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We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a
gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the
CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness
and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the
volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume
model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is
well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is
determined using a set of fiducial markers.
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1. INTRODUCTION

Image-guided navigation procedures are critical components
of currently available systems for computer-assisted therapy
and surgery [1–4]. Orthopedic procedures offer a real-time
display of tools superimposed on the three-dimensional (3D)
computed tomography (CT) data that have been acquired
preoperatively and that are used for planning of the surgery.
CT-based navigation has been successful for spinal pedi-
cle screw insertion, total hip arthroplasty, total knee arthro-
plasty, pelvic osteotomy, and reconstruction of knee cruciate
ligaments [4, 5]; however, it is difficult to implement because
it requires that the CT volume be registered to the patient at
the time of the surgical intervention. This is the problem that
we address in this paper.

A partial solution is to use fluoroscopy-based naviga-
tion, which is a recent technique that shows promising re-
sults in early clinical trials of spinal pedicle screw insertion,
distal locking of femoral nails, and femoral fracture reduc-
tion [5, 6]. This technique displays the tools in a set of in-
traoperative images of the patient, but is limited to two-
dimensional (2D) data. Images at different viewing angles

are acquired by a C-arm device which has become part of the
standard equipment for orthopedic surgery thanks to its mo-
bility and ease of manipulation. To maintain the patient and
the C-arm image intensifier in common registration, a po-
sition sensor tracks them simultaneously [6, 7]. The C-arm
images with overlaid projections of the tools are displayed on
the computer screen. An update rate of 10 Hz enables real-
time navigation in up to four C-arm images simultaneously
[7]. The lack of three-dimensionality can be compensated by
an augmented number of image shots, which has the draw-
back of excessive irradiation of the surgical staff and of the
patient.

There are two groups of algorithms that can register a
3D CT to a set of X-ray images [8–16]. One group matches
specific anatomical features that appear in the two imaging
modalities [9–12, 14, 15, 17]. These methods rely on an accu-
rate data segmentation or edge detection. They are therefore
less robust to the partial-data problem (presence of a feature
in one imaging modality and its absence in the other) than
projection-based (or intensity-based) methods that form the
other group of registration algorithms [8, 13, 16, 18–20].
In general, these methods require little or no segmentation.
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They achieve the registration by matching a set of X-ray
images to their simulations. The simulations are traditionally
computed as projections of the CT volume obtained by sum-
ming the volume intensities along simulated X-rays through
the volume. Since the projection-based methods perform the
registration of the CT volume to the X-ray images using a
large amount of data, their accuracy is potentially higher
than that of anatomy-based methods. In this paper, we fol-
low the projection-based approach to combine good proper-
ties of the CT-based navigation and of the fluoroscopy-based
navigation. Our goal is to achieve an improved, automatic
3D CT-based navigation which would display the tools in the
preoperative 3D CT based on its registration to only a few
(say, five or less) intraoperative C-arm images.

The projection-based registration is commonly achieved
by optimizing a measure of similarity between the X-ray im-
ages and their simulations. To perform optimization, some
practitioners use Powell’s multidimensional direction set
method [19, 20], while others use gradient-descent-type
search technique [8]. In this paper, we perform optimization
by using the Levenberg-Marquardt (LM) optimizer, which is
tuned to least-squares dissimilarity measures and is very ef-
ficient. Moreover, the LM approach makes possible the si-
multaneous optimization of the dissimilarity measure in all
unknown parameters.

Penney et al. compare six similarity measures, based on
fiducial markers, for registering a 3D CT to a fluoroscopy im-
age of a spine phantom [21]. They report pattern intensity
and gradient difference as being able to register accurately
and robustly, even when soft tissues and interventional in-
struments are present in the fluoroscopy image. They find
mutual information to be the least accurate of the six simi-
larity measures. Lemieux et al. propose to register a 3D CT to
two radiographic images by optimizing a cross-correlation-
based cost function at the initial stage of the registration,
and a gradient-based cost function at its final stage [20].
With the same goal, Brown and Boult maximize the gradi-
ent correlation between the original and the simulated ra-
diographs [19].

The reference image and the corresponding projection of
the volume have generally different intensity ranges. Brown
and Boult explore the physical relationship between CT and
radiograph measurements [19]. They use it to correct the ra-
diographs such that their registration to the 3D CT is more
accurate. Penney et al. design a similarity measure with a
suitable scaling of the fluoroscopy image or the volume pro-
jection which normalizes their intensity ranges [21]. In this
paper, we use a least-squares dissimilarity measure, where we
deal with the intensity ranges by normalizing them.

The computational effort of projection-based methods
increases with the data size. Several methods for a fast com-
putation of the volume projections, based on ideas from
computer graphics, have been proposed [13, 22]. The meth-
od called shear-warp factorization consists of two steps [23].
In the first step, an intermediate image is computed. The
volume, resampled at a higher resolution, is projected using

nearest-neighbor interpolation in-slice only. The second step
relies on a linear interpolation of the intermediate image
to obtain the final projection. Light fields (a technique to
parameterize the set of all rays that emanate from a static
scene) allow most of the computation to be performed in
a preprocessing step [13, 22]. Using a light field generated
from a number of volume projections, new projections can
be computed by interpolating the four-dimensional space
of prestored rays. To speed up the registration, Sarrut and
Clippe have proposed to precompute a set of projections of
the 3D CT that are evenly distributed in space and to match
them to X-ray images [18]. In a simulation study, Birkfell-
ner et al. have shown that a 2D/2D 1-DOF (degrees of free-
dom) registration applied in alternation with a 3D/2D 5-
DOF method accelerates the registration three times with-
out loss in accuracy [8]. Another strategy used to improve
speed performs the registration iteratively using data at mul-
tiple resolutions (multiresolution pyramid) obtained usually
by data blurring, using an averaging filter, followed by down-
sampling [20]. Sometimes, the multiresolution pyramids are
built on a region of interest (ROI) extracted from the vol-
ume and the images [21]. The multiresolution strategies have
been shown to improve the robustness of the registration
[24, 25].

In this paper, we propose to benefit from a continuous
image/volume model based on cubic B-splines for comput-
ing the projections of the volume, the gradient of the simi-
larity measure, and the multiresolution data pyramids [26–
29]. Also, we describe a novel shearing method to com-
pute fast projections. This is a one-step approach that does
not complicate the optimization procedure, contrary to the
intermediate-image approach [23]. Here, we applied our
algorithm on the registration of a cadaver spine CT vol-
ume with respect to the corresponding C-arm images. The
ground-truth registration parameters were estimated based
on the position of fiducial markers implanted on the speci-
men before the data acquisition. We performed two series of
experiments, the first on an ROI containing a single vertebra
and the second on an ROI containing three vertebrae. The
latter was performed to provide an upper bound to the regis-
tration performance, although this configuration would not
be possible in clinical conditions. We also study the influence
of the number of C-arm images and their relative orientation
to the registration accuracy. Our algorithm requires at least
two input images and its accuracy can be improved either by
increasing the number of input C-arm images, or by impos-
ing a minimal angle between their planes, or by combining
both strategies.

The paper is organized as follows: we describe the geom-
etry of the problem and the fast computation of the projec-
tions in Section 2, along with the model used for the data in-
terpolation. The cost function and its optimizer are described
in Section 3. In Section 4, we show the performance of our
algorithm on the available data using an objective measure
of the registration accuracy. The conclusions are given in
Section 5.
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Figure 1: Multiresolution strategy.

2. GEOMETRICAL SETUP

2.1. Geometric parameters

Given a 3D CT of a patient and a set of 2D C-arm images with
known positions and orientations in the reference coordinate
system (R-COS), our algorithm computes a rigid-body trans-
formation of the volume in the R-COS with respect to these
images. Since we need a meaningful interpretation of the
transformation in terms of clinical (anatomical) angles, we
use three Euler angles (two out-of-plane rotations and one
in-plane rotation) together with three translations to repre-
sent this rigid-body motion. Let therefore a = (a1, a2, . . . , a6)
be a vector containing three Euler rotations and three transla-
tions of the volume in the R-COS. To compute these param-
eters, our algorithm refines their initial values by minimiz-
ing the mean-square dissimilarity between the C-arm images
and the projections of the volume, which we refer to as the
cost function. This corresponds to minimizing a real-valued
function of the six variables ai, i = 1, 2, . . . , 6.

To improve the robustness and the speed of the algo-
rithm, we register the volume to the images at different res-
olutions, from the coarsest resolution to the resolution that
provides a good tradeoff between accuracy and time. We use
the estimate of the position and of the orientation obtained
at some resolution to resume the registration at the next finer
one (Figure 1). To obtain data at different resolutions, we
compute their B-spline least-squares L2 pyramids, where L2

denotes the space of measurable, square-integrable functions
[30, 31].

The registration at a single resolution of the data is
schematically shown in Figure 2. The input data for this reg-
istration are (1) the CT volume, (2) the C-arm images, (3)
the extrinsic geometrical parameters (the voxel and pixel
sizes, and, for each C-arm image, the R-COS position and
orientation of the image plane and the R-COS position of
the illumination source), and (4) the initial position and ori-
entation of the volume.

2.2. Model

The B-spline model f reconstructed from the samples f [n]
of a function, where n = (n1, . . . ,nN ) ∈ ZN , is given by

f (x) =
∑

n∈ZN
c[n]βm(x − n), ∀x = (x1, . . . , xN

) ∈ RN ,

(1)

. . .
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Figure 2: Algorithm for registering a 3D CT to C-arm images.

where the coefficients c[n] are obtained by recursive digital
filtering [32] of the samples f [n], and where βm(x) is the
separable N-dimensional B-spline of degree m given by

βm(x) =
N∏

j=1

βm
(
xj
)
. (2)

Here, the function βm on the right-hand side denotes the cen-
tered one-dimensional B-spline of degree m [29]. The sepa-
rability makes possible an operation on N-dimensional data
to be performed by successive processing of one-dimensional
data along each of theN dimensions. In return, the data pro-
cessing is simple and fast.

The B-splines have many interesting properties [28]. For
instance, the approximation order (and the support) of a B-
spline of degree m is equal to (m + 1). They are shown to
be maximally continuous basis functions, with the minimal
support for a given order of approximation, and with the
maximal order of approximation for a given support [33].

2.3. Projection

Let us refer to the system of 3D voxel indexes, n = (n1,n2,
n3, 1), as the volume coordinate system (V-COS) and to the
system of 2D pixel indexes, k = (k1, k2, 0, 1), as the im-
age coordinate system (I-COS). All the vectors and matrices
used here are given in homogeneous coordinates. Moreover,
let us define the position and the orientation of the image
plane in the R-COS by the R-COS coordinate of an in-plane
point (e.g., p) and by two in-plane orthonormal vectors
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Figure 3: Cone-beam projection geometry.

(e.g., p1 and p2) (Figure 3). Given a volume at the position
and orientation a in the R-COS, its B-spline model f , the
position and the orientation of the image plane (p, p1, p2)
in the R-COS, and the R-COS coordinate of the illumination
source s, the algorithm computes a projection of the volume
by casting through the model f a set of simulated X-rays that
meet at the source.

Although the X-rays are produced by an illumination
source that has a definite physical extent, for the sake of sim-
plicity we prefer to model it as a punctual source situated at s.
This source emits rays that hit the image plane at every pixel
index k each ray follows the unit vector uk = (A k−s)/‖A k−
s‖, where A is some (4×4) homogenous matrix that depends
on the position and the orientation of the image plane in the
R-COS and on the pixel size. The projection of the volume
points with the R-COS coordinate rk(t) = s + t uk (i.e., along
the ray determined by the unit vector uk) to the image plane
point with the I-COS coordinate k is

pk(a) =
∫ t2

t1
f
(
(B(a)

)−1
rk(t))dt, (3)

where t1 = 0, t2 = ‖A k − s‖, and where the (4 × 4) matrix
B(a) is the transformation from the V-COS to the R-COS.
We express the transformation B(a) in Appendix A.

2.4. Fast projection

A direct implementation of (3) would require a 3D interpo-
lation of the volume at the V-COS coordinate (B(a))−1rk(t).
We perform a fast computation of the projection by replac-
ing the 3D interpolation by a 2D interpolation. The principle
of this approach is related to [34, 35]; we refer to this method
as shearing.

Let us rewrite (3) as

pk(a) =
∫

R
f
(

n0(a) + tnk(a)
)
dt, (4)

where n0(a) = (B(a))−1s and nk(a) = (B(a))−1uk. The shear-
ing method is based on a change of the integration variable
t in (4). The new integration variable is selected from one of

three possibilities that correspond to j ∈ {1, 2, 3}, given by

τ = [n0(a)
]
j + t

[
nk(a)

]
j −→ dτ = [nk(a)

]
jdt, (5)

where [x] j is the jth component of the vector x. This yields

pk(a) = λj;k(a)
∫

R
f
(

n0; j;k(a) + τn j;k(a)
)
dτ, j ∈ {1, 2, 3},

(6)

where n0; j;k(a)=n0(a)−([n0(a)] j /[nk(a)] j) nk(a) and n j;k(a)=
nk(a)/[nk(a)] j . The scaling factor λj;k(a) = |1/[nk(a)] j| de-
termines which one of the three expressions for pk(a) will
be used to compute the projection. We choose j for which
λj;k(a) is minimal, which ensures the highest sampling rate
for f . Since λj;k(a) depends on k, the decision about j is
taken independently for each pixel of the projected image.

The integral in (6) can then be approximated by a dis-
crete sum where the size and the phase of the sampling step
have been chosen so that only samples of the volume with
one integer and two real coordinates take part in the sum,
that is,

pk(a) ≈ λk(a)
∑

n∈Z
f
(

n0;k(a) + nnk(a)
)
. (7)

Note that, by construction, the evaluation of f requires the
interpolation of the volume at a point with one integer and
only two real coordinates, which saves on computations. An
example of applying the shearing method for computing a
1D cone-beam projection of a 2D image is shown in Figure 4.
As we can see from this figure, there are two image regions.
In one (hollow circles), we sample the image along the hor-
izontal axis, while in the other (black-filled disks), the sam-
pling is performed along the vertical axis. (The gray samples
of Figure 4 can be attributed to either region.) Likewise, we
can find regions of image pixels k with same j in the 3D-to-
2D case. This can speed up the implementation of the pro-
jection equation.

By combining (1) with (7), we get the final expression
that allows us to estimate the value of the projection of a vol-
ume with position and orientation a along a simulated X-ray
of direction uk, onto the C-arm pixel indexed by k, as

pk(a) = λk(a)
∑

n∈Z

∑

n∈Z3

c[n]βm
(

n0;k(a) + nnk(a)− n
)
. (8)

3. OPTIMIZATION

3.1. Cost function

Given the volume with position and orientation a, the cost
function measures the dissimilarity between the qth C-arm
image pq and the qth volume projection pq(a) at Q viewing
angles (i.e., q = 1, 2, . . . ,Q). We first subtract the mean inten-
sity from a C-arm image, and then divide by its standard de-
viation to obtain an intensity range that depends only weakly
on the power of the illumination source. We do the same for
the corresponding projection. Thus normalized, the C-arm
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Figure 4: Shearing approach to perform the cone-beam projection
of a 2D image onto a 1D line.

image and its corresponding projection can then be com-
pared by the mean-square cost function given by

J(a) = 1
2

Q∑

q=1

1
card

(
Dq
)
∑

k∈Dq

(
pq;k(a)−Pq(a)

σq(a)
− pq;k − Pq

σq

)2

,

(9)

where Pq(a) and σq(a) are the mean value and the standard
deviation of the qth projection, respectively, and where Pq
and σq are the mean value and the standard deviation of
the qth C-arm image, respectively. The arbitrary binary mask
Dq contains card(Dq) pixels. It is suited to the qth view and
prevents the cost function to be evaluated over irrelevant data
such as the surgical instruments, the dynamic reference base,
the markers if any, or nonanatomical data. For the exper-
iments performed here, we have created this mask manu-
ally. However, for practical applications, it could also have
been created using a semiautomated or perhaps automatic
method.

3.2. Optimizer

Suited to least-squares cost functions, the LM algorithm
achieves a good tradeoff between the robust but generally
inefficient method of steepest descent and the efficient but
nonrobust Newton method [36]. It uses the gradient

[∇J(a)
]
i =

∂J(a)
∂ai

, i = 1, 2, . . . , 6, (10)

and the Hessian

[∇2J(a)
]
i, j =

∂2J(a)
(∂ai ∂aj)

, i, j ∈ {1, 2, . . . , 6}. (11)

Let H be a modified Hessian such that the diagonal ele-
ments of the true Hessian are multiplied by a factor (1 + λ)
while its off-diagonal elements are not changed,

[
H(a)

]
i, j =

[∇2J(a)
]
i, j

(
1 + λδi, j

)
, (12)

where δi, j = 1 − | sign(i − j)| is the Kronecker symbol, with
i, j ∈ {1, 2, . . . , 6}. Then, the LM optimization algorithm can
be described by

a(k+1) = a(k) −
(

H
(

a(k)
))−1∇J

(
a(k)

)
. (13)

Equation (13) approximates the gradient algorithm for λ →
+∞, albeit with vanishing steps. Similarly, it approximates
the Newton algorithm for λ → 0. The parameter λ is adap-
tively tuned to provide a smooth transition from the steepest-
descent algorithm (used in the beginning) to the Newton al-
gorithm (used as approaching to the solution) [36].

When using a specific approximation of the Hessian, the
LM algorithm has even better convergence properties. We de-
scribe this approximation below.

3.3. Gauss-Newton approximation of the Hessian

The exact components of the Hessian matrix depend on the
first derivatives of the volume projections with respect to the
parameter a, as well as on their second derivatives. Since the
influence of the second-derivative terms can be destabilizing
when the current guess is far from the solution, we use an
approximation of the elements of the Hessian matrix which
ignores them [36]. This approximation makes the optimiza-
tion work better because it provides a Hessian matrix that is
positive-definite when λ is sufficiently large. This is known
as the Gauss-Newton approximation of the Hessian for least-
squares cost functions [37, 38]. We give a detailed description
of this approximation in Appendix C.

3.4. Gradient

The gradient of the cost function depends on the first deriva-
tives of the volume projections with respect to the parameter
a. In turn, these derivatives depend on the spatial gradient of
the volume. The spatial gradient of our B-spline data model
(1) is given by

∇ f (x) =
∑

n∈ZN
c[n]∇βm(x− n). (14)

For the B-spline of degree m ≥ 2, we have the guarantee
that its first derivative dβm(x)/dx is continuous, which is not
the case if m = 0 (nearest-neighbor interpolation) or m = 1
(linear interpolation). We choose to model the data using cu-
bic B-splines (m = 3), because this model provides a gradient
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of the cost function which is well defined everywhere. At the
same time, this choice offers a good tradeoff between compu-
tational cost and interpolation quality. Detailed expressions
for calculating the first derivatives of the volume projections
and elements of the gradient are given in Appendix B.

4. EXPERIMENTS

4.1. Methodology

We show an application of our algorithm on the registra-
tion of a 3D CT of a frozen human spine with respect to a
set of its C-arm images. We compare the computed align-
ment with the alignment that we estimate based on a set of
markers implanted on the specimen before the data acquisi-
tion. The true alignment is therefore known a priori, albeit
within some nonzero tolerance. To simulate clinical condi-
tions, we register one vertebra at a time, which severely lim-
its the amount of available data. However, to get an upper
bound to the accuracy of our algorithm when registering this
data set, we also perform a joint registration of several ver-
tebrae. The data set is described in Section 4.2. The measure
of the registration accuracy is given in Section 4.3. One of
the elements that determines the working range of our algo-
rithm is given in terms of the angle between the image planes.
Given the CT volume and a pair of C-arm images, our pre-
liminary experiments have shown that this angle should be at
least 15◦. Our algorithm therefore requires at least two input
C-arm images.

We performed two sets of experiments. In the first set,
which is presented in Section 4.4, we investigate the role
of multiresolution. In the second set, which is described in
Section 4.5, we show the benefit of increasing the number
of views, and explore the influence of the minimal angle be-
tween views. We discuss the residual misalignment in Section
4.6.

4.2. Spine data

A human cadaver spine specimen was frozen so that it can
be treated as a truly rigid body. This gives us the opportu-
nity to jointly consider more data (here, three vertebrae) than
is available in clinical practice where each vertebra can ex-
hibit independent motion, thus providing an upper bound
to the accuracy of the registration of this data set. How-
ever, to be closer to a clinical configuration, we restrict the
focus of our experiments on a single vertebra by masking
out large areas from the C-arm images so that only one ver-
tebra shows through at any one time. Five fiducial markers
(custom-made, titanium) were implanted on the spine. One
was placed in the L5, two in the L4, and two in the L3 verte-
bra.

The specimen, placed in a plastic bag that is apparent in
the transversal and sagittal views of Figure 5, was CT-scanned
(GE LightSpeed Ultra CT scanner) with seventy two slices of
size (512 × 512), in pixel units. The intraslice pixel size was
(0.36 × 0.36), in mm units, and the interslice thickness was
2.5 mm. The tilt angle was zero.

Fiducial markers

Figure 5: 3D CT with visible fiducial markers transversal (left), sag-
ittal (center), and frontal (right) CT slices.

Fiducial markers

Clamps

DRB

Figure 6: Two C-arm images with fiducial markers and the dynamic
reference base (DRB). A superimposed grid of crosses was used to
unwarp the images in a calibration step.

The images were acquired using a Siemens ISO-C C-
arm instrumented with LED markers. Their positions were
tracked using an optoelectronic position sensor (Northern
Digital Optotrak 3020). The geometric parameters of the C-
arm X-ray projection (the position and the orientation of
the image plane and the position of the illumination source
s) were determined according to the two-step procedure
proposed by Hofstetter et al. [7]. The captured images were
un-distorted before further use [7]. We used an optical track-
ing system and calibration procedure that resulted in the nav-
igation error being 0.5± 0.5 mm [7].

Typical clinical settings involve a device called a dynamic
reference base (DRB) to define the patient coordinate sys-
tem (P-COS) in which the tools are tracked. In spinal surgery,
the DRB is commonly clamped to one of the vertebrae; both
DRB and clamp are therefore visible in the C-arm images.
Their presence challenges the registration algorithm because
neither DRB nor clamp is present in the CT data. Thanks
to the mask Dq in (9), we have hidden them, which further
reduces the amount of data available for registration; in ad-
dition, we have hidden the fiducial markers from the C-arm
images to forfeit any illegitimate help from them. Two out
of the seven available images are shown in Figure 6. The im-
ages were of size (768×576), in pixel units, and the pixel size
was (0.36× 0.36), in mm units. We show in Figure 7 the pro-
jections of the CT that correspond to the C-arm images of
Figure 6, as found by our registration algorithm.

To determine the ground-truth registration, the coordi-
nates of the fiducial markers were digitized in the P-COS us-
ing an optoelectronically tracked pointer. Then, they were
transformed to the R-COS. The coordinates of the fiducial
markers in the V-COS were estimated by fitting a sphere to
the marker heads.
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(a) (b)

Figure 7: Two projections of the CT volume. According to the out-
come of our registration procedure, these projections correspond
to the C-arm images given in Figure 6. As the DRB was not present
at the time the CT was acquired, it is not present here. The fiducial
markers, however, are present at all times.

Table 1: Volume (CT) and image (C-arm) pyramid size in voxel/
pixel units.

Level CT C-arm

3 64× 64× 72 96× 72

2 128× 128× 72 192× 144

1 256× 256× 72 384× 288

0 512× 512× 72 768× 576

4.3. Measure of the registration accuracy

We transform the V-COS coordinate n of each CT voxel into
the R-COS by using two transformations: the ground-truth
transformation B and the transformation B(a) estimated by
our algorithm. We define the misregistration as the average
of the norm of the difference between the two R-COS coor-
dinates over all the CT voxels,

� = 1
card(F)

∑

n∈F

∥∥(B− B(a)
)

n
∥∥, (15)

where F is the support of f . In the case of perfect registration,
which is achieved when B(a) = B, we have that � = 0.

To measure the registration accuracy, we evaluate (15)
for B that is estimated using a given list of coordinates of
the fiducial markers in the R-COS (vi, i = 1, . . . , 5) and in
the V-COS (ni, i = 1, . . . , 5). The estimation of B is done by
minimizing χ2 = (1/5)

∑5
i=1 ‖vi − Bni‖2 in terms of B.

We compute a single ground truth for both single-
vertebra and several-vertebrae registration. More precisely,
we use the collection of all five markers to determine it, even
though some are not placed on the vertebra of interest in the
single-vertebra case.

4.4. Multiresolution

We use four-level CT-volume and C-arm-image pyramids
(Table 1). These pyramids are dyadic in only two directions;
we do not change the number of CT slices while perform-
ing the data reduction since the registration fails otherwise,

Table 2: Accuracy of the registration of the CT volume to eighteen
pairs of C-arm images, at each level K of a multiresolution pyramid
(K = ∞: initial condition). The angle between image planes is larger
than 15◦. The results for a single vertebra can be compared to those
for joint vertebrae (L3/L4/L5).

K
Accuracy (mm)

L3 L4 L5 L3/L4/L5

∞ 9.0 9.0 9.0 9.0

3 3.1± 0.7 3.5± 2.6 2.0± 0.6 1.8± 0.5

2 2.5± 0.4 3.3± 3.4 1.9± 0.4 1.7± 0.5

1 2.4± 0.5 3.3± 3.4 2.0± 0.4 N/A

0 2.4± 0.5 3.2± 3.4 2.0± 0.4 N/A

Table 3: Noncumulative time spent at each levelK of a multiresolu-
tion pyramid for the registration of the CT volume to pairs, triplets,
and quadruplets of C-arm images of a single vertebra, in seconds on
a Pentium III 700 MHz.

K
Time (s)

2 views 3 views 4 views

3 17± 4 27± 7 37± 9

2 70± 27 102± 43 139± 65

1 411± 113 571± 164 718± 233

0 748± 253 1161± 377 1423± 472

the initial number of 72 CT slices becoming too small when
reduced. For the experiment performed in this section, we
created a set of eighteen pairs of C-arm images such that the
angle between their planes was larger than 15◦.

We run the algorithm for an imposed deliberate initial
misregistration such that � = 9.0. For each vertebra, we re-
port in Table 2 how the registration accuracy evolve across
the levels of the multiresolution pyramid. In the same table,
we present the results of the registration based on all three
vertebrae. In the single-vertebra case, one can note that pyra-
mid levels 0 and 1 (finest and next-to-finest levels, resp.) con-
tribute to an accuracy gain lesser than 0.2 mm. Since this does
not justify the huge additional registration time, we stopped
the registration process in the several-vertebrae case after
having completed the two coarsest pyramid levels.

As expected, the data reduction from three vertebrae to
a single one results in a drop of performance. This effect is
particularly strong for the vertebra L4 (the fourth vertebra
in the lumbar part of the vertebral column) which suffers
from a very small ROI obtained after having masked out the
DRB and the clamps. We will see in Section 4.5 that this drop
can be compensated by increasing the number of imaging
views at the input and the minimal angle between the image
planes.

We report in the first column of Table 3 the time spent
at the Kth level of this multiresolution pyramid. We observe
that the progression is not a geometric one: while the non-
cumulative registration time spent until convergence at level
K = 2 is about four times longer than that at level K = 3,
this convergence time is nearly six times longer at K = 1
than at K = 2. The largest computational payoff, due to the
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Table 4: Accuracy of the registration of the CT volume to pairs, triplets, and quadruplets of single-vertebra C-arm images for different
minimal angles between image planes. The pooled performance is reported under the heading 〈L〉. The results for single vertebrae can be
compared to those for joint vertebrae (L3/L4/L5).

Angle Views Cases
Accuracy (mm)

L3 L4 L5 〈L〉 L3/L4/L5

15◦ 2 18 2.4± 0.5 3.2± 3.4 2.0± 0.4 2.5± 2.0 1.7± 0.5

15◦ 3 22 2.1± 0.2 1.7± 0.4 1.8± 0.2 1.9± 0.3 1.4± 0.2

15◦ 4 13 2.0± 0.1 1.5± 0.3 1.7± 0.1 1.7± 0.3 1.4± 0.1

25◦ 2 15 2.2± 0.3 1.8± 0.4 1.9± 0.3 2.0± 0.3 N/A

25◦ 3 13 2.0± 0.1 1.5± 0.4 1.7± 0.1 1.7± 0.3 N/A

25◦ 4 4 1.9± 0.1 1.5± 0.2 1.7± 0.1 1.7± 0.2 N/A

multiresolution strategy, comes between K = 0 and K = 1
since at level K = 0 the algorithm spent only twice the time
spent at level K = 1, despite the fact that there is four times
more data to process atK = 0. This suggests that the solution
reached at the next-to-finest resolution is already very close
to the solution found at the finest resolution, an interpreta-
tion that is consistent with the results of Table 2.

4.5. Several-views experiments and angle
between views

We repeated the single-vertebra experiment described in
Section 4.4 on two additional image sets: a set of twenty
two image triplets and a set of thirteen image quadruplets,
the angle between any two image planes in each set being
larger than 15◦. Also, we performed the same experiment us-
ing three more sets: fifteen pairs, thirteen triplets, and four
quadruplets of C-arm images for the minimal angle between
image planes of 25◦.

We show the results in Table 4, where the influence of the
number of views is combined with that of the minimal angle
between views. In the same table, we present the results of the
joint registration of all three vertebrae based on two, three,
and four image views, and the minimal angle between image
planes of 15◦. We observe a significant gain in performance
when using three views instead of two, while the gain of an
additional fourth view, although less impressive, is present
too.

We also observe that it is beneficial to enforce that the
angle between views is closer to being perpendicular. For two
views, a spectacular effect of increasing the minimal admis-
sible angle from 15◦ to 25◦ is a strong reduction in the stan-
dard deviation of the registration accuracy. We interpret this
reduction as indicative of the disappearance of outliers. Fi-
nally, we observe that the overall geometrical performance
is similar when using four views that meet at an angle that
is allowed to become rather flat, or when using only three
views that meet at a less acute angle. The latter case is more
favorable because of a smaller radiation dosage and because
of the registration speed (Table 3). Note that if we stop the
registration at level K = 2, as suggested in Section 4.4, the
registration of the CT to three C-arm images takes just about
two minutes.

4.6. Residual misalignment

As we can see from Table 4, our algorithm registers our
CT/C-arm data set with an accuracy of about 1.7 ± 0.5 mm
when using pairs of images that encompass all three vertebrae
and that meet at an angle larger than 15◦. But three views are
needed to reach the same accuracy when only a single ver-
tebra is available; moreover, the imaging planes should meet
at an angle larger than 25◦ in this case. Then, our algorithm
achieves an accuracy of about 1.7± 0.3 mm (Table 4).

The residual misalignment can be explained by the fact
that some errors were made when digitizing the fiducial
markers (the mean navigation error was 0.5 mm), and that
some more errors were made when determining the CT
indexes of the markers. The maximum error committed
when determining the CT indexes of the markers was about
0.6 mm (25% slice off). This means that in the experiments
carried out, our algorithm is perhaps responsible only for a
fraction of the reported misregistration. Note that the mean
misregistration of 1.7 mm is clearly subvoxel with respect to
the interslice CT thickness of 2.5 mm.

5. CONCLUSION

We have developed a projection-based algorithm for the reg-
istration of a CT volume to a set of C-arm images, which
takes advantage of a continuous model of the CT volume
based on cubic B-splines. This model allows for a well-
defined gradient of the dissimilarity measure, which is a nec-
essary condition for efficient and accurate registration. We
compute the projections of the volume using a novel method
for integrating the volume along simulated rays. The advan-
tage of this method is the replacement of a 3D interpolation
by a faster 2D interpolation. Our algorithm improves robust-
ness and speed using a coarse-to-fine registration strategy
based on spline multiresolution data pyramids.

We have shown the performance of the algorithm when
registering a set of human cadaver spine CT/C-arm data.
Their true alignment was estimated using a set of fiducial
markers implanted on the specimen before the data acqui-
sition. We have provided an objective geometric measure of
the quality of the registration.

We have found that our algorithm requires at least two
input C-arm images whose planes meet at an angle larger
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than 15◦. To register a single vertebra at a time, we performed
two sets of experiments. In each set, we used image pairs,
image triplets, and image quadruplets as input. In the first
set, we have selected them in such a way that the minimal
angle between any two image planes was 15◦. In the second
set, the minimal angle was chosen to be 25◦. We showed that
the registration accuracy could be improved by increasing the
number of C-arm images and/or the minimal angle between
them. Moreover, we showed that a good tradeoff between the
radiation dosage, the registration accuracy, and the registra-
tion time could be achieved with three different C-arm ori-
entations. Given the triplets of C-arm images that meet at an
angle larger than 25◦, our algorithm achieves registration ac-
curacy of 1.7± 0.3 mm for this CT/C-arm data set. Note that
this accuracy is subvoxel with respect to the CT which has an
interslice thickness of 2.5 mm.

However, our algorithm was able to achieve an accuracy
of 1.4 ± 0.2 mm when jointly registering all three vertebrae
using triplets of images that meet at an angle larger than 15◦.
This shows a potential of our algorithm to register a single
vertebra with smaller misalignments than 1.7 ± 0.3 mm. To
achieve this, one should perhaps let the minimal angle be-
tween the image planes be closer to perpendicular. Unfor-
tunately, the configuration of our data did not allow us to
presently investigate this issue.

To be applied in a real clinical procedure, our algorithm
should be validated using more realistic data such as data
with soft tissues and patient data.

APPENDICES

A. MATRIX B(a)

Let us write the vector of orientational and translatonal pa-
rameters a = (ϕ, θ,ψ,Δx1,Δx2,Δx3), where ϕ, θ, and ψ are
three Euler angles, and Δx1, Δx2, and Δx3 are three transla-
tions. Given a, the voxel size λ1 × λ2 × λ3, and the 3D index
of the volume origin c, we write the transformation B(a) as
follows:

B(a) = TΛC−1R1R2R3C. (A.1)

The matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 −[c]1

0 1 0 −[c]2

0 0 1 −[c]3

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(A.2)

makes the origin of the volume be the center of rotation. The
matrix

R3 =

⎛
⎜⎜⎜⎜⎜⎝

cos(ψ) − sin(ψ) 0 0

sin(ψ) cos(ψ) 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(A.3)

rotates the volume by the angle ψ around its z-axis. Similarly,

R2 =

⎛
⎜⎜⎜⎜⎜⎝

cos(θ) 0 sin(θ) 0

0 1 0 0

− sin(θ) 0 cos(θ) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(A.4)

rotates the volume by the angle θ around its new y-axis, while

R1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 cos(ϕ) − sin(ϕ) 0

0 sin(ϕ) cos(ϕ) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(A.5)

rotates the volume by the angle ϕ around its new x-axis. C−1

shifts back the index of the volume origin, and

Λ =

⎛
⎜⎜⎜⎜⎝

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(A.6)

scales the volume indexes by the voxel size. Finally,

T =

⎛
⎜⎜⎜⎜⎝

1 0 0 Δx1

0 1 0 Δx2

0 0 1 Δx3

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(A.7)

translates the volume by Δx1, Δx2, and Δx3 along its new x-,
y-, and z-axes, respectively.

The sense of rotation for ϕ, θ, and ψ has been chosen
so as to follow the conventions of a right-handed coordinate
system.

B. GRADIENT OF THE COST FUNCTION

The gradient of the cost function (9) with respect to some
parameter ai is given by

∂J(a)
∂ai

=
Q∑

q=1

1
card

(
Dq
)

×
∑

k∈Dq

(
− 1
σ2
q (a)

∂σq(a)

∂ai

(
pq;k(a)− Pq(a)

)

+
1

σq(a)

(
∂pq;k(a)

∂ai
− ∂Pq(a)

∂ai

))
eq;k(a),

(B.1)

where

eq;k(a) = pq;k(a)− Pq(a)

σq(a)
− pq;k − Pq

σq
. (B.2)

Because variations tend to average themselves over the
whole image, we do not expect the mean value Pq(a) and the
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standard deviation σq(a) to exhibit a strong dependence on a
small variation of ai. By contrast, we consider as relevant the
local dependence of the projection pq;k(a). Thus, we simplify
(B.1) into

∂J(a)
∂ai

≈
Q∑

q=1

1
card

(
Dq
) 1
σq(a)

∑

k∈Dq

∂pq;k(a)

∂ai
eq;k(a). (B.3)

From (7), we write that the unexplained term in (B.3) is

∂p(a)
∂ai

= ∂λ(a)
∂ai

∑

n∈Z
f
(

xn(a)
)

+ λ(a)
∑

n∈Z

(∇ f
(

xn(a)
))� ∂xn(a)

∂ai
,

(B.4)

where, for the sake of brevity, we have dropped the depen-
dence on q and k, and where the spatial gradient of the image
∇ f (xn(a)), evaluated at xn(a) = n0(a)+nn(a), is determined
by (14). Here, we leave as an exercise to the reader the task to
develop further the term ∂λ(a)/∂ai, which depends on geom-
etry alone; the same goes for the term ∂xn(a)/∂ai.

Combining (B.4) with (1), (2), and (14), we finally get

∂p

∂a
= ∂λ

∂a

∑

n∈Z

∑

n∈Z3

c[n]
3∏

i=1

β3
([

xn
]
i − ni

)

+ λ
∑

n∈Z

3∑

j=1

∂ f
(

xn
)

∂xj

∂
[

xn
]
j

∂a

(B.5)

with

∂ f
(

xn
)

∂xj
=
∑

n∈Z3

c[n]β̇3
([

xn
]
j − nj

) 3∏

i=1,i = j
β3
([

xn
]
i − ni

)

(B.6)

and [29]

β̇3(x) = β2
(
x +

1
2

)
− β2

(
x − 1

2

)
. (B.7)

C. SIMPLIFIED HESSIAN

Taking an additional derivative of (B.3) results in

∂2J(a)
∂ai ∂aj

≈
Q∑

q=1

1
card

(
Dq
) 1
σq(a)

∑

k∈Dq

∂pq;k(a)

∂ai

∂pq;k(a)

∂aj

1
σq(a)

+
Q∑

q=1

1
card

(
Dq
) 1
σq(a)

∑

k∈Dq

∂2pq;k(a)

∂ai∂aj
eq;k(a),

(C.1)

where, as before, we have ignored the terms ∂σ/∂a and ∂P/∂a.
As explained in Section 3.3, it is actually beneficial to also ig-
nore the second-derivative terms. Finally, we express a com-
ponent of the Hessian as

[∇2J(a)
]
i, j ≈

Q∑

q=1

1
card

(
Dq
) 1
σ2
q (a)

∑

k∈Dq

∂pq;k(a)

∂ai

∂pq;k(a)

∂aj
,

(C.2)

where the remaining differential terms are available from
(B.5).
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