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Abstract

Background: This study aimed at predicting the survival status on non-small cell lung cancer patients with the
phenotypic radiomics features obtained from the CT images.

Methods: A total of 186 patients’ CT images were used for feature extraction via Pyradiomics. The minority group
was balanced via SMOTE method. The final dataset was randomized into training set (n = 223) and validation set
(n = 75) with the ratio of 3:1. Multiple random forest models were trained applying hyperparameters grid search
with 10-fold cross-validation using precision or recall as evaluation standard. Then a decision threshold was
searched on the selected model. The final model was evaluated through ROC curve and prediction accuracy.

Results: From those segmented images of 186 patients, 1218 features were obtained via feature extraction. The
preferred model was selected with recall as evaluation standard and the optimal decision threshold was set 0.56.
The model had a prediction accuracy of 89.33% and the AUC score was 0.9296.

Conclusion: A hyperparameters tuning random forest classifier had greater performance in predicting the survival
status of non-small cell lung cancer patients, which could be taken for an automated classifier promising to stratify
patients.
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Background
Lung cancer, one of the highest risky cancers, is the lead-
ing cause of cancer death with a high mortality rate of
82.3% in 5 years after diagnosis (National Cancer Insti-
tute). [Noone AM, Howlader N, Krapcho M, et al. SEER
Cancer Statistics Review, 1975–2015, https://seer.cancer.-
gov/csr/1975_2015/] Non-small cell lung cancer is a sub-
type lung cancer, which accounts for 85% among lung
cancers [1]. The 5-year survival rate decreases dramatic-
ally as the cancer entering advanced, from 40% for stage I
to only 1% for stage IV [2, 3]. It was reported that CT tex-
ture analysis could be helpful to further classification of
treatment as it provided information on the intratumor

heterogeneity [4] which might be the reason for disparate
outcomes of patients. Thibaud P. Coroller and etc. used 7
radiomic features to predict pathological response after
chemoradiation [5].
In the past 10 years, medical digital image analysis has

grown dramatically as advancement of the pattern recog-
nition tools and increase of the data collection. Radiomics
offers unlimited imaging biomarkers which are promising
to help cancer detection, prognosis and prediction of
treatment response [6, 7]. With the high-throughput com-
puting, it’s possible to quickly extract various quantitative
features from digital images such as MRI and CT. Since
cancers are more likely to be temporal and spatial hetero-
geneous, the use of biopsy might be limited. Furthermore,
medical digital imaging could give a whole picture of the
tumor shape, texture and volume, and it is also a noninva-
sive way to get comprehensive tumor information [8].
Some researches indicated that there was a relationship
between radiomic features and tumor grades, histology,
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metabolism, and patient survival and clinical outcomes
[9–11]. Kitty Huang et al. also found high risk CT features
were significantly associated with local recurrence [12].
Chintan et al. studied the prognostic characteristics of
radiomic features between lung cancer and head & neck
cancer and found association among 11–13 features and
prognosis, histology and stage [13]. Jiangdian et al. investi-
gated the prognostic and predictive ability of phenotypic
CT features in non-small cell lung cancer patients and
reported an overall clinical stage prediction accuracy of
80.33% [14]. Those previous studies have shown that med-
ical image analysis has a promising ability in improving
cancer diagnosis, detection, prognostic prediction on
oncology [8].
With those antecedent studies, radiomics displayed its

hopeful and cost-effective potential in the area of preci-
sion oncology. Even though there have been already
numerous researches on the prediction of cancer diag-
nosis or stage classification, most of them used default
parameter or manual selection which might not efficient
enough. Most of the time default parameters could give
us great result, but the ability of the model would be
maximized by parameters optimization when we con-
duct the training stage [15]. This study intended to con-
struct an automatic grid search [16] hyper-parameters
tuning classifier to make detections on the survival sta-
tus of non-small cell lung cancer patients based on the
radiomics features. The dataset was randomized into
training set and validation set. A random forest classifier
with hyperparameters tuning was used to make classifi-
cation of survival status of non-small cell lung cancer
patients in training set. The model was assessed on the
validation data by ROC curve as well as the prediction
accuracy.

Methods
Data sets
The study included 186 non-small cell lung cancer
(NSCLC) patients from two merged datasets R01 and
AMC. The patient characteristics and CT images were
obtained from the cancer imaging archive (TCIA) data-
base (https://doi.org/10.7937/K9/TCIA.2017.7hs46erv).
Clinical data of all 186 NSCLC patients are provided in
Table 1, including the gender, smoking history, histology,
treatment, and overall survival data. Additional file 1:
Table S1 shows detailed staging information.

Feature extraction
One thousand, two hundred eighteen tumor characteris-
tics were quantified by extracted features from the lesion
segmented from patients’ CT images. The radiomic fea-
tures can be categorized into four types such as inten-
sity, shape, texture and wavelet. An open-source package
in Python, Pyradiomics was used for various features

extraction from CT images [17]. A list of 50 quantitative
features including first order features, shape features,
Gray Level Size Zone Matrix (GLSZM) features, Fea-
tures Gray Level Run Length Matrix (GLRLM) features
and etc. were extracted. The shape descriptors were
extracted from the label mask and also not associated
with gray value.

Data balance and data splitting
Extracted features were then weighted differently as a
result of data balancing. In machine learning, algorithms
assume the distributions of groups are similar. In prac-
tice, when the disproportion of classes happens, the
learning algorithms tend to be biased towards the major-
ity class. But in this study, we are more interested in the
minority class with more adverse events take place [18].
Due to sample imbalance (the number of being alive is
much less than that of being dead), rather than simply
applying over-sampling with replacement for data bal-
ance, we conducted a synthetic minority over-sampling
(SMOTE) method to increase the size of the minority
group. SMOTE can be used when the number of the
category is larger than 6 since it generated the new
examples by taking samples of the feature space for the
target class and its 5 nearest neighbors. SMOTE has an

Table 1 Demographic characteristics

Characteristic Number of Patients (%)

Gender

Male 120 (64.5%)

Female 66 (35.5%)

Smoking Status

Nonsmoker 39 (20.9%)

Former smoker 117 (62.9%)

Current smoker 30 (16.2%)

Histology

Adenocarcinoma 154 (82.7%)

Squamous cell carcinoma 29 (15.6%)

NOS 3 (1.7%)

Treatment

Surgery 33 (17.7%)

Chemotherapy 40 (21.5%)

Radiotherapy 19 (10.2%)

Adjuvant Treatment 40 (21.5%)

Unknown 54 (29.1%)

Overall Survival

Dead 37 (19.9%)

Alive 149 (80.1%)

NOS not otherwise specified
This table displayed the clinical data of all 186 NSCLC patients, including the
gender, smoking history, histology, treatment, and overall survival data
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advantage of making the decision region of the minority
class more general [19, 20]. The final size of the dataset
was n = 298. Because the minority group was over-
sampled thus the dataset was randomized into training
set (n = 223) and validation set (n = 75). The distribution
of being alive and dead between training and validation
set was also plotted.

Classifier construction
Based on the radiomics features, we aimed to build a
radiomics-based survival status prediction model using
random forest classifier and hyperparameters tuning in
Python [21]. Random forest creates multiple decision
trees by randomly choosing subsets of features to make
the classification based on the mode (for classification)
or the mean (for regression) from all the smaller trees
[22, 23]. It has the advantage of being less vulnerable to
overfitting problem compared to decision-trees. A gen-
eric random forest classifier was constructed first. Par-
ameter estimation using grid search with 10-fold
cross-validation was applied to the training data for
parameters tunings such as the number of features to
consider for the best split (max_feature), the number of
trees in the forest (n_estimators), the maximum depth of
the tree (max_depth), the minimum number of samples
required to split an internal node (min_sample_split).
Precision and recall score were used as evaluation stand-
ard for parameters tuning respectively. The two best

models with different optimal hyperparameters can be
acquired by the top mean precision or recall score re-
spectively. The final preferred model was selected by
comparing their performance on the validation data.

Decision threshold adjustment
Instead of directly adopting the absolute predictions, this
study also applied for decision value tuning to balance
the trade-off between precision and recall. A function of
decision values was used to determine the decision
threshold of the chosen model to maximize the preci-
sion with high recall.

Radiomics model assessment
Model performance was evaluated in terms of the oper-
ator characteristic curve (ROC), the area under the
curve (AUC) and accuracy, which could quantify the
prediction performance of the classifier model.

Results
Class distribution
The class distribution of each class before (Fig. 1a) and
after oversampling (Fig. 1b) were presented. It was ob-
vious that after SMOTE method, the number of patient
being dead was similar to the number of those being
alive. To be note, the sample size after oversampling
was 298.

Fig. 1 Survival Status Distribution of Patients. a Before oversampling. b After oversampling. X axis is the survival status of the patients: the blue
bar represents the alive group and the orange bar represents dead group; Y axis is the number of patients in each survival group

Table 2 Model ranking based on mean precision score

Model Mean Precision Mean Recall Mean Accuracy Max Depth Max Features Min Samples Split N Estimators

149 0.886 0.892 0.883 15 3 3 1100

252 0.882 0.91 0.888 25 10 3 100

164 0.878 0.901 0.883 15 5 3 500

154 0.878 0.892 0.879 15 3 5 900

233 0.878 0.847 0.861 25 3 10 1100

This table displayed the results of automatic hyper-parameters tuning based on two evaluation standards and ranked the models based on mean precision score.
The last four columns represent the values of hyper-parameters of models
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Construction of the survival status prediction model
The construction of the classifier was conducted using a
training set consisting of 223 patients with different
survive status of NSCLC. Random forest and automatic
parameters tuning were applied on the training data to
obtain the optimal model. The partial results can be seen
in Tables 2 and 3. The confusion matrixes of parameter
tuning based on different evaluation standards could be
seen in Fig. 2. Comparing the performance of these two
models on the validation data, it could draw a conclusion
that the model obtained based on recall standard outper-
formed slightly better than that of precision (The number
of correct prediction was slightly larger and false negative
was less). The final random forest classifier was con-
structed using the parameters: ‘max_depth’: 5, ‘max_fea-
tures’: 20, ‘min_samples_split’: 3 and ‘n_estimators’: 100.
Figure 3 displayed the fifty most important features gener-
ated in the random forest by Gini importance. As can be
seen from the plot, two large area low gray level emphasis
features ranked first and second respectively as the most
important features in the prediction model but this did
not mean that other features were much less important.

Since when there were multiple correlated features, once
a feature was selected the extent to which other features
could lead to impurity decreasing dramatically.
Figure 4 listed radiology images from separate body

sections of three samples which were chosen randomly
and all had certain information and features, such as
histology, survival status, first order feature, GLSZM fea-
ture and etc. The survival status of (A) was alive, while
that of (B) and (C) was dead. In common clinical diag-
nosis, researchers can make predictions based on the
morphology of the lesions. As we can see through pic-
ture (A) and (B), size of tumor of (B) was significantly
larger than that of (a), and clinicians with few experience
could easily make difference of similar cases. However,
once there was no distinguishing feature in the radiology
images, clinicians hardly could diagnose the illness by
naked eye. Through a set of comparison, this study
found that a small part of image features had greater
ability in prognosis. As a result, features extracted from
radiology images were needed for further prognosis. Take
(a) and (c) as an example, they are very similar in shape and
size, whilst as shown in Table 4, difference in some of their

Table 3 Model Ranking Based on Mean Recall Score

Model Mean Precision Mean Recall Mean Accuracy Max Depth Max Features Min Samples Split N Estimators

221 0.886 0.892 0.883 25 3 3 1100

279 0.879 0.892 0.874 25 20 5 700

153 0.884 0.883 0.879 15 3 5 700

225 0.884 0.883 0.879 25 3 5 700

146 0.878 0.883 0.874 15 3 3 500

This table displayed the results of automatic hyper-parameters tuning based on two evaluation standards and ranked the models based on mean recall scores.
The last four columns represent the values of hyper-parameters of models

Fig. 2 Confusion Matrix of Parameter Tuning Based on Different Evaluation. a Based on precision. b Based on recall. The horizontal line means
the number of predicted in each group; the vertical line means the actual number of each survival group. The leading diagonal represents correct
prediction; the minor diagonal represents incorrect prediction
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features, like original_glszm_Large Area Low Gray Level
Emphasis, wavelet.LLH_glszm_Large Area Low Gray
Level Emphasis, wavelet. HHH_glcm_Cluster Prominence,
wavelet.LLL_glszm_Large Area Emphasis and log.sigma.
1.0.mm.3D_glszm_Large AreLowGrayLevelEmphasis is
remarkable.

Decision threshold adjustment
After deciding the random forest classifier, we searched
for the decision threshold for a trade-off between preci-
sion and recall. The default decision threshold in ran-
dom forest was 0.5. Figure 5 showed precision and recall
as a function of decision values, where x represented
threshold value and y was the score of precision or re-
call. The optimal decision threshold was obtained as
0.56 from the intersection point and the precision of the
model achieved nearly 90% when recall was around 90%,
which was further verified by the precision and recall
curve as well as the confusion matrix in Fig. 6.

Performance of Radiomics prediction model
The performance of the classifier constructed was vali-
dated according to the receiver operating characteristic
(ROC) metrics in the validation set consisting 42 patients.
Figure 7 presented the performance results (AUC: area
under the ROC curve) obtained in the validation set for
the radiomics model. The prediction accuracy was 89.33%
(The percentage of correct classification). The AUC score
for this model was 0.9296, which meant the model had a
great ability of predicting being alive or being dead.

Discussion
Radiomics has gained great attention as a potential
method to promote personal medicine. Its image signa-
tures derived from digital images are promising to help
diagnostics and prognostics [24]. It has been shown that
features such as texture, shape and intensity had prog-
nostic power in independent data of lung and
head-and-neck cancer patients since they were able to
capture the intratumor heterogeneity [25]. Applying

Fig. 3 Fifty Features with Top Gini Importance Values. X axis is the name of features and Y axis represents the Gini-importance score

Fig. 4 The Radiological Images of Three Certain Samples. a-c The patients’ living statuses from (a-c) are Alive, Dead, Dead
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machine learning techniques on the output data from
radiomics has also become a hot topic in oncology, per-
sonalized medicine and computer aided diagnosis since
its compatibility with the big data generated from digital
images [26].
This study intended to predict the non-small cell lung

cancer survival status with radiomics features. A total
of 1218 features were obtained after feature derivation
using Pyradiomics. And those features captured the
information about tumor shape, intensity and texture.
Data imbalance is always a common problem in classifi-
cation problem since most interested events like dis-
ease, network intrusion and etc. are rare. When sample
size is large enough, slight or medium imbalance is not
a big problem for training since there is enough infor-
mation for learning from the minority class. However,

when sample size is small, especially for decision tree
the leaves that predict the minority class are likely to be
pruned [27]. Thus, in this study, a SMOTE oversam-
pling method was necessary to decrease the training fit
error. The model was trained with automatic hyper-
parameters tuning aiming to make use of the best po-
tential of our model. One common problem with
hyperparameter tuning is overfitting, which means that
the model performs well on the training data but poorly
on the test data. This issue can be amended by using
cross-validation where the model performance is evalu-
ated by averaging k models. This study skipped the part
of feature selection for two reasons: one was that the
sample feature ratio was not low to introduce overfit-
ting and another one was that random forest with
parameters tuning was powerful since it optimized the
number of tress and selected the best feature at each
node. The final result of our study also proved that the
model without feature selection had a great generalization
on the test data.
Moreover, we studied how the adjustment of decision

values impacted the precision and accuracy because a
good classification model was not only evaluated on the
accuracy. Precision and recall are further standards for
model evaluation but there is a trade-off between them.
Precision decreases as recall increases [28]. For survival
status prediction, it is important to differentiate the
death to stratify the patient into high risk group auto-
matically. Thus, it might be more cost expensive to
misidentify the high-risk patients. Without further test
data validation, the result after decision threshold ad-
justment could be optimistic. However, this study gave
a reference for the decision threshold of a non-small
cell patient not being alive based on the radiomic fea-
ture. This may indicate that radiomics is promising into
automatic computer aided patient risk stratification in
a non-invasive way. For hyperparameters tuning, this
study used grid search, which performed well in low di-
mensional space. When the dimension space is large or
unknown, random search could be considered [2].

Table 4 Basic information and the value of certain features of three cases

Features R01–005 R01–006 R01–129

Case ID

Histology Adenocarcinoma Adenocarcinoma Adenocarcinoma

Survival Status Alive Alive Dead

original_glszm_LargeAreaLowGrayLevelEmphasis 0.023323 0.330361 100.1903

wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.001637 0.008254 2.941066

wavelet.HHH_glcm_ClusterProminence 400.5173 413.4463 8.821475

wavelet.LLL_glszm_LargeAreaEmphasis 2.594846 8.408592 191.8787

wavelet.HLL_gldm_DependenceVariance 0.137999 1.28458 16.99916

It is shown in the table that different survival status corresponds to different level of feature, and it is noteworthy that the difference between them
is distinguishing

Fig. 5 Precision and Recall Score as a Function of Decision Values.
Blue dashed line: precision score; Green line: recall score. Y axis in
the score value and X axis is decision threshold value. The intersection of
the two curves are the optimal point where the trade-off of precision
and recall is achieved
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Despite of the satisfactory model performance, the
study had a few limitations. First, since all training
and testing data were acquired from one study, it
may not be generalized to all cases [29] with a more
heterogeneous dataset, and the accuracy might be
lower than the current study. The extents to which
the data we used are representative to the real situ-
ation also affect how well the trained model could

perform in the practical use. Thus, different CT im-
ages from different sources are needed to construct a
more rigorous and general classification model. The
second limitation of the study is disproportion of
patients at different disease stages. According to Table
2, the number of people with specific characteristic
was far more than the rest, which means patient with
a certain stage of the cancer might have more images
or more pathologic images. For instance, there were
154 Adenocarcinoma patients, 29 Squamous cell car-
cinoma patients, and 3 not otherwise specified (NOS)
patients.
For future research, more data from diverse pa-

tients’ background, different databases, and multiple
image modalities should be utilized for further testing
and validation. Other mathematical model can be
developed to improve feature extraction. Our model
can be adopted to improve the performance of classi-
fier. The most relevant features can provide useful in-
formation for future exploration to develop a better
detection method. Also, with larger dataset, different
classification criteria can be tuned according to the
different types of lung cancer and disease stages.

Conclusion
To conclude, this study intended to construct a survival
status classifier with automatic hyperparameters tuning.
In order to optimize classification outcomes, the tuning
of decision threshold can serve as a reference for future
work. Our classification methods has the potential to
contribute to a survival prediction model, which is bene-
ficial to better palliative care and treatment decision.

Fig. 6 Precision and Recall with the Determined Decision Threshold. a Precision and Recall Curve (This curve shows how recall and precision changes as
the decision threshold value changes. The triangle represents the decision threshold we chose). b Confusion Matrix. The horizontal line means the number
of predicted in each group; the vertical line means the actual number of each survival group. The leading diagonal represents correct prediction; the minor
diagonal represents incorrect prediction

Fig. 7 The ROC curve for Random Forest Model Performance on the
Validation Data. X axis represents false positive rate ( FP

TNþFP) and Y axis

is true positive rate ( TP
TPþFN). The diagonal dashed line means

random prediction
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