 8 Multi-branch

neural

network

CC= 0.96± 0.03

This work 1 FG-CNN CC= 0.858± 0.085 (LG)

CC= 0.856± 0.057 (MG)

The bold values indicate the results of this work.

including the vastus lateralis, the vastus medialis, the biceps

femoris, the semitendinosus, the lateral or medial gastrocnemius

(LG or MG), were separately evaluated for estimating knee joint

movements using the proposed FG-CNN. The experimental
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results showed that combined handcrafted-CNN features

outperform either the handcrafted features or the CNN features.

In addition, the results demonstrated that the proposed FG-

CNNmethod with sEMG signals from LG or MG can effectively

estimate the movements with average NRMSE values of 15.2 ±

3.5% (LG) and 15.7 ± 3.1% (MG) and average CC values of

0.858 ± 0.085 (LG) and 0.856 ± 0.057 (MG). The performance

of the proposed signal-channel sEMG-based FG-CNN method

was comparable to those of traditional multi-channel sEMG-

based methods. The proposed FG-CNN have the potential

to provide an alternative means for knee joint movement

estimation to overcome the aforementioned limitations faced by

the traditional multi-channel sEMG-based methods.
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