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ABSTRACT: In adaptive-bias enhanced sampling methods, a bias
potential is added to the system to drive transitions between
metastable states. The bias potential is a function of a few collective
variables and is gradually modified according to the underlying free
energy surface. We show that when the collective variables are
suboptimal, there is an exploration−convergence tradeoff, and one
must choose between a quickly converging bias that will lead to
fewer transitions or a slower to converge bias that can explore the
phase space more efficiently but might require a much longer time
to produce an accurate free energy estimate. The recently proposed
on-the-fly probability enhanced sampling (OPES) method focuses
on fast convergence, but there are cases where fast exploration is
preferred instead. For this reason, we introduce a new variant of the OPES method that focuses on quickly escaping metastable states
at the expense of convergence speed. We illustrate the benefits of this approach in prototypical systems and show that it outperforms
the popular metadynamics method.

1. INTRODUCTION
Molecular dynamics has become a valuable tool in the study of
a variety of phenomena in physics, chemistry, biology, and
materials science. One of the long-standing challenges in this
important field is the sampling of rare events, such as chemical
reactions or conformational changes in biomolecules. To
simulate effectively such systems, many enhanced sampling
methods have been developed. An important class of such
methods is based on an adaptive-bias approach and includes
adaptive umbrella sampling,1 metadynamics (MetaD),2,3 and
the recently developed on-the-fly probability enhanced
sampling (OPES).4−6 Adaptive-bias methods operate by
adding to the system’s energy U(R) an external bias potential
V = V(s), which is a function of a set of collective variables
(CVs), s. The CVs, s = s(R), depend on the atomic
coordinates R and are meant to describe the slow modes
associated with the rare event under study. They also define a
free energy surface (FES), F(s) = −1/β log P(s), where β =
(kBT)

−1 is the inverse Boltzmann factor and P(s) the marginal
s distribution, P(s) ∝ ∫ e−βU(R)δ[s − s(R)]dR. The bias is
periodically updated until it converges to a chosen form. A
popular choice is to have it exactly offset the underlying FES,
V(s) = −F(s), so that the resulting s distribution is uniform.
The main limitation of adaptive-bias methods is that finding

good collective variables is sometimes difficult and a bad
choice of CVs might not promote the desired transitions in an
affordable computer time. In practical applications, one
generally has to live with suboptimal CVs7 that still can
drive transitions but do not include some of the slow modes. In

this case, applying a static bias cannot speed up the slow modes
that are not accounted for, and thus transitions remain quite
infrequent. It is sometimes possible to achieve a faster
transition rate using a rapidly changing bias, which can push
the system out of a metastable state through a high free energy
pathway, different from the energetically favored one.
However, unless one wishes to deal explicitly with out-of-
equilibrium statistics,8−10 it is not possible to obtain reliable
information about the system while the bias changes in a
nonadiabatic fashion. To estimate the FES and other
observables, one must let the adaptive-bias method approach
convergence, and as the bias becomes quasi-static, transitions
inevitably become less frequent.
We refer to this situation as an exploration−convergence

tradeoff that every adaptive-bias enhanced sampling method
has to deal with when suboptimal CVs are used. Some
methods, like OPES, focus more on quickly converging to a
quasi-static bias potential and thus obtaining an efficiently
reweighted FES, while others, like metadynamics, focus more
on escaping metastable states and exploring the phase space.
We will demonstrate this qualitative difference in some
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prototypical systems. For simplicity, in the paper, we only
consider the well-tempered variant of metadynamics,3 but in
the Supporting Information, we provide examples that use the
original nontempered MetaD2 and other popular variants, such
as parallel-bias MetaD.11

We propose here a variant of OPES, named OPES-explore,
which focuses on rapid exploration, rather than on fast
convergence. It shares many features with the original OPES,
and is designed to be an easy-to-use tool requiring few input
parameters. To this end, we also introduce an adaptive
bandwidth algorithm that can be used in both OPES variants
and further reduces the number of input parameters that need
to be specified. The detailed description of the adaptive
bandwidth algorithm is given in the Supporting Information.
All OPES simulations presented make use of this algorithm.

2. OPES METHOD
The enhanced sampling method OPES works by adding an
adaptive-bias potential to the energy of the system so as to
modify the Boltzmann probability distribution into the desired
target one. Most adaptive-bias methods aim at sampling
uniformly the CV space, but it has been shown that choosing a
different target distribution could be advantageous.12,13 There
are two different classes of target distributions that can be
sampled with OPES: metadynamics-like and replica-exchange-
like. We will consider here only the former type, introduced in
ref 4, but the interested reader can find information about
OPES for replica-exchange-like sampling in ref 5.
To define a metadynamics-like target distribution, one has to

choose a set of collective variables, s = s(R). As stated in the
introduction, the unbiased marginal probability along such
CVs is P(s) ∝ ∫ e−βU(R) δ[s − s(R)]dR, where U(R) is the
potential energy. The target distribution is then defined by
requiring a specific marginal probability distribution over the
CVs, ptg(s). Consequently, the desired bias potential is written
as

β
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so that ∫ e−β[U(R) + V(s)] δ[s − s(R)]dR ∝ ptg(s). A typical
choice for ptg(s) is the well-tempered distribution3
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where the bias factor γ > 1 controls how much the original
distribution is smoothed out. In the limit of γ = ∞, one targets
a uniform distribution.
The core idea of OPES is to update self-consistently the

estimate of the probability distributions and of the bias
potential in an on-the-fly fashion similar to self-healing
umbrella sampling.14 The estimate of the unbiased probability
is obtained via a weighted kernel density estimation so that at
step n, one has

=
∑

∑
P

w G

w
s

s s
( )

( , )
n

k
n

k k

k
n

k (3)

where the weights wk are given by wk = eβVk−1(sk), and the
Gaussian kernels G(s, s′) = h exp[−1/2(s − s′)T∑−1(s − s′)]
have a diagonal covariance matrix ∑ij = σi

2 δij and fixed height
σ π= ∏ −h ( 2 )i i

1. The number of kernels to represent Pn(s)
would grow linearly with simulation time, but this is avoided
thanks to an on-the-fly kernel compression algorithm,15 as

described in detail in the supporting information of ref 4. The
compression algorithm also allows for the bandwidth of the
kernels to shrink over time, as the effective sample size Neff

(n) =
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2 grows. The idea is to start with a coarse

estimate of P(s) and then refine it as more data are available.
The kernel bandwidth of the i-th CV at step n is
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where d is the total number of CVs.
The instantaneous bias is based on the probability estimate

Pn(s); following eq 1 and using the approximation pWT(s) ∝
[Pn(s)]

1/γ, one has

γ
β

ε= − +
i
k
jjjjj

y
{
zzzzzV

P
Z

s
s

( ) (1 1/ )
1

log
( )

n
n

n (5)

where ϵ is a regularization term that limits the maximum
possible absolute value of the bias potential and Zn can be
understood as normalization of Pn(s) over the CV space thus
far explored, Ωn

∫=
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1

( ) dn
n
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The integral is calculated approximately as a sum of Pn over
the compressed kernels, as explained in the supporting
information of ref 4. The intuitive idea is that new kernels
are added to the compressed representation only when a new
region of CV space is sampled (otherwise they are merged with
the existing ones), thus the explored CV-space volume |Ωn| is
approximately proportional to the total number of compressed
kernels.
The introduction of the Zn term is one of the key

innovations of OPES. In similar methods, once a new
metastable state is found, one often sees a dramatic increase
in the exit time, compared to the first one16 (see Supporting
Information, Figure S8). This exit time problem is present also
when the CVs are optimal and should not be confused with the
exploration−convergence tradeoff that is the primary concern
of this paper. Other convergence-focused methods introduce
extra parameters to tackle this problem, for example in
transition-tempered metadynamics17 prior knowledge of the
position of all metastable states is required. Instead, OPES
avoids the exit time problem by taking into account the
expansion of the CV space via the Zn term, which allows the
bias to adjust more quickly when a new CV-space region is
sampled.4

At the start of an OPES simulation, only a handful of
parameters need to be chosen, namely the initial kernel
bandwidth, the pace at which the bias is updated, and the
approximate FES barrier height that needs to be overcome.
From this last information, a prescription is given to
automatically set the values γ and ϵ. The number of parameters
can be reduced even further if one uses, as we shall do here, the
adaptive bandwidth algorithm discussed in the Supporting
Information.

3. EXPLORATORY OPES VARIANT
We present now a new OPES variant called OPES-explore
which, compared to the original OPES formulation, leads to a
faster exploration of the phase space at the cost of slower
convergence. We have recalled that the Zn term allows OPES
to quickly adapt the bias when a metastable state is found in a
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previously unexplored region of CV space. However, if the CVs
used are suboptimal, it may happen that a new metastable state
is found in an already explored s region.17,18 In such a case, the
Zn term remains constant and is therefore ineffective in
accelerating the exit time. Instead, to encourage a rapid exit,
one would need a method that allows the bias to significantly
change shape again. Fortunately, it is possible to achieve this
exploratory behavior simply by making a minimal change to
the OPES protocol, which gives rise to the OPES-explore
variant.
In formulating OPES-explore, we restrict ourselves to the

case of using as a target the well-tempered distribution, ptg(s) =
pWT(s), eq 2. In OPES, the bias is expressed as a function of
Pn(s), the on-the-fly estimate of the unknown equilibrium
distribution P(s). At the beginning of the simulation, this
estimate is not reliable but it improves over time and converges
in a self-consistent way. In OPES-explore instead, one builds
the bias starting from the on-the-fly estimate of the distribution
that is being sampled in the biased simulation

∑=p
n
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1
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k
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k
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(7)

where sk is the CV value sampled at step k. As the simulation
converges, pn

WT(s) approaches the target well-tempered
distribution pWT(s). Thus, analogously to Section 2, we use
the approximation P(s) ∝ [pn

WT(s)]γ and write the bias
according to eq 1
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where ϵ and Zn have been added for the same reasons as in eq
5. We notice that the expressions in eqs 3 and 7, which define
the probability estimates used in the two OPES schemes,
converge, respectively, to P(s) and pWT(s) only within the self-
consistent scheme where the simulation runs with a bias that is
updated on-the-fly according to eqs 5 and 8, respectively. Both
OPES variants are applications of the more general eq 1, but
OPES estimates on-the-fly P(s) and uses it to calculate the
bias, while OPES-explore does the same but with pWT(s) ∝
[P(s)]1/γ.
The free energy surface as a function of the CVs can be

estimated in two distinct ways, either directly from the
probability estimate, Fn(s) = −γ 1/β log pn

WT(s), or via
importance sampling reweighting, e.g., using a weighted kernel
density estimation

∑
β

= − β −F Gs s s( )
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k

n
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k
s( )k k1
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In standard OPES, these two estimates are equivalent, while
in OPES-explore (similarly to MetaD), they can differ
significantly in the first part of the simulation until they
eventually converge to the same estimate.
In Figure 1, we contrast an OPES and OPES-explore

simulation of alanine dipeptide in a vacuum, which has become

Figure 1. Time evolution of a typical simulation of alanine dipeptide in a vacuum using the two OPES variants with the dihedral angles ϕ and ψ as
CVs. For each method, the compressed kernels are shown on the left with the point size indicating the adaptive bandwidth, and the corresponding
free energy estimate Fn(ϕ, ψ) on the right. (a) In the original OPES, kernels make up the unbiased distribution estimate Pn(ϕ, ψ) and Fn(ϕ, ψ) =
−1/β log Pn(ϕ, ψ), while (b) in OPES-explore, kernels make up the sampled distribution estimate pn

WT(ϕ, ψ) and Fn(ϕ, ψ) = −γ 1/β log pnWT(ϕ, ψ).
All Fn(ϕ, ψ) are shifted to have zero minimum. Notice how OPES-explore requires fewer kernels and visits higher FES regions.
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a standard test for enhanced sampling methods. Both
simulations have the same input parameters and use the
adaptive bandwidth scheme described in the Supporting
Information. The bias is initially quite coarse, but the width
of the kernels reduces as the simulation proceeds and the
details of the FES are increasingly better described. It can
clearly be seen that the OPES-explore variant employs fewer
kernels compared to the original OPES. This is due to the fact
that in OPES-explore, the kernel density estimation is used for
pWT(s) ∝ [P(s)]1/γ that is a smoothed version of P(s), and thus
requires fewer details. This more compact representation can
be useful, especially in higher dimensions, where the number of
kernels can greatly increase despite the compression algorithm.
However, as a drawback, it can result in a less accurate bias
estimate, especially for large values of γ.

4. FEWER TRANSITIONS CAN LEAD TO BETTER
CONVERGENCE

The difference in performance between OPES and OPES-
explore cannot be judged from the alanine dipeptide example
because in this case, the CVs chosen are extremely efficient. To
highlight the difference between the two methods, we study a
simple two-dimensional model potential that is known as the
Müller potential,20 see Figure 2a, using the x coordinate as a
collective variable. This is a clear example of suboptimal CV
since it can discriminate the metastable states but not the
transition state.
For two-dimensional systems, the free energy along the CV,

F(x), can be computed precisely with numerical integration,
Figure 2b. From F(x), the free energy difference between the
two metastable states can be calculated as

∫

∫β
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While it is possible to distinguish better the two states using
also the y coordinate, this does not result in a significant
difference in the ΔF value (see Supporting Information, Sec.
S3). On the other hand, x does a poor job of identifying the
transition state, which is around x ≈ −0.7 and y ≈ 0.6, and not
at x ≈ 0 as it would seem from F(x). As a consequence, it is
not possible to significantly increase the transition rate
between the states using a static bias that is a function of x
only.
To show this, we consider the effect of adding to the system

the converged well-tempered bias V(x) = −(1 − 1/γ)F(x),
with γ = 20. In Figure 2b, we can see the effect of the bias on
the FES along x, which becomes almost completely flat.
However, when we consider the full 2D landscape, as shown in
Figure 2c, we can see that such a bias does not really remove
the barrier between the two states. From the height of the
barrier at the transition state, one can roughly estimate that
adding V(x) improves the transition rate by about one order of
magnitude. Nevertheless, transitions remain quite rare, around
one of every 106 uncorrelated samples (see Supporting
Information, Sec. S3).
We want to compare the two OPES variants and well-

tempered metadynamics in this challenging setting, where CVs
are suboptimal and the total simulation time is not enough to
reach full convergence. This type of situation is not uncommon
in practical applications, and it is thus of great interest. Given
enough time, all of the methods considered will converge to

the same bias potential and sample the same target
distribution, but we shall see that before reaching this limit,
they behave very differently.
Figure 3a shows a typical run of the Müller potential

obtained by biasing the x coordinate with OPES, OPES-
explore, or MetaD. As a simple way to visualize the evolution
of the bias, we also report in Figure 3b, the ΔFn estimate
obtained directly from the applied bias, using Fn(x) = −(1 −
1/γ)−1Vn(x) in eq 10. We can see a qualitative difference
between OPES and the other two methods.
OPES reaches a quasi-static bias that is very close to the

converged one but samples a distribution that is far from the
well-tempered one, where the two basins would be about
equally populated. On the other hand, the x distribution
sampled by OPES-explore is closer to the target well-tempered
one, but its bias is far from converged and makes ample
oscillations around the correct value. Metadynamics behaves
similarly to OPES-explore. This is the exploration−conver-
gence tradeoff described in Section 1. Since the CV is
suboptimal, even when using the converged bias V(x) to see a
transition occur, one has to wait for an average number of steps
τ ≈ 106, which is more than the total length of the simulation.

Figure 2. (a) Müller potential energy surface, U(x, y). (b) Free energy
surface along the x coordinate, F(x), with and without the addition of
the bias potential V(x) = −(1 − 1/γ)F(x), where γ = 20. (c) Potential
energy modified by the bias potential, U(x, y) + V(x). All the energies
reported are shifted to have zero minimum. It can be seen that despite
the almost flat profile along x, the transition region between the states
remains at high energy.
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However, it is possible to greatly accelerate transitions using a
time-dependent bias that forces the system into higher energy
pathways, which are not accessible at equilibrium.
In OPES-explore, the bias is based on the estimate of the

sampled probability pn
WT(s) and pushes to make it similar to

the almost flat well-tempered target. This means that to have a
quasi-static bias, pn

WT(s) should both be almost flat and not
change significantly as the simulation proceeds. Clearly, this
cannot happen unless the simulation is longer than τ,
otherwise, most of the time would be spent in the same
basin and pn

WT(s) would be far from flat. On the contrary, in
OPES, the bias is based on the reweighted estimate Pn(s), and
thus it can reach a quasi-static regime even before properly
sampling the target distribution.
In Figure 4a, we show the ΔFn estimate averaged over 25

independent runs, all starting from the main basin x < 0. We
can see that on average, OPES provides the best ΔFn estimate
at any n in spite of the fact that it induces far fewer transitions.
In fact, most of the time, only one full back-and-forth transition
is observed (see Supporting Information, Figure S5a). One
should notice that after a single transition, the ΔFn estimate is
far from being accurate (see Figure 3b) but, since the bias
quickly becomes quasi-static, it is possible to collect
equilibrium samples and reliably reweight them, and the
average estimate becomes more accurate the more simulations
are run. Instead, in OPES-explore and MetaD, despite starting

from independent initial conditions, the runs are highly
correlated due to the transitions being mostly driven by the
strong changes in the bias rather than the natural fluctuations
of the system. As a consequence of this, a systematic error is
present in the average estimate, even if ΔFn is further averaged
over time, to remove the oscillatory behavior of OPES-explore
and MetaD. Such a systematic error depends on the
characteristic of the system and the chosen CVs and is hard
to predict whether it will be relevant or small. Nevertheless,
one can be sure that it reduces over time as the bias
converges.24

Estimates of ΔF using different reweighting schemes are
shown in Figure 4b. For OPES and OPES-explore, eq 9 has
been used, while for MetaD, we consider two of the most
popular reweighting schemes, namely last-bias reweighting19,23

and bias-offset reweighting.21,22 As expected, the reweighting
estimate of OPES is virtually identical to the direct estimate
obtained from the bias, while for the other two methods, the
two estimates differ. The reweighting of OPES-explore has very
small statistical uncertainty, which further highlights the
presence of a systematic error in the free energy difference
estimate. Like others before us,22,25,26 we observe empirically
that the last-bias reweighting for MetaD tends to be in
agreement with the direct estimate, even when the simulation
is far from converged, while the bias-offset reweighting
provides a very unreliable estimate if the MetaD bias has not

Figure 3. Typical simulations of the Müller potential using different methods for biasing the x coordinate. Given more time, the three methods will
converge to the same bias potential and will sample the same target distribution. (a) Shows the trajectory along the CV and (b) shows the
corresponding ΔFn, eq 10, calculated using the FES estimate obtained directly from the applied bias, Fn(x) = −(1 − 1/γ)−1Vn(x). The correct ΔF
value is highlighted by a blue stripe 1 kBT thick.
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reached a quasi-static regime and the initial part of the
simulation is not discarded. Once again, it must be noted that
the simulations considered here are not fully converged,
otherwise all of the different estimates of the various methods
would have yielded the correct result, without systematic
errors. However, for most practical purposes, they behave very
differently; thus, it is important to choose between an
exploration-focused or a convergence-focused enhanced
sampling method, depending on the specific aim of the
simulation.

5. SOMETIMES EXPLORATION IS WHAT MATTERS
In the example of the previous section, it was shown that
OPES converges to a quasi-static bias faster than OPES-
explore and provides more accurate FES estimates. However,
FES estimation is not the only goal of an enhanced sampling
simulation. In complex systems where good CVs are not
available, convergence can remain out of reach; still, one might
be interested in exploring the phase space and finding all of the
relevant metastable basins. In such a situation, OPES-explore
can be a useful tool.
We consider here alanine tetrapeptide in a vacuum as a test

system, as in ref 4. It has three ϕ dihedral angles, each of them
can change from positive to negative values and vice versa with
a relatively low probability. This leads to 23 = 8 distinct
metastable basins, each corresponding to a different combina-

tion of ϕ angles signs, as shown in Figure 5. Here, we are not
interested in estimating the FES, but rather we want to
compare the ability of different methods to explore this space
and discover all metastable states.
Figure 6 shows the number of explored basins averaged over

10 independent simulations for each enhanced sampling
method. The simulations in the top panel (Figure 6a) bias
the ϕ angles, V = V(ϕ1, ϕ2, ϕ3), which are good CVs, while in
the bottom (Figure 6b), the suboptimal ψ angles are used, V =
V(ψ1, ψ2, ψ3). In all methods, the exploration time increases
approximately by two orders of magnitude when suboptimal
CVs are used (please note the horizontal logarithmic scale). As
expected, OPES and OPES-explore have similar exploration
speeds when using good CVs, while with suboptimal CVs,
OPES struggles to find all of the metastable basins. This is
because the same region of CV space might correspond to two
different metastable basins or to a basin and a transition state,
as for the Müller potential.18,19 In this situation, the previously
estimated bias must change considerably for the simulation to
escape the current metastable state quickly.
The exploration speed of MetaD depends critically on the

input parameters and requires a trial-and-error tuning. We
report here only the outcome of MetaD simulations in which a
standard choice of the input parameters has been made. As can
be seen in Figure 6, in these simulations, the exploration speed
is roughly one order of magnitude slower than that of OPES-

Figure 4. Estimate of the free energy difference ΔF for the Müller potential obtained by averaging 25 independent runs for each biasing method.
The standard deviation is also shown for each estimate. Given more time, all of these estimates will converge to the correct ΔF. All simulations start
from the main basin, x < 0, but with different initial conditions. (a) Shows the estimate obtained directly from the applied bias, as shown in Figure
3b, while (b) shows the corresponding estimate obtained via reweighting. For metadynamics, two different reweighting schemes are considered,
bias-offset21,22 and last-bias reweighting.19,23 The correct ΔF value is highlighted by a blue stripe 1 kBT thick.
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explore. However, the performance of MetaD simulations can
be improved using different settings, as shown in the
Supporting Information. In the Supporting Information, we
also report and briefly discuss results obtained with non-
tempered metadynamics,2 adaptive-Gaussians metadynamics,23

and parallel-bias metadynamics.11 None of these MetaD
variants significantly improve the exploration speed, and
some make it even worse.
Finally, in the Supporting Information, Sec. S5, we show

how a preliminary OPES-explore run can be combined with a
multithermal OPES simulation5,6 to efficiently sample alanine

tetrapeptide and reach a converged FES, even without
explicitly biasing the ϕ angles.

6. CONCLUSIONS

With the help of model systems, we show that there is an
exploration−convergence tradeoff in adaptive-bias methods
when suboptimal CVs are used. This tradeoff should not be
confused with the exit time problem, which is present also with
optimal CVs, and is discussed in Section 2 and refs 16, 17.
Contrary to the exit time problem, the exploration−
convergence tradeoff cannot be solved. It is an intrinsic
limitation of CV-based adaptive-bias methods, which comes as
a consequence of suboptimal CVs. We believe that the best
way to handle this tradeoff is to have separate methods that
clearly focus on one or the other aspect so that they can be
used depending on the application. In a convergence-focused
method, the bias soon becomes quasi-static to allow for
accurate reweighting and free energy estimation. However,
with suboptimal CVs, this leads to a slow transition rate and a
long time is required to sample the target distribution. As
discussed, even if one knows the true F(s) and directly applies
the converged bias, one would not obtain a faster exploration.
In an exploration-focused method, it is possible to improve the
exploration speed by letting the bias change substantially even
in a CV region that has already been visited. While this may
increase the number of transitions, it comes at the cost of a
slower convergence.
The original OPES method focuses on fast convergence to

provide an accurate estimate of the free energy surface and
reweighted observables. As a consequence, it is very sensitive
to the quality of the CVs (see e.g., Figure 3a), and any
improvement in the CVs results in a clear acceleration of the
transition rate. This is a particularly useful property when
developing machine learning-based CVs, and in fact, OPES has
already been used several times in this context.27−32

In other situations, improving the CVs may first require a
better exploration of the phase space.28,33−35 Furthermore, one
may be interested simply in exploring the metastable states of a
system rather than estimating an accurate FES.36−39 For this
reason, we have introduced a variant of the OPES method,
OPES-explore, which focuses on quickly sampling the target
distribution and exploring the phase space.
We have shown that also well-tempered metadynamics is an

exploration-focused method. One of the main advantages of
OPES-explore over MetaD is that it is easier to use since it
requires fewer input parameters and it has a more
straightforward reweighting scheme (but more advanced
ones can also be used25,40). Another important difference
between the two methods is that OPES-explore, similarly to
OPES, by default provides a maximum threshold to the applied
bias potential, thus it avoids unreasonably high free energy
regions. To obtain the same effect with MetaD, one typically
has to define some ad hoc static bias walls by trial and error.
This last feature of OPES-explore has been recently leveraged
by Raucci et al. to systematically discover reaction pathways in
chemical processes.41

Finally, we should clarify that OPES-explore, just as
metadynamics, might not be able to exit any metastable state
if the CVs are too poor,19,42 and its improved exploration
capability can only be harnessed if the CVs are close enough to
the correct ones to make such transitions possible. The speed
and the small number of input parameters of OPES-explore are

Figure 5. Eight metastable basins of alanine tetrapeptide in a vacuum
sampled via OPES-explore by biasing the three ψ angles, a suboptimal
set of CVs. Each basin is identified by the sign of the three ϕ angles
for a total of 23 possible combinations. The most stable basin has ϕ1,
ϕ2, ϕ3 < 0, while the least stable basin has ϕ1, ϕ2, ϕ3 > 0.

Figure 6. Exploration time of the eight metastable basins of alanine
tetrapeptide over 100 ns. The lines are an average of over 10
independent runs for each method, showing the total number of
visited basins. (a) Shows bias as a function of the three ϕ angles, V =
V(ϕ1, ϕ2, ϕ3), while (b) shows the three ψ angles are used, V = V(ψ1,
ψ2, ψ3). See the Supporting Information for results with different
input parameters and other MetaD variants, such as parallel-bias
MetaD.11
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extremely helpful for quickly testing several candidate CVs to
find out which can drive transitions and discard the bad ones.
We believe that OPES-explore is an important addition to

the OPES family of methods and will become a useful tool for
researchers as it pushes forward the trend for more robust and
reliable enhanced sampling methods.
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